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Abstract

This work presents non-linear control algorithms for stabilizing a planar vertical

take-off and landing aircraft (PVTOL), That belongs to family of underactuated

mechanical systems having three degrees of freedom (3DOF) with two control in-

puts. The suggested methodologies for PVTOL are based on first order sliding

mode control, Robust adaptive sliding mode control and the backstepping control.

In adaptive sliding mode control, the system is first transformed into a particu-

lar structure through input transformation, which contain some unknown terms.

The dimension of system increases. The unknown term is computed adaptively

and then system is stabilized via adaptive sliding mode control. Also the slid-

ing mode control which contain discontinuous term and adapted laws are derived

in such a way that the time derivative of a Lyapunov function becomes strictly

negative. In second approach transformation is applied and new control inputs

injected in dynamical model of PVTOL. Linear sliding manifold is defined and

system is forced toward sliding manifold via first order sliding mode control. In

backstepping approach system is transformed into specific structure and system

is stabilized. Matlab simulation results reveal the effectiveness of the suggested

control algorithms on PVTOL system.
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Chapter 1

Introduction

1.1 Background

This chapter introduces the research work carried out in this thesis. First, build-

ing upon the background, the author explains how motivation for this work was

developed. This chapter concludes with an overview of this thesis.

Mechanical Systems are among the oldest systems invented by humans to be used

as in our daily life. Application of mechanical systems are used in almost ev-

ery aspect of practical life. Examples of such systems includes pulley, wheel,

sewing machines, steam engines, automobiles, robots, aerospace and marine sys-

tems. When use of these systems became more common, their manual operation

become less productive, so humans started thinking to automate these systems for

better qualitative and quantitative output. The need of automation leads to the

application of Control theory in mechanical systems.

From control point of view, mechanical control systems have been studied under

the following subclasses:

1. Fully Actuated Mechanical Systems: Those Systems which have same

number of actuators compared to the number of degrees of freedom.

1
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2. Underactuated Mechanical Systems: Those Systems which have less

number of actuators compared to the number of degrees of freedom.

3. Nonholonomic Systems: Those Systems which have non-integrable 1st

order constraints on their velocities.

Control of fully actuated mechanical systems is not a challenging problem because

linear control methods like pole placement or frequency domain analysis can be

used to design control framework for such systems, nonlinear techniques of feed-

back linearization [1] is also applicable.

Planar vertical take-off and landing aircraft (PVTOL) is 3DOF underactuated me-

chanical system. Research in control of underactuated system including PVTOL

sysetm started in 90’s [2–5]. In past decades, level of interest has been increased

in underactuated systems. The underactuated mechanical systems have been of

great importance in research and are considered as prototype systems for nonlin-

ear complex systems. When the usefulness of underactuated mechanical systems

(which have less number of actuators than configuration variables) was realized

in applications of science and engineering, its research shifted to practical nature.

Underactuated systems have numerous applications in science and technology in-

cluding robotics, aerospace and marine systems. The feature of underactuation

make their control distinct from other non-linear systems. This property of “un-

deractuation” is due to the following reasons.

1. Natural dynamics of the systems like surface and water vehicles.

2. Also this property can be chosen to reduce cost and for more practical ad-

vantages like reduction of weight in space and underwater vehicles.

3. Underactuation phenomenon can be applied to design low order nonlinear

systems for obtaining acknowledgment about control of higher order un-

deractuated systems, (e.g. the Beam-and-Ball system, the TORA system,

Rotating pendulum, quadrotor system, PVTOL etc.).
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4. Underactuation may raise in case of actuator’s failure, (e.g. in a aircraft or

surface vessel).

Considering application of underactuated systems, starting from group of robotics

includes flexible-link joints, mobile robots and many others kinds of manipulators.

Underactuated class also includes surface and underwater vehicles such as surface

vessels, twin rotor system etc. Due to highly nonlinear and complex behavior

of underactuated mechanical systems, control design for such type of systems is

observed as a challenging task, due to less actuators compared to the degrees of

freedom to be controlled. Also it is an active field of research due to benefits of

“underactuation” property.

Many control methods are applied on fully actuated systems (where number of

actuators are equal to the degrees of freedom to be controlled) such as partial

feedback linearization collocated and non-collocated, passivity, adaptive and fuzzy

control. These techniques can not be applied on underactuated mechanical sys-

tems, due to non-holonomic nature of such systems.

In this research work, we focus on stabilization of planar vertical take-off and land-

ing aircraft system (PVTOL). First order sliding mode control, adaptive sliding

mode control and backstepping techniques are applied to stabilize the PVTOL

system. Efficasy of the suggested algorithms is verified by the simulation studies

via MATLAB software.

1.2 Motivation

Practical importance and theoretically challenging nature of underactuated me-

chanical systems motivates us for investigating a control design framework for

realization of aforementioned benefits in practical applications.

Non-linear behaviour and the reduced dimension of the input-space are the basic

reasons which makes the use of UMS complicated. Many control methods were

designed to make it suitable to non linearities and to minimize the system order
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to lower dimensional model. Nevertheless, the aforementioned methods are not

practically relevant due to system constraints (e.g. limitation of actuator power),

which is motivational aspects regarding PVTOL underactuated system. Control

of PVTOL system becomes challenging problem. The aforementined discussion

clarifies to intend a control design approach that may able to provide required

robustness with minimal chattering and improved performance.

Need and importance of underactuated mechanical systems are already established

in engineering and military applications due to its applicability toward surface

and underwater vehicles, and for getting more practical advantages like weight

and cost reduction. The importance of research in this domain is the ability of

backup control capability in order of the control of failure of fully-actuated system.

The aspect of stabilization of PVTOL underactuated system will always appear

likely or unlikely in aforementioned scenarios, which is discussed in this thesis and

becomes the notion of this work.

1.3 Application of Research

In this modren era, we live in a world of machines. These machines can be un-

deractuated or fully actuated. In case of failure of fully actuated systems due to

constrution constraints and actuator faliure, the degree of freedom become more

than the number of acutators, so the only choice to deal with it is as underac-

tuated system. Due to application perspective of UMS, world is quite rich while

considering larger scale, every industry is equipped with the machinery based on

underactuation phenomenon up to some extent.

