
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Test Case Prioritization Based on

Path Complexity

by

Tahseen Afzal

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

www.cust.edu.pk
www.cust.edu.pk
tehseen_fjwu@yahoo.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Tahseen Afzal

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

DEDICATION

To my BELOVED parents,

The symbol of love and kindness.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Test Case Prioritization Based on Path Complexity

by

Tahseen Afzal

MCS161013

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Muhammad Uzair Khan FAST, Islamabad

(b) Internal Examiner Dr. Muhammad Azhar Iqbal CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

October, 2018

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

October, 2018 October, 2018

iv

Author’s Declaration

I, Tahseen Afzal hereby state that my MS thesis titled “Test Case Prioritiza-

tion Based on Path Complexity” is my own work and has not been submitted

previously by me for taking any degree from Capital University of Science and

Technology, Islamabad or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Tahseen Afzal)

Registration No: MCS161013

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Test Case

Prioritization Based on Path Complexity” is solely my research work with no

significant contribution from any other person. Small contribution/help wherever

taken has been dully acknowledged and that complete thesis has been written by

me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Tahseen Afzal)

Registration No: MCS161013

vi

”There is one thing even more vital to science than intelligent methods;

and that is,

the sincere desire to find out the truth, whatever it may be.”

Charles Sanders Pierce

vii

Acknowledgements

All worship and praise is for ALLAH (S.W.T), the creator of whole worlds. First

and leading, I would like to say thanks to Him for providing me the strength,

knowledge and blessings to complete this research work. Secondly, special thanks

to my respected supervisor Dr. Aamer Nadeem for his assistance, valuable time

and guidance. I sincerely thank him for his support, encouragement and advice

in the research area. He enabled me to develop an understanding of the subject.

He has taught me, both consciously and unconsciously, how good experimental

work is carried out. Sir you will always be remembered in my prayers. I would

like to thank Hassaan Minhas and Mubashir Kaleem, students of BS(CS), for

implementation of mutation testing tool. I would also like to thank all members

of CSD research group for their comments and feedback on my research work. I

am highly beholden to my parents, for their assistance, support (moral as well as

financial) and encouragement throughout the completion of this Master of Science

degree. This all is due to love that they shower on me in every moment of my

life. No words can ever be sufficient for the gratitude I have for my parents. I

hope I have met my parents high expectations. I pray to ALLAH (S.W.T) that

may He bestow me with true success in all fields in both worlds and shower His

blessed knowledge upon me for the betterment of all Muslims and whole Mankind.

Aameen

Tahseen Afzal

viii

Abstract

Software undergoes many modifications after its release. Each time the software

is modified, it needs to be re-tested. After modification, regression testing is

performed to ensure that the modification has not introduced any errors in the

software and the software continues to work correctly. Regression testing is an ex-

pensive process, since the test suite might be too large to be executed completely.

There are three types of cost reduction techniques used in regression testing, i.e.,

test case selection, test suite minimization and test case prioritization. These tech-

niques can be used to reduce the cost of regression testing and improve the rate of

fault detection. The focus of our research is on test case prioritization. Instead of

minimizing test suite or selecting fewer test cases, test case prioritization orders

test cases in such a way that the test cases detecting more faults are executed

earlier. In case of limited resources; instead of executing complete test suite, only

top priority test cases can be executed to ensure the reliability of the software.

A number of white box and black box prioritization techniques have been intro-

duced to prioritize test cases.These techniques are mainly based on coverage based

prioritization, such as statement coverage, branch coverage, module coverage etc.

In this thesis, we propose an approach which uses path complexity and branch

coverage to prioritize test cases. The approach is based on assumption that the

complex code is more likely to contain faults. Halstead’s metric has been used to

calculate the path complexity of the test cases. The test cases with higher path

complexity are assigned higher priority. This approach can significantly increase

the rate of fault detection as the test cases are prioritized on the basis of path

complexity. We have evaluated and compared our approach with branch coverage

based prioritization technique using some example programs. The results show

that our proposed approach performs better than existing branch coverage based

approach in terms of APFD (Average Percentage of Faults Detected).

