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Abstract

This dissertation investigates the boundary layer stagnation point flow over a

shrinking sheet in the presence of magnetic field and Joule heating along with vis-

cous dissipation. To transform the governing non-linear PDEs into corresponding

non-linear coupled ODEs along with boundary conditions using similarity trans-

formation. Resulting non-linear ODEs are solved numerically using the shooting

method and the results are validated by the Matlab solver bvp4c. The effects

of various emerging parameters such as Magnetic parameter M , heat source S,

reaction rate β and Prandtl number Pr, Schmidt number Sc, Eckert number Ec on

the fluid velocity f
′
(η), temperature θ(η) and concentration φ(η) are investigated

graphically. Also influence of these parameters on skin friction co-efficient f
′′
(0),

rate of heat transfer −θ′(0) and rate of mass transfer −φ′(0) is presented in the

tabular form.
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Chapter 1

INTRODUCTION

Fluid is serving as a source of life for human beings and human beings have al-

ways curiosity for discovering nature and fluid is an important factor of nature,

so it attracts human. It also attracted many scientists to understand the patterns

of flow of sea to the smallest pond. Archimedes was first who investigated fluid

statics and buoyancy, and formulated his famous law known as the Archimedes

principle, which was published in his work ”On floating bodies” generally con-

sidered to be the first major work on fluid mechanics. Rapid advancement in

fluid mechanics began in fifteenth century. Leonardo Da Vinci responded to this

attraction by observing and recording the phenomenon that we recognize today

as a fundamental law of physics; namely the law of mass conservation. In this

regard, Da Vinci was the first person who took the task of making sketches of

different fields of flow. From the time of Da Vinci, there has been a remarkable

change in the studies of fluid dynamics. The study of boundary layer flow of an

incompressible viscous fluid over a shrinking sheet has many applications in man-

ufacturing industries, such as the shrinking sheet flows happen in some applicable

circumstances like, for glass fiber production, for paper production, also for metal

and polymer processing. In both theory and practice, for all at rest, motion and

linearly shrinking surfaces, heat transfer effects are important for boundary layer,

MHD and stagnation point flows. For manufacturing process, these flows have

applications in industries. Boundary layer applications include material handling

along conveyers, the aerodynamics, blood flowing problems, extrusion of plastic

sheets, in a bath the cooling of metallic plate, in paper and textile industries Ashraf

[1]. Boundary layer for incompressible, steady fluid of a viscous flow over a linearly

fluctuating stretching sheet considered first time by Crane [2]. Using least square

1



Symbols 2

technique to minimize residual of a differentiable equation and the result for the

problem approximated for laminar steady flow of electrically conducting a viscous

incompressible flow over a stretching sheet analyzed by Chakraborty and Mazum-

dar [3]. Ishak et al. [4] studied electrical and an incompressible viscous fluid with

magnetic field of two dimensional stagnation-point over a stretching vertical sheet.

On a smooth plate, Hiemenz [5] considered the classical stagnation point flow of

two dimension and the axisymmetric case was extended by Homann [6]. Viscous

flow of magneto hydrodynamic fluid over a shrinking surface analyzed by Noor et

al. [7] and the results obtained by Homotopy analysis method and Adomain de-

composition was the same. The parametric influence of radiation while resolving

the problematic cases of MHD stable and irregular flow of an electrical directing

flow on infinite semi inactive surface was discussed numerically by Raptis et al.

[8]. The Homotopy analysis method to solve the problem of viscous fluid with

stagnation point flow with a stretching sheet was used by Nadeem et al. [9]. The

dual solution for stagnation-point of mixed convection flow over a vertical sheet

represented by Ishak et al. [10–12].

On a vertical sheet in a porous medium, the mixed convection boundary layer

stagnation-point flow with slip condition studied by Harris et al. [13]. Recently,

Aziz [14] used local similarity with slip boundary condition over a flat surface with

constant heat flux. The MHD slip flow over a flat plate and the steady slip flow

with porous medium discussed by Bhattacharyya et al. [15, 16]. Recently, Rohni

et al. [17] reported mixed boundary-layer convection of unsteady flow with nu-

merical investigations near stagnation point of two-dimensional flow on a porous

surface vertical with thermal slip condition.

The chemical reaction with the diffusion of species for the boundary layer fluid

have numerous applications in atmosphere pollution, water, fluids relevant to at-

mosphere and many other problems of chemical engineering. For boundary layer

laminar flow of reactive chemically species with the diffusion which are used by a

body over the surface considered by Chamber and Young [18]. For non-Newtonian

fluids and their solution for the species of diffusion with chemical reactive in a

flow over a stretching sheet with porous medium reported by Akyildiz et al. [19].

Cortell [20] also discuss the two types of viscoelastic fluid over a porous stretching

sheet with the chemically reactive species. Hiemenz flow through porous media

considered by Chamka and Khaled [21] with the presence of magnetic field. Heat



Symbols 3

transfer with steady condition considered by Sriramalu et al. [22] for incompress-

ible viscous fluid with porous type species over a stretching surface. Khan et al.

[23] discussed MHD viscoelastic fluid, transfer of mass and heat over a permeable

stretching surface with stress work and energy dissipation. The fluid on stretching

surface close with stagnation-point discussed by Tripathy et al. [24]. Seddeek and

Salem [25] observed that the mass and heat transfer distribution on stretching

type surface with thermal diffusivity and variable viscosity.

In engineering processes as it is recognized that allocation of heat is connected and

it is attended with heat ganeration/absorption. For the final product in industry,

the knowledge of transfer of heat in polymer processing may clue to a preferred

worth of that item. Abdelmeguid [26] discussed Newtonian fluid with the effect

of thermal radiation on heat transfer in a boundary layer having temperature de-

pendent diffusivity over a stretching surface with variable heat flux. Aspect of

Heat transfer without magnetic field and the magnetohydrodynamics flow with

stagnation-point in the direction of a stretching surface studied by Mohapatra

and Gupta [27, 28]. The convective-radiation impacts on stagnation point flow

of nanofluids with a stretching/shrinking sheet with viscous dissipation discussed

by Pal et al. [29]. The effects of convection-radiation interaction on stagnation

point flow of nanofluids over a stretching/shrinking sheet with viscous dissipation

analyzed by Pal and Mandal [30]. The impact of Hall current over a non-linear

stretching/shrinking sheet of nanofluids with magnetohydrodynamic heat transfer

discussed by Pal and Mandal [31].

In a viscoelastic fluid flow effect of heat transfer over a stretching sheet with in-

ternal heat source/sink observed by Khan [32] and Bataller [33]. On temperature

regulation, the final product dependent on their quality and property. In con-

trolling momentum, in the boundary layer flow of numerous conducting flows the

magnetic filed can play an important role by using its application and transfer of

heat . In view of that, for Newtonian and non-Newtonian fluids past stretching

surface, the impact of magnetic field on fluid and transfer of heat studied by many

researchers. The MHD Newtonian fluid on a stretching surface have considered

by Chen [34].