Due to its broad range of applications in science and engineering, control of un-

deractuated systems is extremely important and so it is now an active field for

researchers. Further, applications of underactauted systems includes marine, space

robot, spacecraft, PVTOL, areal vehicles, under water vehicles, mechatronics and

hybrid machines. In several applications, simplification in actuation system can

minimize weight, system structure design and energy consumption while keeping
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its proper functionality. In few other applications, UMS are designed to tolerate

actuators failure. In wider sense, all non-linear control systems are underactu-

ated upto some extent, because to apply available control laws, it is convenient to

neglect several high order dynamics and some non-linearities.

1.4 Problem Statement and Research Objectives

Underactuated mechanical systems have practical importance along with the added

benefits of underactuation. But the advantages associated with uncertainties come

at higher cost of difficult control design due to complicated non-linearity and con-

trol coupling. Lack of direct actuation for some degree of freedoms of planar ver-

tical and planar landing aircraft, the PVTOL becomes more sensitive to external

disturbances.

The research goal in this work is to investigate, using backstepping, sliding mode

control and adaptive sliding mode control theory is applied to get a improved

performance and robust control of PVTOL. Finally the suggested framework will

be numerically validated in MATLAB.

1.5 Thesis Organization

The outline of the thesis look like:

Chapter 2 – Literature Review: In this chapter, we will get re-view about

literature already published about PVTOL underactuated system.Then the sug-

gested work is established by analyzing of this literature for PVTOL.

Chapter 3 – Control algorithms for stabilization of PVTOL UMS with

3-DOF: In this chapter, first order sliding mode control, adaptive sliding mode

and backstepping control are suggested for PVTOL underactuated systems.
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Chapter 4 – Application to algorithms: In this chapter, the suggested algo-

rithms is applied to PVTOL underactuated mechanical systems and simulations

are verified using MATLAB.

Chapter 5 – Conclusion and Future Work: This specific chapter conclude

the applied algorithms results and also cover the upcoming work on these systems,

which can be achieved.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, Literature about PVTOL underactuated mechanical system and

sliding mode control are reviewed and presented. Different control design tech-

niques developed over the past years are reviewed.

For fully-actuated systems, a wide range of design algorithms exists for the sake

to improve performance and robustness which consist of optimal control, feedback

linearization, passivity based control strategies etc. These algorithms are not

suitable to apply for the whole class of underactuated systems because most often

such system are not linearizable using smooth feedback [6] , and sometime because

of unstable hidden modes of these systems.

Many traditional and recent strategies of non-linear control design including back-

stepping [6] [7] , forwarding [7] [8] [9], low-gain/high-gain designs [10] and sliding

mode control (SMC) [11] are not openly applicable to UMS leaving some of the

few special exceptions (e.g. the cart-pole system and beam-and-ball system). This

is due to the fact that a method for transforming underactuated systems into cas-

cade nonlinear systems with upper/lower triangular or nontriangular structural

properties has not yet been discovered.

7
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2.2 Underactuated Mechanical Systems

A system , which has less numbers of actuators when compared to its degree of

freedom is known as underactuated mechanical system. UMS are used for the

purpose to have a cost reduction, weight reduction and energy usage reduction

while keeping important features of the underactuation. Due to its broad range

of applications in science and engineering, control of underactuated systems is

extremely important and so it is now an active field for researchers.

During the past two decade, many researchers having interests in non linear control

theory, automation and robotics, autonumous vehicles control and particularly

control of PVTOL underactuated system. Control of general PVTOL and other

underactuated mechanical systems is presently considered a big open problem

based on surveys [12–14].

Examples of these systems are mobile robot, helicopter, undreractuated manipu-

lator, space robot, spacecraft, surface vessels, PVTOL and under water vehicles.

Fully actuated system doesn’t have such challenges as in underactuated mechani-

cal systems. Many control techniques have been presented [6] [7], which includes

backstepping, energy and passive-built regulator, intelligent and fuzzy control and

hybrid and switched control. It’s difficult to pinpoint the general concept that per-

mits to conduct a regular investigation of PVTOL underactuated system because

the variety and broad research on this topic.

Spong [15] did first generalization of underactuated systems, where it was shown

that UMS could be partially linearized by feedback locally. According to variable

of actuation, he proposed changes in the input that convert non-linear models into

partially linear models. But, the new control comes in both converted subsystems.

However, first classification of underactuated mechanical systems according to

equivalent Control Flow Diagram was given by Seto [16], He showed the method

of generalized forces to be transmitted by degrees of freedom.

Later on, Olfati-Saber [17] gave second classification of underactuated mechanical

system, which is based upon several system’s structural properties like integrable
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normalized generalized momentums, kinetic symmetry, actuation mode and inter-

acting inputs [17]. Some of the most recognized work with respect to energy point

of view include Spong [15] ,Astrom [18] and Bloch [19] . In the same way, passivity-

built procedures also includes in swinging and routing the former systems, but for

the purpose to guide them to the homoclinic path. Jankovic [20] and Sepulchre

[21] also possess his work on passivity-based control and introduces the system

transformation in a cascade form. Kolesnichenko also posed such work for TORA

and pendubot. Hauser [22] posed approximate linearization methodology for ball

and beam balancer. In [23–25] stabilization of PVTOL is discussed. Inertia wheel

pendulums and cranes have been investigated widely because of their extensive

use in industry. Also reviewing models, applications and control techniques are

studies and conserved.

2.3 VTOL

VTOL are aerial crafts which can take-off and lands vertically, with no run on

a runway. It theoretically means that it can take-off and land almost anywhere.

The VTOL technology is mainly classified based on the nature of requirement such

as transport and air strike. The transport class aircraft with VTOL technology

are mostly rotorcraft like Helicopters, Gyrodynes, tilt rotors and tilt wings, which

use advanced turbo shaft engines. On the other hand, the attack jets which use

VTOL technology primarily contain light weight, efficient turbofans augmented

with power lift fans to initiate take off.

VTOL aircrafts requires less physical space and infrastructure to get into the flight

as compared to other planes, which means more fighters on single craft carrier

making it dream for military purposes. Some areal vehicles are really VTOL

aircraft. The first operational VTOL jet aircraft was the British Royal Air Force

Hawker Harrier, established in 1969. It was one of several successes among many

failed efforts to develop VTOL that were underway in the 60s. The motive behind
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establishing a VTOL is to manufacture an aircraft that is able of vertical take-

off like helicopter or quad-rotor having the preferable characteristics of fixed-wing

aircraft like high cruise speeds.

Aviation control is an important problem of control that seems in several appli-

cations like space-craft, helicopter and aircraft. Whole dynamics of aircraft and

helicopters are very complex and some how unmanageable for control purpose. It’s

also interesting to keep the main and important features, which must be examined

while designing control law for practical aircraft.