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vii

Abstract viii

List of Figures xii

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Regression Testing . 2

1.1.1 Test Suite Minimization . 4

1.1.2 Regression Test Selection (RTS) 5

1.1.3 Test Case Prioritization . 5

1.2 Prioritization Criteria . 6

1.2.1 Black Box Proritization Approaches 7

1.2.1.1 Interaction Coverage Based Prioritization: 7

1.2.1.2 Requirements Clustering Based Prioritization: . . 8

1.2.1.3 History Based Test Case Prioritization: 8

1.2.1.4 Hierarchical System Test Case Prioritization Tech-
nique: . 8

1.2.2 White Box Prioritization Approaches 9

1.2.2.1 History Based Prioritization: 9

1.2.2.2 Coverage Based Prioritization Techniques: 10

1.3 Prioritization Algorithms . 11

1.3.1 Greedy Algorithm . 11

1.3.2 Additional Greedy Algorithm 11

1.3.3 Genetic Algorithm . 12

1.3.4 Combined Genetic and Simulated Annealing Algorithm . . . 12

1.3.5 Ant Colony Optimization 12

ix

x

1.4 Problem Statement . 13

1.5 Research Questions . 13

1.6 Research Methodology . 14

1.7 Thesis Organization . 15

2 Literature Review 17

2.1 Fault Based Prioritization Techniques 19

2.2 Coverage Based Prioritization Approaches 21

2.3 Analysis and Comparison . 22

2.4 Gap Analysis . 25

3 Proposed Approach 27

3.1 Code Complexity Metrics . 28

3.1.1 Lines of Code Metric . 28

3.1.2 Function Point (FP) Analysis 29

3.1.3 McCabe’s Cyclomatic Complexity 29

3.1.4 Halstead’s Metric . 30

3.1.4.1 Operands . 30

3.1.4.2 Operators . 31

3.1.4.3 Size of The Vocabulary (n) 31

3.1.4.4 Program Length (Program Size N) 32

3.1.4.5 Volume of Program (V) 32

3.1.4.6 Difficulty Level (D) 33

3.1.4.7 Program Level (L) 33

3.1.4.8 Effort to Implement (E) 33

3.1.4.9 Time to Implement (T) 34

3.1.4.10 Estimated Program Length 34

3.1.4.11 Number of Delivered Bugs (B) 34

3.1.5 Why Halstead’s Metric? . 35

For this example: . 37

3.2 Path Complexity Based Prioritization 37

3.2.1 Path Extraction . 38

3.2.2 Calculation of Path Complexity 38

3.2.3 Applying Prioritization Algorithm 38

3.3 Example . 40

4 Implementation 42

4.1 Implementation Details . 43

4.1.1 Equivalence Class Partitioning 43

4.1.2 Boundary Value Analysis . 44

4.2 User Interface . 45

4.2.1 Test Case Generation . 45

4.2.2 Path Extraction . 47

4.2.3 Path Complexity Calculation 48

4.2.4 Test Case Prioritization . 49

xi

5 Results and Discussion 50

5.1 Subject programs . 51

5.1.1 Simple Calculator Program: 51

5.1.2 Quadratic Equation Problem: 51

5.1.3 Triangle Problem: . 51

5.2 Comparison . 55

6 Conclusion and Future Work 62

6.1 Future Work . 64

Bibliography 65

Appendix A 72

Appendix B 82

List of Figures

1.1 Regression Testing Techniques . 4

3.1 An illustration of proposed approach 37

4.1 Architecture diagram of tool . 43

4.2 Taking Boundary values . 45

4.3 Displaying all five values . 46

4.4 Displaying test cases . 47

4.5 Test Case execution . 48

4.6 Halstead measures for test suite . 49

5.1 Graphical representation of fault detection of test cases for Quadratic
Equation Problem . 58

5.2 Graphical representation of fault detection of test cases for Simple
Calculator Problem . 59

5.3 Graphical representation of fault detection of test cases for Triangle
Problem . 60

5.4 Graphical Representation of APFD 60

xii

List of Tables

2.1 Overview of State of the art (Fault Based Approaches) 23

2.2 Overview of State of the art (Coverage Based) 25

3.1 Mapping of the test case to entities covered and path complexity . . 40

5.1 Subject Programs summary . 52

5.2 Subject Programs’ Priority Lists . 53

5.3 Subject Programs‘ APFD . 57

xiii

List of Abbreviations

SDLC Software Development Life Cycle

NIST National Institute for Standards and Technology

SQA Software Quality Assurance

APFD Average Percentage of Faults Detected

LoC Lines of Code

FP Function Point

xiv

Chapter 1

Introduction

Software testing can be defined as a group of activities performed to evaluate some

aspect of a piece of software[1]. The process of software testing is carried out for

quality evaluation of software under test and to make the software product better.

The major objective of software testing is to find out errors in program under

test. Moreover, it ensures that the requirements of the customer(s) are fulfilled by

the software under test. Software testing is considered an expensive and critically

important phase in process of software development [2]. Testing ensures the quality

and correctness of software. Testing should utilize minimum resources to reduce

the testing cost as design and development phase already consume many resources

[3]. Testing is performed in almost every phase of Software Development Life

Cycle (SDLC). According to the report of “National Institute for Standards and

Technology (NIST)”, almost $60 billion per year are utilized on software testing by

US economy[4]. In 2016, the cost of testing jumped to $1.1 trillion per annum [5].