Recently, Bhattacharyya and Wang [35, 36] has studied mass transfer and chemical

reaction past a stretching sheet with the dual solutions in boundary layer and he
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has deliberated that flow is to be nonconducting electrically. He did not consider

all aspects of transfer of heat. In the boundary layer flow we had measured the

effect of first order diffusing species with chemical reaction.

1.1 Thesis contribution:

In this thesis, we provide a review study of Dash et al. [37] and then extend

the flow analysis with Joule heating and viscous dissipation properties. There are

many practical applications for the boundary layer stagnation-point flow over a

shrinking sheet in the presence of Joule heating and viscous dissipation effects.

The obtained system of PDEs are transmuted into a system of non-linear and

coupled ODEs by using a suitable similarity transformation. A numerical solution

of the system of ODEs obtained by using the Shooting method and compared

the precision of the obtained numerical results with the Matlab bvp4c code. The

numerical results are discussed for different physical parameters appearing in the

solution affecting the flow and heat transfer.

1.2 Thesis outline:

The thesis is arranged as follows:

In Chapter 2, we present basic definitions of fluids, heat transfer, boundary layer

flow, basic governing laws, the similarity transform and the shooting method.

These basic concepts are used further in describing the flow, heat transfer under

the influence of Joule heating and viscous dissipation properties.

Chapter 3 contains a comprehensive review of Dash et al. [37]. A numerical

study of boundary layer stagnation point flow past a shrinking sheet in the pres-

ence of the magnetic field and Joule heating along with viscous dissipation is

analyzed. The constitutive equations of the flow model are solved numerically and

the impact of physical parameters concerning the flow model on the dimensionless

temperature, velocity and concentration are presented through graphs and tables.

Also a comparison of the achieved numerical results by the Shooting method with

the published results of Dash et al. [37] has been made and found both in excellent
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agreement.

In Chapter 4, we discuss the effects of Joule heating along with the viscous dis-

sipation on the boundary layer stagnation point flow past a shrinking sheet in

the presence of the magnetic field. The reduced system of ODEs after applying

a proper similarity transform are solved numerically. Graphs and tables describe

the behavior of physical parameters. Numerical values of Skin friction coefficient

and Nusselt number have also been computed and discussed in this work.

Chapter 5 summarizes up the dissertation and gives the major conclusion from

the entire research and recommendations for the future work.

All the references used in this dissertation are listed in Bibliography.



Chapter 2

BASIC DEFINITIONS AND

GOVERNING EQUATIONS

2.1 Basic definitions

2.1.1 Fluid

Fluid is a material that changes regularly by action of shear stress. It does not

depend how small the shear stress is and continuously change its shape as long as

the shear stress acts

2.1.2 Fluid mechanics

Fluid mechanics is the branch of engineering that deals with the behavior of fluid

at rest or in motion. It is divided into two branches contains the discussion of

different properties of fluids and the effect of different forces on it.

2.1.3 Fluid statics

In fluid statics we deal with all properties of fluids that are at rest.

6



Basic definitions and governing equations 7

2.1.4 Fluid dynamics

In fluid dynamics we deal with all properties of fluids that are in motion.

2.2 Some physical properties of fluid

2.2.1 Density

The ratio between mass and unit volume is called density. It is denoted by ρ and

mathematically, it can be written as

ρ =
m

V
, (2.1)

where m and V are the mass and volume of the material respectively. Dimension

of density is [ML−3] and SI unit is kg/m3.

2.2.2 Viscosity

Viscosity is an intrinsic (internal) property of fluid that measures the fluid resis-

tance against any deformation when different forces are acting on it.

2.2.3 Dynamic Viscosity

Viscosity is the property of the fluid that measures the fluid resistance against any

deformation when different forces are acting on it. In other words, a fluid viscosity

is that property which measures the amount of resistance to the shear stress. It

is denoted by µ and mathematically, it can be written as

viscosity(µ) =
shear stress

shear strain
, (2.2)

unit of viscosity in SI system is kg/ms.



Basic definitions and governing equations 8

2.2.4 Kinematic viscosity

The ratio between the dynamic density and viscosity is called kinematic viscosity.

Symbolically, it can be written as ν and mathematically, it can be written as

ν =
µ

ρ
, (2.3)

where ρ and µ denote the density and the dynamic viscosity respectively. SI unit

is m2/s and its dimension is [L2/T ].

2.2.5 Pressure

The ratio of applied force to the unit area is called pressure. It is denoted by P

and mathematically, it can be written as

P =
F

A
, (2.4)

where F , A denote the applied force and area of the surface, respectively.

2.2.6 Stress

Stress is the force acting on the surface of the unit area within a deformable body.

Mathematically, it can be written as

σ =
F

A
, (2.5)

where A is area and F is the force.

2.2.7 Shear stress

The component of stress in which a force acts parallel to the unit surface area is

called shear stress.
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2.2.8 Normal stress

Normal stress is the component of stress in which force acts perpendicular to the

unit surface area.

2.2.9 Porous medium

A porous medium is a substance containing pores. The skinny part of the sub-

stance is usually said to be a matrix or frame. The voids are normally full with

a fluid. The skeletal substance is usually a solid, but configuration like foam are

often usefully analyzed using the concept of porous media.

2.3 Types of fluids

2.3.1 Fluid

A material that can flow or a substance that deform continuously is call fluid.

2.3.2 Ideal fluid

The fluid which has zero viscosity (µ = 0) is said to be an ideal fluid.

τyx = µ
du

dy
, (2.6)

2.3.3 Real fluid or viscous fluid

In a real fluid, viscosity is non zero (µ 6= 0) and the effect of viscosity can not be

neglected.

2.3.4 Newton’s law of viscosity

The shear stress which distorts the fluid component is directly and linearly pro-

portional to the velocity gradient is said to be the Newton’s law of viscosity.
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Mathematically, it can be written as

τxy ∝
[
du

dy

]
,

τxy = µ
du

dy
, (2.7)

where τxy is the shear stress component of the fluid, u is the component of the

velocity along x-axis and µ is viscosity proportionality constant.

2.3.5 Newtonian fluids

The real fluids for which the shear stress of the fluid varies directly and linearly as

the deformation rate are called Newtonian fluids. In other words, the fluids which

satisfy the Newton’s law of viscosity are also called Newtonian fluids. Shear stress

of Newtonian fluid is mathematically defined as

τyx = µ
du

dy
, (2.8)

where τyx is the shear stress, x denotes the x-component of velocity and µ denotes

the dynamic viscosity. Examples of Newtonian fluids are air, water, oxygen gas

and silicone oil etc.

2.3.6 Non-Newtonian fluids

Non-Newtonian fluids are those for which the shear stress is not linearly propor-

tional to the deformation rate. In other words, the fluid which does not satisfy the

Newton’s law of viscosity are said to be non-Newtonian fluids. Mathematically, it

can be written as

τxy ∝
[
du

dy

]m
, m 6= 1

τxy = µ

[
du

dy

]m
, (2.9)

where ν denotes the viscosity and m is the index of flow performance. Note that

for m = 1, the above equation reduces to the Newton’s law of viscosity. Examples

of non-Newtonian fluids are shampoo, grease, paint, blood and melt polymer etc.
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2.3.7 Skin friction

It is the drag force that takes place among the exterior of the sheet and the

fluid/liquid.