2.4 Modeling of PVTOL

Unmanned aerial vehicles (UAVs) is huge part of the electronics industry, because

of its adaptability and mainly because of the dropping costs of their electronic

parts. Unmanned aerial vehicles is a type of areal vehicles which is capable of

Figure 2.1: The VTOL
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taking-off vertically like helicopters and it is presented by planer vertical take-

off and landing (PVTOL) craft model. PVTOL is a testing non-linear system for

control designers and researchers. This system also presents a specific case of what

is known as “motion control”. Reliability requirements of areal vehicles needs fault

detection and isolation. So non-linear procedure for observation and protection

of faults are used. Suggestion is given by Lagrangian model for PVTOL aircraft

for the purpose of developing an algorithm for the detection, identification and

isolation of the faults [26, 27].

2.4.1 Lagrangian Model

There is an immense quantity of literature of Lagrange’s equations of motions.

Structure of Planar vertical take off and landing (PVTOL) aircraft is presented in

the Fig (2.2).

Figure 2.2: Structure of PVTOL

The throughout linear position of the PVTOL is described in the inertial frames x-

y-z axis with two generic coordinates, an additional generic coordinate ξ , [x, y]T ,



Literature Review 12

while the angular position is described in the inertial frame. Consider pitch angle

as θ,i.e.the rotation angle about the y-axis, and the yaw angle as ψ, i.e. the

rotation of the PVTOL around the z-axis is zero. Roll angle is the only angular

movement θ i.e, about the x-axis, its rotation.

ξ =

y
z

 , η = φ, q =


y

z

φ

 (2.1)

Body frame’s origin (also the origin of the inertial frame) is center of mass of the

Planar vertical take-off and landing (PVTOL) systems. The PVTOL have uniform

structure with aligned two arms with the body’s x-axis. Jx represent the inertia.

Lagrangian is described as the sum of kinetic energy subtracted the potential

energy Epot. In Planar vertical take off and landing (PVTOL) case, the kinetic

energy includes 2 parts, first is composed of translational energy Etran and the

other one is the rotational energy Erot.

L(q, q̇) = Erot + Etran − Epot (2.2)

Equation of lagrange is considered by the equation

d

dt

[
∂L(q,q̇)
∂q̇

]
− ∂L(q, q̇)

∂q
=


fy

fz

`f

 (2.3)

In which fy represents generic forces acting on the y-axis, fz represents generic

forces acting on z-axis and `f is the moment. For results of PVTOL

Etran =
1

2
m[ẏ ż]

ẏ
ż

 (2.4)

Erot =
1

2
Jxω

2 =
1

2
Jxφ̇

2 (2.5)

Epot = mgz (2.6)
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through which the Lagrangian’s motion eqs gives

L(q, q̇) =
1

2
mẏ2 +

1

2
mż2 +

1

2
mJ̇xφ̇

2 −mgz (2.7)

and the terms

∂L
∂q̇

=


mẏ

mż

Jxφ̇

 (2.8)

d

dt

(
∂L
∂q̇

)
=


mÿ

mz̈

Jxω̇

 =


mÿ

mz̈

Jxφ̈

 (2.9)

∂L
∂q

=


0

mg

0

 (2.10)

The generic forces are given by (in inertial-frame)

fy = cos(φ)Uy − sin(φ)Uz (2.11)

fz = sin(φ)Uy + cos(φ)Uz (2.12)

Here

• Uz represents (the force’s sum for the every single rotor) total thrust forces,

which are acting on body frame’s z-axis.

• Uy refer to the side forces on the body frame’s y-axis.

• While `f is the moment, which is acting on the rolling angle.

Motions equations given as;
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
m 0 0

0 m 0

0 0 Jx



ÿ

z̈

φ̈

+


0

m

0

 =


cos(φ) 0 sin(φ) 0

sin(φ) cos(φ) 0

0 0 1x



UX

Uz

`f

 (2.13)

2.5 Examples of Underactuated Mechanical

System

The underactuated mechanical systems consist of the ball and beam system, trans-

lational oscillator with rotational actuator (TORA) system, the acrobat, the cart-

pole system, the pendubot, inertia-wheel pendulum,the double inverted pendulum

and the rotating pendulum.

All examples are selected because of the complexity of their control design and

fact that for control and analysis purposes that they are of high interest in the

literature. We briefly introduce some examples with its related control design task.

2.5.1 Pendubot and Acrobot

Acrobot and Pendubot are two-linked manipulators with one actuator at shoulder

and at the elbow respectively. Both manipulators have identical equation of motion

and alike graphically too. The stabilization of to link manipulator of its upright

equilibrium point (q1 = π/2 and q2 = 0) is the control task from any initial

condition.

One famous approach of control is the Energy based control used to swing up the

system from its steady downward spot upto some precarious up right spot, and to

swap it for stabilization to a linear controller.

Pendubot and the Acrobot graphically appears to be really similar (i.e. the share

the exact same inertia matrix). The contrast in position of their one actuator make

big difference in their normal characterization (i.e, standard form) and control

design.
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Figure 2.3: Pendubot And Acrobot

Swinging up these double inverted pendulum system from their downward initial

positions and bringing them near to their up right euilibrium position, then chang-

ing to linear controller around upright equilibrium point as proposed in literature

[28–30] .

2.5.2 The Cart-Pole System and Rotating Pendulum

Cart and pole system is a benchmark nonlinear underactuated system. For non-

linear control study, It can be utilized as a test for several control algorithms

varification. Control job is the swinging up the pendulum out of steady down-

ward zero state. (q1 = 0 and q2 = π) vertical unbalanced equilibrium point

(q2 = 0), having retaining cart at its original point (q1 = 0).

Resemblance between the Cart-Pole system and the rotating pendulum is that

both have the similar model of the potential energy. Swinging up control design

for inverted pendulum in the Cart and Pole system [15, 31, 32] and the Rotating

pendulum [18, 33, 34] has been done by several researchers to stabilize the Cart-

Pole system and Rotating Pendulum respectively.
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Figure 2.4: Cart Pole System Figure 2.5: Rotating pendulum

2.5.3 The Ball and Beam System

Ball and beam system consists of beam able to move up and downward with motor

connected at its one end whereas the another end of beam is fixed. As this beam

is made of metal and iron ball is allowed to move freely on it, bringing the ball to

middle of the beam by applying some moment starting from any initial condition

on the beam is the control task.