2.3.8 Nanofluids

Nanofluids are suspensions of nanoparticles in fluids that show important improve-

ment of their properties at simple nanoparticle concentrations. Nanofluids are flu-

ids containing nanometer sized particles of metals, oxides, carbides or nano tubes

known as a nanoparticles. Nanofluids are suspension involving a fluid containing

nanoparticles i.e., particles of solid with a dimension measured in nanometers.

2.4 Types of flows

2.4.1 Flow

A material goes under deformation when different forces act on it. If the defor-

mation continuously increases without limit is known as flow.

2.4.2 Laminar flow

Type of flow, in which the fluid moves smoothly along well defined path is known

as laminar. The flow of high viscosity fluids such as oil at low velocity is typically

a laminar flow.

2.4.3 Turbulent flow

A flow moves randomly in any direction and has no specific path. The flow of low

viscosity fluids such as air at high velocity is typically turbulent.
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2.4.4 Steady flow

The flow which is independent of time is called steady flow. Mathematically, it

can be written as

dξ

dt
= 0, (2.10)

where ξ is fluid property.

2.4.5 Unsteady flow

The flow which depends on time is called unsteady flow. Mathematically, it can

be written as
dξ

dt
6= 0, (2.11)

where ξ is fluid property.

2.4.6 Uniform flow

If the velocity of flow has same magnitude as well as direction during the motion

of fluid, then the flow is called uniform flow. Mathematically, it can be written as

dv

ds
= 0, (2.12)

where s is the displacement in any direction and v is the velocity.

2.4.7 Non-Uniform flow

In non-uniform flow, the velocity is not same at every point in the fluid at a given

instant. Mathematically, it can be written as

dv

ds
6= 0, (2.13)

where s is the displacement and v is the velocity.
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2.4.8 Compressible flow

The fluid in which the density with respect to the substance is not constant is

called compressible flow( e.g, high speed gas flow). Mathematically, it can be

written as
dρ

dt
6= 0,

2.4.9 Incompressible flow

If the density of flowing fluid remains nearly constant throughout flow is called

incompressible flow(e.g, liquid flow). Mathematically, it can be written as

Dρ

Dt
= 0,

where ρ denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+ V · ∇. (2.14)

In Eq. (2.14), V denotes the velocity of the flow and ∇ is the differential operator.

In Cartesian coordinate system ∇ is given as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

2.4.10 Internal flow

Completely bounded flow by the solid surface is known as internal flow. The flow

in a pipe or duct is an example of the internal flow.

2.4.11 External flow

The flow, which is not bounded by the solid surface is called external flow. An

example of the external flow is the water flow in the river or in the ocean.
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2.5 Some basic definitions of heat transfer

When two different bodies located at different temperature interact then heat

transfer usually occurs from higher temperature body to the lower temperate body.

It modify the internal energy of both systems involved. The transfer of heat takes

place in the following ways.

2.5.1 Conduction

A process in which the heat is transferred between those objects that are in physical

contact is called conduction. Mathematically, it can be written as

q = −kA
[

∆T

∆n

]
, (2.15)

where k and ∆T
∆n

denote the constant of the thermal conductivity and gradient of

the temperature respectively.

2.5.2 Convection

When the heat is transferred through fluids (gases or liquids) is known as

convection. In this process, heat always transfers from a warmer spot to a cooler

spot. Convective heat transfer arises between a fluid and a bounding surface. If

there is a difference in the temperature of fluid and bounding surface, then thermal

boundary layer is created. Fluid particles which interact with the surface, attain

equilibrium at the surface temperature and transfer energy in the next layer and

so on. Through this mode, temperature gradients are produced in fluid. The area

of fluid containing these temperature gradients are identified as thermal boundary

layer. Since the convective heat transfer is by both random molecular motion

and the bulk motion of the fluid, the molecular motion is more adjacent to the

surface where the fluid velocity is less. Convective heat transfer depends upon the

nature of the flow. Convection has three forms: Forced convection, Natural (free)

convection, Mixed convection.
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2.5.3 Forced convection

Forced convection is a process, or kind of energy transfer in which fluid motion is

produced by an external source. In other words, the heat transfer in which fluid

motion is originated by an independent source like a pump and fan etc is called

forced convection.

2.5.4 Natural convection

Natural convection is a heat transport process, in which the fluid motion is not

developed by any external source, but only by density differences in the fluid taking

place due to temperature gradients. It exists due to the temperature differences

which affect the density of the fluid. It is also known as free convection.

2.5.5 Mixed convection

It is a combination of both forced convection and natural convection and occurs

when natural convection and forced convection act collectively to transfer heat.

This is also defined as the circumstances where both pressure forces and buoy-

ant forces act together. In other words, when both natural and forced convection

processes simultaneously and significantly contribute to heat transfer, mixed con-

vection flow appears.

2.5.6 Radiation

A process in which heat is transferred directly by electromagnetic waves is known

as radiation and it occurs when two bodies of different temperature are aligned.

2.6 Thermal conductivity

The property of a substance which measures the ability to conduct heat is called

thermal conductivity. Fourier’s law of conduction which relates the rate of heat
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transfer by conduction to the temperature gradient is

dQ

dt
= −kAdT

dx
, (2.16)

where A, dQ
dt

, k, dT
dx

are the area, the rate of heat transfer, the thermal conductivity

and the temperature gradient respectively. Thermal conductivity of most of the

liquids decreases with the increase of temperature except water. The SI unit of

thermal conductivity is Kg.m
s3

and the dimension of thermal conductivity is [ML
T 3 ].

2.7 Thermal diffusivity

Thermal diffusivity is material property for characterizing unsteady heat conduc-

tion.

Mathematically,

α =
k

ρCp
, (2.17)

where k is the thermal conductivity of material, ρ its density and Cp its specific

heat.

2.8 Joule heating

When a current flows with finite conductivity through a solid or liquid, electric

energy is transformed to heat energy through resistive loses in the substance. This

process is known as Joule heating. When conduction electrons shift energy to the

conductors atoms through collisions then heat is produced on the micro scale.

Many applications depends on the Joule heating such as microvalves, cooking

plates and toasters.

2.9 Magnetohydrodynamics(MHD)

The study of the dynamics of the electrically conducting fluids such as plasmas or

electrolytes etc, is known as MHD.
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2.10 Boundary layer flow

The philosophy of boundary layer flow was given by a German Ludwig Prandlt in

1904. The thin layer close to the wall of container is called the boundary layer.

In the boundary layer, flow is energetic for aerodynamic drag and lift of the flying

articles. A boundary layer can be laminar or turbulent if the flow takes place

in layers such that each layer slides pass the adjacent layers, then this layer is

identified as laminar boundary layer, although the turbulent boundary layer is

one in which there is an intense agitation.