Figure 2.6: The Ball-and-Beam System

Due to complexity of this system, tracking and stabilization for the ball and beam

system using output or state feedback has been observed by many researchers and

designer [10, 35–37]. In [22], tracking of the ball-and-beam system was considered

utilizing approximate input-output linearization. Similarly, Using output feedback

, Teel and Praly [36] presented the stabilization of this system.
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In [38], global stabilization of the ball-and-beam systems was attained with friction

using a numeric category of the method of building of Lyapunov functions having

some cross terms, that was basically because of Praly and Mazenc [39].

2.5.4 TORA System

The TORA system is a non-linear benchmark example for different control tech-

niques and was first introduced in [40]. This system contains an oscillating trans-

lational stage with mass m1, which is controlled with rotational eccentric mass m2

to make sure the horizontal displacement q1.

Figure 2.7: The Ball-and-Beam System

TORA isn’t fully feedback linearizable, because of the fact, an easy swap of coor-

dinates was available convert TORA to the cascade nonlinear system, which ex-

perience some great notice by many research scholars [20, 41, 42] . In almost all of

these tasks, the TORA system was consider as Standard sample for passivity-based

techniques and tracking/stabilization utilizing output feed-back in zero gravity, i.e.

g = 0.

2.5.5 The Inertia-Wheel Pendulum

Spongy was the first to introduce inertia-wheel pendulum in [43]. It consist of a

pendulum which has at its end a revolving uniform inertia wheel. Pendulum is
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unactuated and with help of rotating wheels the system is going to be controlled.

While the wheel stops rotating , to make the pendulum stable in its up-right

equilibrium point is the control task. it is not important to consider the specific

angle of revolution of the wheel.

The first example of a flat UMS is inertia-wheel pendulum with 2 degrees of

freedom (DOF) and single control input. Which is because of its constant inertial

matrices.

In [44], to swing up the pendulum, an energy based methodology is used and then

a supervisory based switching strategy is deployed to change to a stabilizing local

nonlinear controller via comparatively big region of attraction.

Figure 2.8: Inertia Wheel System

2.6 Sliding Mode Control

For the control of underactuated mechanical systems, Uncertainties is a big issue.

As a gap exist between practical system and the model, which yields these model

uncertainties, unmodeled dynamics and parameter variations.

For overcoming such issues of uncertainties, some techniques are used like robust

control etc. but these techniques also have some limitations like, it is some time

applicable to small uncertainties only or sometime sensitive to unstructured un-

certainties [45, 46].
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A variable structured controller, such as sliding mode controller gets valuable

attention from researchers in recent years. It provides a very good system perfor-

mance against disturbance rejection, model imperfection and to aforementioned

uncertainties.

Sliding mode control strategy is found to be very successful with respect to un-

deractuated systems, their applications can be found in inverted pendulum [47] ,

surface vessel [48, 49] , helicopter [50], ball and beam [51] , satellite [52] , overhead

crane [53] and TORA [54] . Some researchers also worked to develop a universal

sliding mode control for the underactuated systems [49, 55] .

SMC grew very rapidly from last two decades, but it is effected from a chattering

phenomena discussed in next section. SMC happens in two stages named sliding

phase and reaching phase.

2.6.1 Sliding Surface

For applying SMC on a system, switching surface design is the first step. The

switching-surface is also known as sliding-surface. When we define the sliding sur-

face, the aforementioned two stages comes in to place. Reaching phase is achieved

first, which is accountable for the attraction of system states from any initial con-

dition to the sliding surface. While the reaching phased is attained, and the system

placed on the sliding surface, then sliding phase comes into place, and the states of

the system slides towards the equilibrium point using some discontinuous control

action (that too shows some robustness). Fig. 2.9 shows the reaching phase (RP),

sliding mode (SM) and sliding surface (SS).

2.6.2 Chattering Phenomenon

Because of the discontinuous nature of sliding mode control, high frequency os-

cillations will be produced in the system, which is named as chattering. This

occurrence leads to undesirable oscillations that degrade the performance of the
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system. In real applications, it is quite dangerous for the mechanically moving

parts along with actuators health, and it also increases the use of the actuators,

it may also lead towards total system failure. To overcome chattering effect, nu-

merous solutions of chattering problem have been suggested in [56].

Based on the estimation of sliding variable, A design scheme was presented [57].

The describing function approach was evolved for chattering investigation of struc-

ture in the occurrence of the un-modeled dynamics. Another way to minimize

chattering effect on the system is using some Higher Order SMC (HOSM) control

approach in [58].

Figure 2.9: The Sliding Phase, Reaching Phase and Sliding Surface



Chapter 3

Control Algorithms for

Stabilization of PVTOL UMS

with 3 DOF

The planar vertical take-off and landing aircraft problem (PVTOL) falls under

actuated systems UMS with 3 degrees of freedom (3DOF) and two control inputs.

In the last decades, it has attracted a lot of attention of control researchers as pre-

sented in [13, 59]. The PVTOL is a particular case of the so called motion control

problem and is considered as a benchmark non linear control system problem.

3.1 Adaptive Sliding Mode Control

In this sections control technique is presented for stabilization of PVTOL based

on adaptive sliding mode technique. First of all, Input transformation is used to

transform the system into a special structure containing some unknown term. The

dimension of the system increases. The unknown term is then computed adap-

tively and the system is stabilized using adaptive sliding mode control. Computer

simulation results show the effectiveness of the suggested control algorithm on

these systems.

21
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Given Fig (3.1) is a simplified planer model of a real vertical take off and landing

plane (PVTOL). Dynamics of PVTOL is given in [17].

ẋ1 = x2

ẋ2 = −u1sinθ + εu2cosθ

ẏ1 = y2

ẏ2 = u1cosθ + εu2sinθ − g

θ̇ = ω

ω̇ = u2

(3.1)

Where,

x1 = q1 (Horizontal displacement)

y1 = q2 (Vertical displacement)

θ = q3 (Roll angle, which PVTOL make with horizontal line).

Figure 3.1: The VTOL
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u1 is collective input and u2 is the couple as given in the Fig. (3.1). A small

coefficient parameter ε is defined, that presents the aircrafs coupling between the

pitching moment and the lateral acceleration. Gravitational acceleration is given

by the term g. In case with ε << 1 results in a weak input coupling, as given in the

literature [17] [60] [61] . When |ε| is relatively small, the system is non minimum

phase, and if |ε| >> 1, the system is slightly strongly non-minimum phase [17] .

The stabilization of non-minimum phase system is considered to be difficult, we

are interested in a strong input coupling case that is the non-minimum phase. By

defining the state variables as:

x1 = x x2 = ẋ1 x3 = y = y1

x4 = ẋ3 x5 = θ x6 = ẋ5

(3.2)

the dynamics can be written as:

ẋ1 = x2

ẋ2 = −u1sinx5 + εu2cosx5

ẋ3 = x4

ẋ4 = u1cosx5 + εu2sinx5 − g

ẋ5 = x6

ẋ6 = u2

(3.3)

These equations represents the state space model for PVTOL system.

3.1.1 The Control Problem

A desired set point is given xdes ∈ R6, A feedback strategy is build in control’s

terms ui : R6 → R, i = 1, 2 in such a way that the desired set point xdes is an

attractive set for (3.3), so that there exists an ε > 0 , in such a way x(t, t0, x0)→

xdes as t → ∞ for either initial condition (t0, x0) ∈ R. With out losing the

generality, we supposed that xdes = 0, which could be attained by some appropriate

translation of coordinate systems.
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3.1.2 Applied Algorithm

Step 1:

By choosingu1
u2

 =

− sinx5 cosx5

1
ε

cosx5
1
ε

sinx5

 x3

x5 + g + v

 =

 −x3 sinx5 + cosx5(x5 + g + v)

1
ε
x3 cosx5 + 1

ε
sinx5(x5 + g + v)


(3.4)

where v is designed such that the system expressed in (3.3) becomes,

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5 + v

ẋ5 = x6

ẋ6 = u2 =
1

ε
x3 cosx5 +

1

ε
sinx5(x5 + g + v)

(3.5)

Step2:

Now define new state variables as:

z1 = x1, z2 = x2, z3 = x3, z4 = x4, z5 = x5 + v, z6 = x6 + v̇, z7 = v, z8 = v̇

then system (3.5) becomes as:

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = z5

ż5 = z6

ż6 = u2 + v̈ =
1

ε
z3 cos(z5 − z7) +

1

ε
sin(z5 − z7)(z5 + g) + v̈

ż7 = z8

ż8 = v̈

(3.6)
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Step 3:

By adding and subtracting ω in last equation ż8 = v̈ we have ż8 = v̈ + ω − ω.

Assume that second ω is unknown and can be computed adaptively. Let ω̂ be the

estimate value of ω and ω̃=ω − ω̂ be the error in the estimation of ω. Therefore

the system (3.6) can be written as:

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = z5

ż5 = z6

ż6 = u2 + v̈ =
1

ε
z3 cos(z5 − z7) +

1

ε
sin(z5 − z7)(z5 + g) + v̈

ż7 = z8

ż8 = v̈ + ω − ω̂ − ω̃

(3.7)

Eq. (3.7) can be decompose into two subsystems.

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = z5

ż5 = z6

ż6 = u2 + v̈ =
1

ε
z3 cos(z5 − z7) +

1

ε
sin(z5 − z7)(z5 + g) + v̈

(3.8)

ż7 = z8

ż8 = v̈ + ω − ω̂ − ω̃
(3.9)

Eq. (3.8) represents the first subsystem and (3.9) represent these second subsys-

tem.

Step 4:
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Defining the Hurwitz sliding surface for (3.8) and (3.9) using formula

s = (1 + d
dt

)n−1zi

which gives for subsystem (3.8)

s1 = z1 + 5z2 + 10z3 + 10z4 + 5z5 + z6 (3.10)

and for (3.9)

s2 = z7 + z8 (3.11)

then

ṡ1 = z2 + 5z3 + 10z4 + 10z5 + 5z6 + u2 + v̈ (3.12)

by choosing

v̈ = −z2 − 5z3 − 10z4 − 10z5 − 5z6 − u2 − ksign(s1)− ks1 (3.13)

we have

ṡ1 = −ksign(s1)− ks1 (3.14)

and

ṡ2 = z8 + v̈ + ω − ω̂ − ω̃ (3.15)

Step 5:

By choosing a Lyapunov function V = 1
2
s21 + 1

2
s22 + 1

2
ω̃2, design ω and the adaptive

laws for ω̃ and ω̂ such that V̇ < 0.

Theorem 1:

Consider a Lyapunov function V = 1
2
s21 + 1

2
s22 + 1

2
ω̃2, then V̇ < 0 if ω and the

adaptive laws for ω̃ and ω̂ are choosen as:

ω = −z8 − v̈ + ω̂ − k1sign(s2)− k1s2

˙̃ω = s2 − k2ω̃

˙̂ω = −s2 + k2ω̃,
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here, k1, k2 > 0.

since,

V̇ = s1ṡ1 + s2ṡ2 + ω̃ ˙̃ω

= s1(−ksign(s1)− ks1) + s2(z8 + v̈ + ω − ω̂ − ω̃) + ω̃ ˙̃ω

= −k|s1| − ks21 + s2(z8 + v̈ + ω − ω̂) + ω̃( ˙̃ω − s2)

(3.16)

By using:

ω = −z8 − v̈ + ω̂ − k1sign(s2)− k1s2

˙̃ω = s2 − k2ω̃

˙̂ω = −s2 + k2ω̃, k1, k2 > 0.

We have,

V̇ = −k|s1| − ks21 − k1|s2| − ks22 − k2ω̃2 < 0

From this we conclude that s1, s2, ω̃ → 0. Since s1, s2 → 0, therefore zi → 0,

i = 1, 2, ....., 8. thus xi → 0, i = 1, 2, ..., 6.

3.2 First Order Sliding Mode Control

Here, we present control algorithm for the stabilization of PVTOL based on first

order sliding mode control technique.

3.2.1 Applied Algorithm

The dynamic model of PVTOL is given as in [13]

q̇1 = p1

ṗ1 = −sin(θ1)u1 + εcos(θ1)u2

q̇2 = p2



Control Algorithms for Stabilization of PVTOL UMS with 3 DOF 28

ṗ2 = cos(θ1)u1 + εsin(θ1)u2 − g

θ̇1 = θ2

θ̇2 = u2.

(3.17)

After introducing the following transformation proposed in [62]:

x1 = q1 − εsin(θ1)

x2 = p1 − εθ2cos(θ1)

y1 = q2 + ε(cos(θ1)− g)

y2 = p2 − εθ2sin(θ1)

(3.18)

The system of Eq. 3.17 can be expressed as

ẋ1 = x2

ẋ2 = −sin(θ1)ū1

ẏ1 = y2

ẏ2 = cos(θ1)ū1 − g

θ̇1 = θ2

θ̇2 = u2.