2.10.1 Hydrodynamic boundary layer

A region near solid surface where the flow configuration is achieved by viscous

drag directly from surface wall is known as a hydrodynamic boundary layer.

2.10.2 Thermal boundary layer

Transfer of heat due to thermodynamic relations happens in thermal boundary.

The temperature alters of fluid stream happens in this layer and is placed in the

region near solid surface where cooling or heating of the surface wall impacts the

fluid temperature.

2.11 Dimensionless numbers

2.11.1 Prandtl number

The ratio of the momentum diffusivity to the thermal diffusivity is said to be the

Prandtl number. It is denoted by Pr and mathematically, it can be written as

Pr =
ν

α
,

Pr =

µ
ρ

k
ρCp

,
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Pr =
µCp
k
, (2.18)

where ν, α denote the momentum diffusivity or kinematic diffusivity and the

thermal diffusivity respectively. It controls the relative thickness of momentum

and temperature function.

2.11.2 Eckert number

It is a dimensionless number defining the ratio between the kinetic energy of flow

and eathalpy. Mathematically,

Ec =
u2
w

Cp(∆T )
, (2.19)

where u2
w is the characteristic flow velocity, Cp the specific heat and ∆T is the

temperature.

2.11.3 Skin friction coefficient

Skin friction coefficient occurs between the fluid and the solid surface which leads

to slow down the motion of fluid. The skin friction coefficient can be defined as

Cf =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream velocity,

respectively.

2.11.4 Sherwood number

It is the ratio of total rate of mass transfer to the rate of diffusive mass transport.

Mathematically, it can be expressed as

Sh =
k̂L

D
(2.20)

where k̂, L and D are the mass transfer coefficient, characteristic length and the

mass diffusivity, respectively.
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2.11.5 Nusselt number

It examines the ratio of convective to the conductive heat transfer through the

boundary of the surface. It is the dimensionless number which was introduced by

the German mathematician Nusselt. Heat transfer due to conduction is denoted

by k∆T
δ

and heat transfer due to convection is denoted by h∆T . It is denoted by

Nu and mathematically, it is expressed by

Nu =
hδ

k
, (2.21)

where h, δ, k denote the coefficient of heat transfer, the characteristic length and

the thermal conductivity respectively.

2.12 Basic equations

2.12.1 Continuity equation

Continuity equation is derived from the law of conservation of mass and mathe-

matically, it is expressed by

∂ρ

∂t
+∇.(ρV ) = 0, (2.22)

where t is the time. If fluid is an incompressible, then the continuity equation is

expressed by

∇.V = 0, (2.23)

2.12.2 Law of conservation of momentum

Each particle of fluid obeys Newton’s second law of motion which is at rest or in

steady state or accelerated motion. This law states that the combination of all

applied external forces acting on a body is equal to the time rate of change of

linear momentum of the body. In vector notation this law can be represented as

ρ
dV

dt
= divT + ρb, (2.24)
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For Navier-Stokes equation

τ = −pI + µA1, (2.25)

where A1 is the tensor.

A1 = gradV + (gradV )t, (2.26)

In the above equations, d
dt

denote material time derivative or total derivative, ρ

denote density, V denote velocity field, τ the Cauchy stress tensor, b the body

forces, p the pressure, µ the dynamic viscosity.

The Cauchy stress tensor is expressed in the matrix form as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.27)

where σxx, σyy and σzz are normal stresses. For two-dimensional flow, we have

V = [u(x, y, 0), v(x, y, 0), 0] and thus

gradV =


∂u
∂x

∂u
∂y

0
∂v
∂x

∂v
∂y

0

0 0 0

 , (2.28)

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

[
∂2u

∂x2
+
∂2u

∂y2

]
. (2.29)

Similarly, we repeat the above process for Y component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
. (2.30)

2.12.3 Energy equation

The energy equation for the fluid is

ρCp

[
∂

∂t
+ V∇

]
T = k∇2T + τL+ ρCp

[
DB∇C.∇T +

DT

Tm
∇T
]
, (2.31)

where the specific heat of the basic fluid and material are denoted by (Cp)f and

(Cp)s, ρf the density of basic fluid, T the temperature and L denote the rate of
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strain tensor of the fluid, DB the Brownian motion coefficient and DT the temper-

ature diffusion coefficient and Tm denote the mean temperature. The expression

for Cauchy stress tensor τ for viscous incompressible fluid is expressed by

τ = −pI + µA1, (2.32)

where A1 is the tensor, p the pressure and µ the dynamic viscosity.

A1 = gradV + (gradV )t, (2.33)

where t represents transpose of the matrix for two dimensional velocity field of the

fluid, τ the stain tensor and can be written as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 . (2.34)



Chapter 3

NUMERICAL SOLUTION OF

BOUNDARY LAYER

STAGNATION-POINT FLOW

In this chapter, we discuss the magnetohydrodynamics flow with heat and mass dif-

fusion of an electrically conducting stagnation point flow past a shrinking/stretch-

ing sheet with chemical reaction of diffusing species and internal heat absorption/-

generation numerically. Flow equations are modified to a system of non-linear

ODEs by using the similarity transformations. Numerical solution of the ODEs is

found by using the shooting method. Finally, the results are discussed for different

parameters affecting the flow and transfer of heat.

3.1 Mathematical modeling

A steady two dimensional laminar boundary layer stagnation point flow of viscous

incompressible electrically conducting fluid towards a stretching/shrinking sheet

with chemically reactive species undergoing first order chemical reaction is consid-

ered. The flow field is exposed to uniform transverse magnetic field ~B0 = (0, B0, 0).

It is assumed that the flow is generated by stretching of non-conducting elastic

boundary sheet by imposing two opposite and equal forces along x-axis in such

a way that the velocity of the boundary sheet is of linear order in the flow di-

rection and the origin remains fixed. A uniform magnetic field of strength B0 is

22
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assumed to be applied in the positive y-direction normal to the plate. The mag-

netic Reynolds number of the flow is taken small, therefore induced magnetic field

is negligible in comparison with the applied one. The level of concentration of

foreign mass assumes to be low, there for Soret and Dufour effects are negligible.

The model of first order chemical reaction is considered. By usual boundary layer

approximation, following Bhattacharyya [35], the governing equations are:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂v

∂y
= U

dU

dx
+ ν

∂2u

∂y2
− σB2

0

ρ
(u− U), (3.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

Q

ρCp
(T − T∞), (3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−R(C − C∞), (3.4)

where u and v are the velocity components along the x and y axes, U is the strain-

ing velocity, C is the concentration, T is the fluid temperature, ν is the kinematic

viscosity of fluid, ρ is the density of fluid, Cp is the specific heat at constant pres-

sure, D is the species diffusion coefficient, σ is the electric conductivity of fluid,

B0 is the applied uniform magnetic field normal to the surface of the sheet, Q is

the heat source parameter. The boundary conditions for Eqs. (3.1− 3.4) are

Figure 3.1: Flow geometry.
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u = bx, v = 0, T = Tw, C = Cw, at y = 0,

u→ U(x) = ax, T → T∞, C → C∞ as y →∞.
(3.5)

We use similarity transformation [21, 22] to solve Eqs. (3.1− 3.4)

ψ(x, y) =
√
aνxf(η), θ(η) = (T − T∞)/(Tw − T∞),

φ(η) = (C − C∞)/(Cw − C∞), η = y
√
a/ν,

(3.6)

the velocity component of stream function which is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.7)

So, we have

u = axf
′
(η), v = −

√
aνf(η), (3.8)

where prime shows differentiation with respect to η.

Using Eq. (3.6) in Eq. (3.1) that will be satisfied, also using Eqs. (3.5 − 3.7) in

Eqs. (3.2− 3.4), we will get the followning ordinary differential equations.

f
′′′

+ ff
′′ − (f

′
)2 −M(f

′ − 1) + 1 = 0, (3.9)

θ
′′

+ Prfθ
′
+ PrSθ = 0, (3.10)

φ
′′

+ Scfφ
′ − Scβφ = 0, (3.11)

with the boundary conditions

f(0) = 0, f
′
(0) = b/a, θ(0) = 1, φ(0) = 1 at η = 0,

f
′
(η)→ 1, θ(η)→ 0, φ(η)→ 0 as η →∞.

(3.12)

The dimensionless constants Pr, Sc, M , S, β, represent the Prandtl num-

ber, the Schmidt number, the magnetic parameter, the heat source pa-

rameter, the reaction rate parameter, which are defined as

Pr =
ν

k
, Sc =

ν

D
,M =

σB2
0

aρ
, S =

Q

aρCp
, β =

R

a
. (3.13)

In this problem the quantities of physical interest are the local Nusselt number

Nu, the skin friction coefficient Cf and the local Sherwood number Sh,which are
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defined as

Nu =
xqw

k(Tw − T∞)
, Sh =

xhm
D(Cw − C∞)

, Cf =
τw

ρU2/2
. (3.14)

where hm, qw and τw are mass flux from the sheet, heat flux and the skin friction

or shear stress, which are given by

hm = −D
[
∂C

∂y

]
y=0

, qw = −k
[
∂T

∂y

]
y=0

, τw = µ

[
∂u

∂y

]
y=0

. (3.15)

where µ is the dynamic viscosity of the fluid and k is thermal diffusivity. Using

the similarity variables Eq.(3.6), we get

Nu√
Rex

= −θ′
(0),

Sh√
Rex

= −φ′
(0),

1

2
Cf
√
Rex = f

′′
(0). (3.16)

where Rex = ρbx2

µ
.

3.2 Method for solution

Eqs. (3.9−3.11) are non-linear and coupled. We opted to solve the non-linear sys-

tem consisting of Eqs. (3.9− 3.11) with boundary conditions Eq. (3.12) by using

the shooting iteration technique together with the fourth order Runge-Kutta inte-

gration scheme. While using this technique, boundary value problem is converted

into the initial value problem. In this method we have to choose a suitable finite

value of η →∞. Let’s convert Eqs. (3.9− 3.11) by using following substitution:

f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y′3, (3.17)

θ = y4, θ′ = y5, θ′′ = y′5, (3.18)

φ = y6, φ′ = y7, φ′′ = y′7. (3.19)

Using above notations as a result we get seven first order non linear coupled ODEs

with the boundary conditions are also adjust according to the above supposition,
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written below
y

′

1 = y2,

y
′

2 = y3,

y
′

3 = − y1y3 + y2
2 +M (y2 − 1)− 1,

y
′

4 = y5,

y
′

5 = − Pry1y5 − PrSy4,

y
′

6 = y7,

y
′

7 = Scβy6 − Scy1y7,



(3.20)

The associated initial conditions are

y1(0) = 0, y2(0) = b/a, y3(0) = t, y4(0) = 1,

y5(0) = q, y6(0) = 1, y7(0) = w,
(3.21)

In Eq. (3.21) t, q and w are the three initial guesses. Runge-Kutta method

of order four is used to solve the intermediate initial value problem with some

suitable initial guess t = t0 q = q0 and w = w0. For the next iteration,the values

of t, q and w are updated by the Newton’s method as follows
tn+1

qn+1

wn+1

 =


tn

qn

wn

−

y9 y16 y23

y11 y18 y25

y13 y20 y27


−1 

y2

y4

y6


.

where n = 0, ! 1, 2, 3...

3.2.1 Results and discussion

The main objective to study the effect of different parameters on velocity profile

f
′
(η), temperature profile θ(η) and skin friction profile φ(η). For the conformation

of the result, compared with Bhattacharyya [35]. The skin friction, rate of heat
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Table 3.1: The skin friction f
′′
(0) for different values of b/a and M .

b/a M Bhattacharyya [35] Dash et. al [37] Present
-1.25 0 0.5971 0.5970
-1.15 0 1.0822 1.0822 1.0822
-2.14 1 1.5629 1.5628

-1 0 1.3288 1.3288 1.3288
-1 1 2.4299 2.4297
-1 2 3.1526 3.1525

-0.5 0 1.4956 1.4956 1.4955
-0.5 1 2.1201 2.1202
-0.5 2 2.5975 2.5975
1 0 0.0001 0.0003
1 1 0.0001 0.0002
1 2 0.0001 0.0002
0 0 1.2325 1.2319
0 1 1.5853 1.5847
0 2 1.8735 1.8725

0.5 0 0.7132 0.7130
0.5 1 0.8696 0.8686
0.5 2 1.0024 1.0021
2.0 1 -2.1326 -2.1365
2.0 0 -1.8873 -1.8886

Table 3.2: Rate of heat transfer −θ′(0) for different values of b/a.

b/a Pr M S Bhattacharyya [35] Dash et. al [37] Present
-1.24 0.1 0 0 0.1282 0.1281 0.1281
-1.24 0.5 0 0 0.0983 0.0958 0.0951
-1.24 0.5 1 -1 0.6537 0.5981 0.5982

-1 0.71 0 0 0.2282 0.2281
-1 0.71 1 0 0.3249 0.3249
-1 0.71 1 0.2 0.1782 0.1781

-0.5 0.71 1 0.2 0.2997 0.2997
0 0.71 1 0.2 0.4028 0.4027
1 0.71 1 0.2 0.5740 0.5740
-1 7 1 0.2 -0.6851 -0.6855
-1 0.71 1 -0.2 0.4483 0.4482

-0.5 0.71 1 -0.2 0.5397 0.5397
-0.5 0.71 2 0.2 0.3296 0.3294
0.5 0.71 1 0.2 0.4931 0.4931
0.5 7 1 0.2 1.3393 1.3392
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Table 3.3: The rate of mass transfer −φ′
(0) for different values of b/a.

b/a Sc M Kc Bhattacharyya [35] Dash et. al [37] Present
-1.24 0.1 0 0 0.1282 0.1281 0.1284
-1.24 0.5 0 0 0.0983 0.0958 0.0956
-1.24 0.5 1 1 0.6537 0.5981 0.5980

-1 0.22 0 0 0.2432 0.2432
-1 0.22 1 1 0.4895 0.4894
-1 0.6 1 1 0.7603 0.7603
0 0.22 0 0 0.3173 0.3175
0 0.22 1 1 0.5440 0.5440
0 0.6 1 1 0.8741 0.8741

0.5 0.22 0 0 0.3472 0.3471
0.5 0.22 1 1 0.5668 0.5668
0.5 0.6 1 1 0.9241 0.9240
0.5 100 1 1 11.3770 11.3770
0.5 100 0 1 11.3606 11.3609
-1.0 100 1 1 8.1333 8.1334
0.5 0.22 1 -1 0.0521 .0520
-1 0.6 1 -1 -1.1561 -1.1557

-1.24 0.6 1 1 0.7288 0.7288
0.5 0.22 1 -1 -0.1994 -0.1992

transfer and rate of mass diffusion at the surface represented in Table 3.1 − 3.3.