(3.19)

In Eq. 3.19 ū1 = u1 − εθ22. Let

v1 = − sin θ1ū1 (3.20)

v2 = cos θ1ū1 − g (3.21)

So the dynamics 3.19 becomes

ẋ1 = x2

ẋ2 = v1

ẏ1 = y2

ẏ2 = v2
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θ̇1 = θ2

θ̇2 = u2.
(3.22)

Multiply −sinθ1 and cosθ1 with Eq. (3.20) and (3.21) respectively to get

− sin θ1v1 = sin2 θ1ū1 (3.23)

cos θ1v2 = cos2 θ1ū1 − cos θ1 (3.24)

Add Eq. (3.23) and (3.24) to get

ū1 = − sin θ1v1 + cos θ1v2 + cos θ1

u1 = − sin θ1v1 + cos θ1v2 + cos θ1 + εθ22

(3.25)

Define v1 = y1 and v2 = θ1, system (3.22) becomes

ẋ1 = x2

ẋ2 = y1

ẏ1 = y2

ẏ2 = θ1

θ̇1 = θ2

θ̇2 = u2.

(3.26)

Define state variables x3 = y1, x4 = y2, x5 = θ1 , x6 = θ2. So Eq. 3.26 becomes

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5

ẋ5 = x6

ẋ6 = u2.

(3.27)
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Defining the Hurwitz sliding surface for (3.26) by

s = (1 + d
dt

)5x1

which gives,

s = x1 + 5x2 + 10x3 + 10x4 + 5x5 + x6.

then

ṡ = x2 + 5x3 + 10x4 + 10x5 + 5x6 + u2.

by choosing

u2 = −x2 − 5x3 − 10x4 − 10x5 − 5x6 − ksign(s)− ks, k > 0,

we have

ṡ = −ksign(s)− ks.

Consider a Lyapunov function

V = 1
2
s2,

by taking derivative,

V̇ = sṡ

V̇ = |s|(−ksign(s)− ks)

then V̇ < 0 if here, k > 0.

3.3 Backstepping Control

3.3.1 Applied Algorithm

The dynamic model of PVTOL is given as in [13]

q̇1 = p1

ṗ1 = −sin(θ1)u1 + εcos(θ1)u2

q̇2 = p2

ṗ2 = cos(θ1)u1 + εsin(θ1)u2 − g

θ̇1 = θ2

θ̇2 = u2.

(3.28)
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After introducing the following transformation proposed in [62]:

x1 = q1 − εsin(θ1)

x2 = p1 − εθ2cos(θ1)

y1 = q2 + ε(cos(θ1)− g)

y2 = p2 − εθ2sin(θ1)

(3.29)

The system of Eq. 3.28 can be expressed as

ẋ1 = x2

ẋ2 = −sin(θ1)ū1

ẏ1 = y2

ẏ2 = cos(θ1)ū1 − g

θ̇1 = θ2

θ̇2 = u2.

(3.30)

In Eq. 3.19 ū1 = u1 − εθ22. Let

v1 = − sin θ1ū1 (3.31)

v2 = cos θ1ū1 − g (3.32)

So the dynamics 3.30 becomes

ẋ1 = x2

ẋ2 = v1

ẏ1 = y2

ẏ2 = v2

θ̇1 = θ2

θ̇2 = u2.

(3.33)

By v1 = y1 and v2 = θ1, System in 3.33 becomes

ẋ1 = x2
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ẋ2 = y1

ẏ1 = y2

ẏ2 = θ1

θ̇1 = θ2

θ̇2 = u2.

(3.34)

Define state variables x3 = y1, x4 = y2, x5 = θ1 , x6 = θ2. So Eq. 3.34 becomes

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x5

ẋ5 = x6

ẋ6 = u2.

(3.35)

Let x2 be the virtual input, z1 be the error and α1 be the stabilizing control

z1 = x2 − α1

x2 = z1 + α1

(3.36)

so;

ẋ1 = z1 + α1 (3.37)

take lyapunov function

V1 =
1

2
x21 (3.38)

So its derivative

V̇1 = x1ẋ1 = x1(z1 + α1) (3.39)

Choose α1 = −x1, so that

V̇1 = −x21 + x1z1 (3.40)
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Hence

ẋ1 = −x1 + z1 (3.41)

and

ż1 = ẋ2 − α̇1 = x3 − (−ẋ1)

= x3 + x2 = x3 + z1 + α1

ż1 = x3 + z1 − x1

(3.42)

Let x2 be the virtual input, z2 be the error and α2 be the stabilizing control

z2 = x3 − α2

x3 = z2 + α2

(3.43)

so

ż1 = −x1 + z1 + z2 + α2 (3.44)

Chose Lyapunov

V2 =
1

2
z21 + V1 (3.45)

So its derivative

V̇2 = z1ż1 + V̇1

= −x21 + z1x1 + z1ż1

= −x21 + z1(ż1 + x1)

V̇2 = −x21 + z1(−x1 + z1 + z2 + α2 + x1)

(3.46)

Chose α2 = −2z1

V̇2 = −x21 − z21 + z1z2 (3.47)
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Hence

ż1 = −x1 − z1 + z2 (3.48)

and

ż2 = ẋ3 − α̇2

= x4 − (2ż1) = x4 + 2ż1

= x4 + 2(−x1 − z1 + z2)

ż2 = x4 − 2x1 − 2z1 + 2z2

(3.49)

Let x4 be the virtual input, z3 be the error and α3 be the stabilizing control

z3 = x4 − α3

x3 = z3 + α3

(3.50)

so

ż2 = −2x1 − 2z1 + 2z2 + z3 + α3 (3.51)

Chose Lyapunov

V3 =
1

2
z22 + V2 (3.52)

So its derivative

V̇3 = z2ż2 + V̇2

= −x21 + z21 + z1z2 + z2ż2

= −x21 − z21 + z2(z1 + ż2)

= −x21 − z21 + z2(z1 − 2x1

− 2z1 + 2z2 + z3 + α3

V̇2 = −x21 − z21 + z2(z1 − 2x1 − 2z1 + 2z2 + z3 + α3)

(3.53)
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Chose α3 = −2x1 + z1 − 3z2

V̇3 = −x21 − z21 + z22 + z2z3 (3.54)