Further Bhattacharyya [35] discussed only mass diffusion and momentum cases,

but in the present work thermal diffusion also involved. So we have restrained

our conversation to a particular solution dependent upon both the parameters b/a

and M for the energy, momentum and mass diffusion equations. In Table 3.1,

we observed that the magnetic field intensity had direct relation with skin friction

with constant shrinking rate. Skin friction coefficient is decreasing with an increase

in the shrinking rate (b/a < 0) in both absence and presence of the magnetic field.

The conclusion is that the skin friction is enhanced with the presence of magnetic

field. The skin friction negative when stretching rate more then 1. Its mean that

(b/a > 1), in case of stretching, the stretching rate (b) greater than the straining

rate (a), that may lead to flow instability. Further, it is observed that keeping the

shrinking rate constant the skin friction increases with an increase in magnetic

field strength. Also it is noted that when (b/a = 1) the skin friction disappear.

There is no relative motion between plate velocity and free stream velocity and

hence shearing stress also disappears. It is observed that skin friction increased

due to the increase of magnetic field. It is concluded that presence of magnetic
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field enhances the skin friction but the rate of shrinking/stretching decreases it in

both stretching and shrinking of the sheet. And the change of sign is a sign of

the flow reversal when the velocity of the stretching sheet exceeds the free stream

velocity. Table 3.2, shows the rate of heat transfer for stretching/shrinking of the

plate surface. It is noted that the Nusselt number Nu decreases with an increase

in the value of Pr without magnetic field and heat source (M = 0, S = 0), but it

is increasing with the presence of magnetic field but opposite impact is observed

with an increase in the value of source parameter. Further, it is observed that

due to an increase in the magnitude of shrinking rate with the presence of both

heat source and magnetic field, Nu decreases. Also with the presence of sink

(S = −1), the Nusselt number remains positive. For high value of Pr = 7.0, the

Nusselt number Nu takes negative value for shrinking case. It is observed that

an increase in Prandtl number and stretching rate both contribute to increase the

rate of heat transfer but Prandtl number Pr contributes significantly. Further, in

case of the shrinking sheet, high Prandtl number fluid causes a thermal instability

at the surface (negative value of Nu) whereas no such case arises for stretching

sheet. Table 3.3, shows the value of Sherwood number denoted by Sh. For

constructive reaction (Kc < 0), the Sherwood number Sh decreases and takes

negative value, for destructive reaction (Kc > 0) Sherwood number Sh is positive.

As Schmidt number Sc increases, Sherwood number Sh decreases in the absence

of Kc and M but due to the chemical reaction Kc as well as the magnetic field

M , Sh increases. It is also noted that the effect of (M = 0, 1) with (Kc = 1)

and (Sc = 100) is same as that of shrinking sheet. In Fig. 3.2, we observe

the effect of the velocity ratio (b/a) i.e. stretching rate of the bounding surface

(b) and straining rate of the stagnation point flow (a > 0). For (b/a < 1), i.e.

stretching rate at the plate is less than straining of potential flow, the boundary

layer thickness decreases. Further, it is observed that in case of shrinking sheet

(b/a = −0.5), there is a limited back flow for a few layers near the plate. It is also

observed that the opposing force due to the magnetic field reduces the boundary

layer thickness in the flow region. Hence, it is concluded that the shrinking of the

boundary surface is to be controlled to avoid the back flow. In Fig. 3.3, without

magnetic field (M = 0) as the shrinking rate (b/a) increases, the velocity decreases

within boundary layer,but velocity increases with the presence of magnetic field

M . When boundary layer decreases then electromagnetic force is high and causes

a back flow. If b/a < 1, then the magnetic field increases the velocity. Therefore,

it is concluded that the stretching ratio (b/a) and the shrinking of the bounding
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surface change the flow field overriding the effect of magnetic field. In Fig. 3.4, the

temperature profile is discussed through the Figs. 3.4 to 3.7 in case of shrinking

sheet. Curves I, II, III, IV, and V indicate that the temperature increases with

source strength and increment in temperature is noted near the plate when the

viscosity and conductivity of the fluid have value (Pr = 1.0). In case of sink

(S < 0), the opposite effect is observed (curves VI and VII). In Fig. 3.5, the

temperature gradient is discussed. It is observed that the negative temperature

gradient is mostly seen in the flow domain except two profiles which show positive

rate of heat transfer at the plate. Figs. 3.6 and 3.7, show the impact of magnetic

parameter on temperature and on its gradient. The resistive force generated due

to interaction of conducting fluid and magnetic field reduces the temperature at

all points with a transverse compression of profiles (curves for M = 1) reducing

the thermal boundary layer thickness due to transverse magnetic field. Fig. 3.7,

indicate the fluctuation of the temperature gradient near the plate. We can observe

that the presence of magnetic field achieve maximum of temperature in layers near

to the bounding surface. Figs. 3.8 and 3.9, show the profiles of concentration

and its gradient without reactive species with impact of shrinking of the sheet

and magnetic field. The magnetic field decreases the concentration level of the

species near the plate. The high values of Sc increases the concentration level near

the plate but later opposite effect is observed. In the absence of magnetic field

(M = 0), the concentration profile increases. Fig. 3.9, represents the concentration

gradient without chemical reaction. The concentration gradient increases near the

plate without magnetic field. In Fig. 3.10, it is noted that the chemical reaction

parameter has a different impact in decreasing concentration level with magnetic

field, a transverse compression resulting the thinner concentration boundary layer.

The destructive reaction is responsible to decrease the concentration level at all

the layers. Fig. 3.11, show that as shrinking rate increases with and with out

reaction parameter, the concentration gradient level decreases.
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Figure 3.2: Velocity profile for different values of b/a.

Figure 3.3: Velocity profile for shrinking sheet with S = 0.2.

Figure 3.4: Impact of Pr and S on the temperature profile.
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Figure 3.5: Impact of Pr and S on the temperature gradient profile.

Figure 3.6: Impact of b/a and M on the temperature profile.

Figure 3.7: Impact of b/a and M on the temperature gradient profile.
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Figure 3.8: Impact of Sc and M on concentration profile.

Figure 3.9: Impact of Sc and M on concentration gradient profile.

Figure 3.10: Impact of b/a and β on concentration profile.
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Figure 3.11: Impact of b/a and β on concentration gradient profile.



Chapter 4

NUMERICAL SOLUTION OF

BOUNDARY LAYER

STAGNATION-POINT FLOW

OVER A SHRINKING SHEET

WITH JOULE HEATING AND

VISCOUS DISSIPATION

In the modern industry, the study of magnetohydrodynamics MHD flow has been

done by many researchers due to its many practical applications. This chapter

consists of the solution for the boundary layer stagnation-point flow over a shrink-

ing sheet in the presence of Joule heating and viscous dissipation effects. The

nonlinear partial differential equations of mass, momentum and concentration are

transformed to the ordinary differential equations by using similarity transforma-

tions. The solution of the present problem is formed by the shooting technique

and also to validate the accuracy of the results by using bvp4c MATLAB code.

Finally, the results are discussed for different parameters affecting the flow and

transfer of heat.
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4.1 Formulation of the problem

In this section the boundary layer stagnation-point flow with the steady two dimen-

sional boundary layer is discussed. The flow field is exposed to uniform transverse

magnetic field ~B0 = (0, B0, 0). It is assumed that the flow is generated by stretch-

ing of non-conducting elastic boundary sheet by imposing two opposite and equal

forces along x-axis in such a way that the velocity of the boundary sheet is of

linear order in the flow direction and the origin remains fixed as shown in Fig. 3.1.

A uniform magnetic field of strength B0 is assumed to be applied in the positive

y-direction normal to the plate. The governing equations of the problem are:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂v

∂y
= U

dU

dx
+ ν

∂2u

∂y2
− σB2

0

ρ
(u− U), (4.2)

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

Q

ρCp
(T − T∞) +

σB2
0u

2

ρCp
+

µ

ρCp
(
∂u

∂y
)2, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−R(C − C∞), (4.4)

where u and v are the velocity components along the x and y axis respectivly,

U is the straining velocity, C is the concentration, T is the fluid temperature,

ν is the kinematic viscosity of fluid, ρ is the density of fluid, Cp is the specific

heat at constant pressure, D is the species diffusion coefficient, σ is the electric

conductivity of fluid, B0 is the applied uniform magnetic field normal to the surface

of the sheet, Q is the heat source parameter. The boundary conditions for Eqs.

(4.1− 4.4) are

u = bx, v = 0, T = Tw, C = Cw, at y = 0,

u→ U(x) = ax, T → T∞, C → C∞ as y →∞.
(4.5)

We use similarity transformation [21, 22] to solve Eqs. (4.1− 4.4)

ψ(x, y) =
√
aνxf(η), θ(η) = (T − T∞)/(Tw − T∞),

φ(η) = (C − C∞)/(Cw − C∞), η = y
√
a/ν,

(4.6)
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the velocity component of stream function which is defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (4.7)

So, we have

u = axf
′
(η), v = −

√
aνf(η), (4.8)

where prime shows differentiation with respect to η. Using (4.6) in Eq. (4.1) that

will be satisfied, also using (4.5− 4.7) in Eqs. (4.2− 4.4), we will get the following

ordinary differential Eqs.

f
′′′

+ ff
′′ − (f

′
)2 −M(f

′ − 1) + 1 = 0, (4.9)

θ
′′

+ Prfθ
′
+ PrSθ + PrEc(Mf

′2
+ f

′′2
) = 0, (4.10)

φ
′′

+ Scfφ
′ − Scβφ = 0, (4.11)

with boundary conditions

f(0) = 0, f
′
(0) = b/a, θ(0) = 1, φ(0) = 1 at η = 0,

f
′
(η)→ 1, θ(η)→ 0, φ(η)→ 0 as η →∞,

(4.12)

The dimensionless constants Pr, Sc, M , S, β and Ec represent the Prandtl num-

ber, the Schmidt number, the magnetic parameter, the heat source parameter,

the reaction rate parameter, Eckert number which are defined as

Pr =
ν

k
, Sc =

ν

D
, M =

σB2
0

aρ
, S =

Q

aρCp
, β =

R

a
, Ec =

a2x2

Cp
, (4.13)

In this problem the quantities of physical interest are the local Nusselt number Nu,

the local Sherwood number Sh,the skin friction coefficient Cf which are defined as

Nu =
xqw

k(Tw − T∞)
, Sh =

xhm
D(Cw − C∞)

, Cf =
τw

ρU2/2
, (4.14)

where hm mass flux, qw heat flux and τw the wall shear stress or skin friction,

which are given by

hm = −D
[
∂C

∂y

]
y=0

, qw = −k
[
∂T

∂y

]
y=0

, τw = µ

[
∂u

∂y

]
y=0

, (4.15)
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where µ is the dynamic viscosity of the fluid and k is thermal diffusivity. Using

the similarity variables Eq. (4.6), we get

Nu√
Rex

= −θ′
(0),

Sh√
Rex

= −φ′
(0),

1

2
Cf
√
Rex = f

′′
(0), (4.16)

where Rex = ρbx2

µ
.

4.2 Method for solution

As Eqs. (4.9− 4.11) are non-linear and coupled with boundary conditions in Eq.

(4.12). Before solving, these equations are converted from the boundary value

problem into the initial value problem. Applying the Shooting technique together

with fourth order Runge-Kutta method. Let’s convert Eqs. (4.9− 4.11) by using

following substitution:

f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y′3, (4.17)

θ = y4, θ′ = y5, θ′′ = y′5, (4.18)

φ = y6, φ′ = y7, φ′′ = y′7. (4.19)

Using above notations as a result we get seven first order non linear coupled ODEs

with the boundary conditions are also adjust according to the above supposition,

written below

y
′

1 = y2,

y
′

2 = y3,

y
′

3 = − y1y3 + y2
2 +M(y2 − 1)− 1,

y
′

4 = y5,

y
′

5 = − Pry1y5 − PrSy4 − PrEc(My2
2 + y2

3),

y
′

6 = y7,

y
′

7 = ScAy6 − Scy1y7,



(4.20)
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The associated initial conditions are

y1(0) = 0, y2(0) = b/a, y3(0) = t, y4(0) = 1,

y5(0) = q, y6(0) = 1, y7(0) = w,
(4.21)

In Eq. (4.21) t, q and w are the three initial guesses. Runge-Kutta method

of order four is used to solve the intermediate initial value problem with some

suitable initial guess t = t0, q = q0 and w = w0. For the next iteration, the values

of t, q and w are updated by the Newton’s method.

4.2.1 Results and discussion

The main objective of this section is to study the effect of Eckert number Ec on

different parameters like skin friction profile f
′′
(η), the temperature profile -θ′(η)

and concentration profile -φ′(η).