Hence

ż2 = −z1 − z2 + z3 (3.55)

and

ż3 = ẋ4 − α̇3

= x5 − (2ẋ1 + ż1 − 3ż2)

= x5 − [2(x1 + z1) + (−x1 − z1 + z2)− 3(−z1 − z2 + z3)]

= x5 − [−2x1 + 2z1 − x1 − z1 − z2 + 3z1 + 3z2 − 3z3]

= x5 − [−3x1 + 4z1 + 2z2 − 3z3]

ż3 = x5 + 3x1 − 4z1 − 2z2 + 3z3

(3.56)

Let x5 be the virtual input, z4 be the error and α4 be the stabilizing control

z4 = x5 − α4

x5 = z4 + α4

(3.57)

so

ż3 = −3x1 − 4z1 − 2z2 + 3z3 + z4 + α4 (3.58)

Chose Lyapunov

V4 =
1

2
z23 + V3 (3.59)

So its derivative

V̇4 = z3ż3 + V̇3

= −x21 − z21 − z22 + z2z3 + z3ż3
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= −x21 − z21 − z22 + z2z3 + z3ż3

= −x21 − z21 − z22 + z3(z2 + ż3)

= −x21 − z21 − z22 + z3(z2 + 3x1 − 4z1 − 2z2 + 3z3 + z4 + α4)

V̇3 = −x21 − z21 − z22 + z3(3x1 − 4z1 − z2 + 3z3 + z4 + α4)

(3.60)

Chose α4 = −3x1 + 4z1 + z2 − 4z3

V̇4 = −x21 − z21 − z22 − z23 + z3z4 (3.61)

Hence

ż3 = −z2 − z3 + z4 (3.62)

and

ż4 = ẋ5 − α̇4

= x6 − (−3ẋ1 + 4ż1 + ż2 − 4ż3)

= x6 − [−3(−x1 + z1) + 4(−x1 − z1 + z2) + (−z1 − z2 + z3)− 4(−z2 − z3 + z4)]

= x6 − [3x1 − 3z1 − 4x1 − 4z1 + 4z2 − z1 − z2 + z3 + 4z2 + 4z3 − 4z4]

= x6 − [−x1 − 8z1 + 7z2 + 5z3 − 4z4]

ż4 = x6 + x1 + 8z1 − 7z2 − 5z3 + 4z4
(3.63)

Let x6 be the virtual input, z5 be the error and α5 be the stabilizing control

z5 = x6 − α5

x6 = z5 + α5

(3.64)

so

ż4 = x1 + 8z1 − 7z2 − 5z3 + 4z4 + z5 + α5 (3.65)

Hence
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Chose Lyapunov

V5 =
1

2
z24 + V4 (3.66)

So its derivative

V̇5 = z4ż4 + V̇4

= −x21 − z21 − z22 − z23 + z3z4 + z4ż4

= −x21 − z21 − z22 − z23 + z4(z3 + ż4)

V̇5 = −x21 − z21 − z22 − z23 + z4(x1 + 8z1 − 7z2 − 4z3 + 4z4 + z5 + α5)

(3.67)

Chose α5 = −x1 − 8z1 + 7z2 + 4z3 − 5z4

V̇5 = −x21 − z21 − z22 − z23 − z24 + z4z5 (3.68)

Hence

ż4 = −z3 − z4 + z5 (3.69)

and

ż5 = ẋ6 − α̇5

= u2 − (−ẋ1 − 8ż1 + 7ż2 + 4ż3 − 5ż4)

= u2 − [−(−x1 + z1)− 8(−x1 − z1 + z2) + 7(−z1 − z2 + z3)

+ 4(−z2 − z3 + z4)− 5(−z3 − z4 + z5)]

= u2 − [9x1 − 19z2 + 8z3 + 9z4 − 5z5]

ż4 = u2 − 9x1 + 19z2 − 8z3 − 9z4 + 5z5

(3.70)

Chose Lyapunov

V6 =
1

2
z25 + V5 (3.71)

So its derivative

V̇6 = z5ż5 + V̇5

= −x21 − z21 − z22 − z23 − z24 + z4z5 + z5ż5
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= −x21 − z21 − z22 − z23 − z24 + z5(z4 + ż5)

V̇6 = −x21 − z21 − z22 − z23 − z24 + z5(−9x1 + 19z2 − 8z3 − 8z4 + 5z5 + u2)
(3.72)

Chose u2 = 9x1 − 19z2 + 8z3 + 8z4 − 6z5

so

V̇6 = −x21 − z21 − z22 − z23 − z24 − z25 < 0 (3.73)

and

ż5 = −z4 − z5 (3.74)

System in zi becomes;

ẋ1 = −x1 + z1

ż1 = −x1 − z1 + z2

ż2 = −z1 − z2 + z3

ż3 = −z2 − z3 + z4

ż4 = −z3 − z4 + z5

ż5 = −z4 − z5

(3.75)

d

dt



x1

z1

z2

z3

z4

z5


=



−1 1 0 0 0 0

−1 −1 1 0 0 0

0 −1 −1 1 0 0

0 0 −1 −1 1 0

0 0 0 −1 −1 1

0 0 0 0 −1 −1





x1

z1

z2

z3

z4

z5


(3.76)

So the system states xi in the form of zi can be written as;

x1 = z1

x2 = −x1 + z1

x3 = −z1 + z2
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x4 = 2x1 + z1 − 3z2 + z3

x5 = −3x1 + 4z1 + z2 − 4z3 + z4

x6 = −x1 − 8z1 + 7z2 + 4z3 − 5z4 + z5

(3.77)



Chapter 4

Applications of Algorithms

Introduction

In this chapters, Suggested control strategies are applied to PVTOL systems.

These system have three degree of freedom (3DOF) and two control inputs. MAT-

LAB simulation is executed to indicate the effectiveness of the suggested control

strategies.

4.1 PVTOL Aircraft

PVTOL is a nonlinear benchmark underactuated system with 3DOF and 2 control

inputs. In non-linear systems, researchers are struggling to stabilize the dynamics

of PVTOL. In literature many researchers proposed different techniques for sta-

bilization of PVTOL. Sliding mode control and higher order sliding mode control

are proposed in literature in the presense of model uncertainities and external

disturbances. A. Popov and C. Aguilar-Ibanez proposed a sliding mode control

in [13, 63]. Simple real-time control strategy is proposed in [64]. Gupta and

Aguilar-Ibanez presents a model predective control and backstepping techniqe re-

spectivelly [65, 66]. Inspired by the prevailing works, we are going to acquire

robust stabilization of PVTOL.

40
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Given Fig (3.1) is a simplified planer model of a real vertical take off and landing

plane (PVTOL). Dynamics of PVTOL is given in [17].

ẋ1 = x2

ẋ2 = −u1sinθ + εu2cosθ

ẏ1 = y2

ẏ2 = u1cosθ + εu2sinθ − g

θ̇ = ω

ω̇ = u2

(4.1)

By defining the state variables as: x1 = x, x2 = ẋ1, x3 = y = y1, x4 = ẋ3, x5 = θ,

x6 = ẋ5. the dynamics can be written as:

ẋ1 = x2

ẋ2 = −u1sinx5 + εu2cosx5

ẋ3 = x4

ẋ4 = u1cosx5 + εu2sinx5 − g

ẋ5 = x6

ẋ6 = u2

(4.2)

These equations represents the state space model for PVTOL system.

4.2 Simulation Results

In this work we suggested non linear algorithms for stabilization of PVTOL fr

different initial conditions. Suggested control schemes are now used to stabilize

a PVTOL system as considered in previous chapter. It is an underactuated me-

chanical system with 3 degree of freedom and control inputs.
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4.2.1 Adaptive Sliding Mode Control
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Figure 4.1: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), x2(0), x3(0), x4(0)) = (0.5, 0, 0.3, 0.1), (a) Represents system
states in zi, (b) Represents time history of horizontal displacement and velocity,

(c) Represents time history of vertical displacement and velocity
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Figure 4.2: Closed loop response of PVTOL system corresponds to initial
condition (x5(0), x6(0)) = (0, 0), (a) Represents time history of roll angle and
angular velocity, (b) Represents the phase portrait, (c) Represents time history

of sliding surface s1
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Figure 4.3: Closed loop response of PVTOL system, (a) Time history of
sliding surfaces s2, (b),(c) Time history of control inputs u1, ,(c) Time history

of control inputs u2
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Figure 4.4: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), x2(0), x3(0), x4(0)) = (1, 0.5, 0, 1), (a) Represents system states
in zi, (b) Represents time history of horizontal displacement and velocity, (c)

Represents time history of vertical displacement and velocity
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Figure 4.5: Closed loop response of PVTOL system corresponds to initial
condition (x5(0), x6(0)) = (0.3, 0.2), (a) Represents time history of roll angle
and angular velocity, (b) Represents the phase portrait, (c) Represents time

history of sliding surface s1
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Figure 4.6: Closed loop response of PVTOL system, (a) Time history of
sliding surfaces s2, (b),(c) Time history of control inputs u1, ,(c) Time history

of control inputs u2
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4.2.2 Adaptive Sliding Mode Control With Disturbances
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Figure 4.7: Closed loop response of PVTOL system in the presence
of disturbances corresponds to initial condition (x1(0), x2(0), x3(0), x4(0)) =
(10.5, 0, 0.3, 0.1), (a) Represents system states in zi, (b) Represents time history
of horizontal displacement and velocity, (c) Represents time history of vertical

displacement and velocity
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Figure 4.8: Closed loop response of PVTOL system in the presence of dis-
turbances corresponds to initial condition (x5(0), x6(0)) = (0, 0), (a) Represents
time history of roll angle and angular velocity, (b) Represents the phase portrait,

(c) Represents time history of sliding surface s1
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Figure 4.9: Closed loop response of PVTOL system in the presence of distur-
bances (a) Time history of sliding surfaces s2, (b),(c) Time history of control

inputs u1, ,(c) Time history of control inputs u2
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4.2.3 First Order Sliding Mode Control
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Figure 4.10: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), x2(0), x3(0), x4(0)) = (1, 0.5, 0, 0.3), (a) Represents time his-
tory of horizontal displacement and velocity, (b) Represents time history of

vertical displacement and (c) Represents the phase portrait,
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Figure 4.11: Closed loop response of PVTOL system corresponds to initial
condition (x5(0), x6(0)) = (0, 0.5), (a) Represents time history of roll angle and
angular velocity, (b) Time history of sliding surface s (c) Time history of control

input u1
.
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Figure 4.12: Closed loop response of PVTOL system (d) Time history of
control input u2
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Figure 4.13: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), x2(0), x3(0), x4(0)) = (1, 0.5, 0, 0.3), (a) Represents time his-
tory of horizontal displacement and velocity, (b) Represents time history of

vertical displacement and velocity
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Figure 4.14: Closed loop response of PVTOL system corresponds to initial
condition (x5(0), x6(0)) = (0, 0.5), (a) Represents the phase portrait, (b) Repre-
sents time history of roll angle and angular velocity, (c) Time history of sliding

surface s
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Figure 4.15: Closed loop response of PVTOL system (a) Time history of
control inputs u1 (b) Time history of control inputs u2

.

4.2.4 Backstepping Control
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Figure 4.16: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), ..., x6(0)) = (0, 0, 0.18, 0, 0, 0), (a) Represents time history of
states in zi (b) Represents time history of horizontal displacement and horizental
velocity x1, x2 (c) Represents time history of vertical displacement and vertical
velocity x3, x4 (d) Represents time history of roll displacement and roll velocity

x5, x6
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Figure 4.17: Closed loop response of PVTOL system corresponds to initial
condition (x1(0), ..., x6(0)) = (0, 0, 0.18, 0, 0, 0), (a) Represents the phase por-
trait, (b)Time history of control input u1 (c) Time history of control input u2

.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In previous decades, the interest in research of planar vertical take-off and landing

aircraft (PVTOL) has been increased. There are numerous applications of this

system in the field of aerospace, mechatronics, robotics, industry etc. This research

work presents a stabilization of PVTOL system.The suggested methodologies is

based on Robust adaptive sliding mode control, first order SMC and backstepping

control. In adaptive SMC system is transformed through input transformation,

which contains some unknown terms, the unknown term is adaptively computed.

In first order sliding mode control, transformation is applied and new control

inputs injected in system. In backstepping approach, system is transformed into

specific structure and system is stabilized. The suggested techniques is applied to

PVTOL systems with 3 DOF.

5.2 Future Research Directions

Based on this research work, certain directions are suggested for future research.

1. Extension of the suggested techniques to other UMS.

58
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2. Apply Observers.

3. Apply sliding mode observer techniques.

4. Practical implementation of the suggested algorithms.
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