In Table 4.1, we can see that when the Eckert number Ec and the Prandtl number

Pr increases then temperature profile increases. By increasing magnetic parameter

M , the skin friction and temperature profile also increases but concentration pro-

file decreases. Where as reaction parameter shows its impact only on concentration

profile. We can see concentration profile decreases as reaction parameter increases.

Fig. 4.1, show the impact of the magnetic parameter M on the velocity profile. As

the magnetic parameter M increasing the velocity profile also increases but due
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Table 4.1: Values of f
′′
(0), −θ′(0) and −φ′

(0) by using the Shooting method
and bvp4c

−f ′′
(0) −θ′

(0) −φ′
(0)

Ec Pr M β Shooting bvp4c Shooting bvp4c Shooting bvp4c
1 0.71 0.5 0.5 1.8333 1.8337 1.3156 1.3154 -0.2887 -0.2894
5 1.8339 1.8341 7.6796 7.66896 -0.2894 -0.2897
10 1.8343 1.8351 15.6165 15.6572 -0.2897 -0.2890

1 1.8330 1.8351 0.7697 0.7697 -0.2890 -0.2887
5 1.8338 1.8356 3.8651 3.9994 -0.2897 -0.2894
10 1.8340 1.8361 7.8783 7.8796 -0.2894 -0.2897

0.5 1.8337 1.8351 0.5185 0.5186 -0.2894 -0.2897
5 3.6714 3.6741 4.2376 4.2371 -0.3031 -0.3047
10 4.9737 4.9749 8.6967 8.6955 -0.3101 -0.3149

1 1.8339 1.8351 0.5184 0.5186 -0.3580 -0.3582
2 1.8337 1.8346 0.5183 0.5179 -0.4712 -0.4707
3 1.8338 1.8350 0.5193 0.5186 -0.5625 -0.5634

to the resistive effects the boundary layer thickness decreases. This is due to the

fact that the magnetic force enhance the fluid motion in boundary layer. Therefor,

it is concluded that the stretching ratio (b/a) and the shrinking of the bounding

surface effected by magnetic parameter. In Fig. 4.2, it is observed that the ve-

locity profile decreases with increasing value of the shrinking parameter b/a and

consequently the thickness of boundary layer increases. Reverse flow is observed

near the surface as the shrinking parameter decreases. In Fig. 4.3, we observe

the impact of Pr and S on temperature profile. We have (b/a = −1.24,M = 1),

and different values of Pr and S the temperature profile increase. Curves I, II, III,

IV, and V indicates the temperature increases with source strength and a hike in

temperature is noted near the plate. On the other hand, in case of sink S < 0 and

Pr = 0.71, the opposite effect is observed in curves VI and VII due to the sink

S < 0 boundary layer decreases. In Fig. 4.4, it indicate that increasing the value

of Eckert number Ec has the enhansing effect on temperature profile and increases

the thermal boundary layer thickness in the flow field. The temperature increases

due to increasing the Eckert number Ec that generate heat in fluid. In Fig. 4.5,

the effect of the magnetic parameter M on temperature distribution. An increas-

ing impact is observed in the temperature profile with an increase in the value of

the magnetic parameter M . The thermal boundary layer thickness increases by

increasing the magnetic parameter M . Physically the magnetic field has a stabiliz-

ing effect on fluid flow. This mean that heat transfer from hot surface to the cool
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fluid. Fig. 4.6, show the impact of the Prandtl number Pr on temperature profile.

The temperature in the boundary layer increases due to the increasing the value

of the Prandtl number Pr and the boundary layer thickness also increases. If Pr

increases, the thermal diffusivity increases and this leads to increase energy ability

that increases the thermal boundary layer. In Fig. 4.7, the change of temperature

due to heat source parameter S is shown. As we increase the heat source S, the

thermal boundary layer thickness also increases. The temperature profile signifi-

cantly increases as the heat source/sink parameter S increases. In Fig. 4.8, the

impact of velocity ratio b/a on the temperature profile is shown for the case of the

shrinking sheet. The temperature of fluid increases with decreasing the value of

the shrinking parameter b/a. Thus, the thermal boundary layer thickness become

thicker and thicker.

In Fig. 4.9, we can see the impact of reaction rate β on concentration profile.

When the chemical reaction parameter β increases, the boundary layer thickness

decreases. This is due to the fact that the chemical reaction in this system results

in consumption of the chemical and results in decrease of concentration profile.

Fig. 4.10, show that the concentration of fluid increases with an increase in the

value of the shrinking parameter b/a. There for, the concentration boundary layer

thickness become thicker and thicker. In Fig. 4.11, the concentration of fluid

decreases with increasing the value of the magnetic parameter M . The magnetic

parameter M causes to decrease the concentration boundary layer thickness. This

means that the heat and mass are transferred from hot surface to the cool fluid.

Fig. 4.12, illustrate the effect of the Schmidt number Sc on concentration profile.

It is noted that as the Schmidt number Sc increases, the concentration of fluid

medium decreases. This happens because of this fact that the molecular diffusion

decreases as the Schmidt number Sc increases.
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Figure 4.1: Impact of M on velocity profile.

Figure 4.2: Impact of b/a on velocity profile.

Figure 4.3: Impact of Pr and S on temperature profile.
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Figure 4.4: Impact of Ec on temperature profile.

Figure 4.5: Impact of M on temperature profile.

Figure 4.6: Impact of Pr on temperature profile.
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Figure 4.7: Impact of S on temperature profile.

Figure 4.8: Impact of b/a on temperature profile.

Figure 4.9: Impact of β on concentration profile.
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Figure 4.10: Impact of b/a on concentration profile.

Figure 4.11: Impact of M on concentration profile.

Figure 4.12: Impact of Sc on concentration profile.



Chapter 5

CONCLUSION

MHD, incompressible boundary layer stagnation-point flow past a stretching/shrink-

ing sheet is studied numerically. Numerical solution is computed by shooting

method using MATLAB. The study shows that velocity, temperature and the

solid volume fraction of the nanofluid profiles in the relevant boundary layers de-

pend on seven dimensionless parameters.

Conclusions which are obtained:

• The effect of chemical reaction Kc and the magnetic parameter M is thesame

for both streatching/shrinking sheet.

• Diffusion is more sensitive rather than reaction parameter.

• Resistive force is generated by magnetic field and magnetic field increases

the velocity which is greater than the plate velocity.

• Shrinking of boundary surface is linked with heat source S but heat source

has not much impact on velocity.

• When Pr = 1, then heat source S increases the temperature near the plate

while magnetic parameter M decrease the temperature.
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• The skin friction decreases as the shrinking velocity increases but the mag-

netic field M increases the skin friction and decreases the rate of heat transfer

at the plate.

• The temperature profile increases as the Eckert number increases.

• When the chemical reaction parameter β increases, the boundary layer thick-

ness decreases.

• Magnetic field increase velocity and temperature but reduces the concentra-

tion.

5.1 Future recommendations.

The present model focus on Joule heating and viscous dissipation. An interesting

area to investigate in future will be the use of thermal radiation, impact of dif-

ferent nano particles, different chemical properties, hydrogenous and homogenous

reaction.
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