Some effective testing approach may decrease the cost of testing to approximately

$22 billion. Therefore advanced software testing is required to minimize the cost

of software testing process. Software may contain different kinds of errors which

include design error, input error, hardware error, statement error, specification

error etc. Different testing types are used to identify and fix these errors [6].

There are chances of fault occurrence during any stage of development. Errors

or faults are required to be discovered and removed timely so that they may not

1

Introduction 2

further be transmitted to the next phases of software development [7]. Testing

identifies the errors in the software under test but it does not guarantee that the

software is error free[8].

Software testing holds the most significant importance among all phases of SQA

(Software Quality Assurance). On each modification of software, new test suites

are generated to test the modified piece of code. Each modification increases

the size of test suite[9]. Maintenance is one of the most costly phases of Sys-

tem Development Life Cycle(SDLC). During this phase, software undergoes many

modifications and is updated continuously. The modified software needs to be

retested to identify and fix the faults in software introduced during modification

process. Thus the maximum cost of maintenance phase is consumed on regression

testing[10].

1.1 Regression Testing

Whenever modifications are made to the software, it needs to be retested to ensure

that the previous functionality of the software is not affected by the change. This

type of testing is called regression testing (RT). Basically, the regression testing

shows the verification of modified software[11]. Regression testing is a costly pro-

cess which needs to be performed frequently in order to validate the correctness of

the modified software after each modification [12]. Regression testing ensures that

the new changes in the software do not affect the functionality of the present part

of the software. Regression testing might begin in development phase after detect-

ing errors and their correction by reusing the existing test cases. Modifications in

the software can occur at maintenance phase when the software is updated, re-

vised or improved. There are two types of modifications: ‘Corrective Maintenance’

and ‘Adaptive and Progressive maintenance’. In corrective maintenance, specifi-

cations of the system are not changed. Adaptive and progressive maintenance

involves changes in specifications. On the basis of maintenance, regression testing

falls in two categories: Corrective Regression Testing and Progressive regression

Introduction 3

testing. Corrective regression testing is carried out when software specifications

remain unchanged where as Progressive regression testing is carried out when mod-

ifications effect the software specifications with addition of new features [13].After

modifying the software, there are five classes of test cases; Reusable, re-testable,

obsolete test cases which already exist in test plan T and two classes of test cases

i.e., New structural and New Specification, are generated after modifying the soft-

ware for regression testing. Reusable test cases test the part of the program which

remained unchanged, re-testable test cases evaluate the part of software which

undergoes some modifications or changes; whereas, obsolete test cases are those

which cannot be used any more due to following reasons:

1. They do not test anymore, what they were intended to test.

2. Due to modification, input/output relation no more exists.

3. Modification may result in faults and structural test cases no more provide

required structural coverage.

New structural and new specification test cases are used to test the modified

constructs and changed specifications respectively [14]. Whenever the software is

modified, it needs o be tested again to check if the software performs as desired.

Regression testing is very expensive process, since it might be costly to run the

complete test suite. The most suitable approach, called retest-all, is to run the

complete test suite. The expansion of software results in increase in size of test

suite; therefore, it becomes difficult to execute the complete test suite. Need of

the hour is to take this problem under consideration to reduce the efforts involved

in performing regression testing [13].

To lower the cost of regression testing, software testers choose test suite using

certain Regression testing techniques. See Figure 1.1

Introduction 4

Figure 1.1: Regression Testing Techniques

1.1.1 Test Suite Minimization

Test suite minimization technique reduces the size of a test suite by removing re-

dundant test cases from the test suite. This technique removes the test cases which

cover the same piece of code. The minimal hitting set stores the selected test cases.

[15]. To generate minimal hitting set is NP-Complete problem which has exponen-

tial time complexity. Many approaches have been proposed by researchers to solve

the minimal hitting set problem [16–18][19]. Different coverage criteria are used

for minimization and the test cases that meet the coverage criteria are selected and

remaining test cases are discarded [13]. Test suit minimization approach selects

the test cases which cover the part of software which undergoes some change, thus

reducing or minimizing the overall test suite [12]. This technique may result in

elimination of some useful test cases.

Introduction 5

1.1.2 Regression Test Selection (RTS)

In this technique we find the modified part of the system and parts affected by

modification, then choose the test cases covering the modified sections of the sys-

tem and discard the remaining test cases [13]. Only the most relevant test cases

are selected for execution. The modification can influence the performance of the

complete software. Thus, execution of selected tests only may not guarantee that

all faults have been detected.

1.1.3 Test Case Prioritization

In Test case prioritization technique, the test cases are ordered in such a way that

the important test cases are placed first in prioritized list. The main objective of

prioritization is to improve the rate of fault detection and minimize the regres-

sion testing cost[13]. As the selected subset of test suite might be too large to

be executed fully and certain time and resources constraints make it difficult to

execute the complete test suite. Moreover, if testers do not want to eliminate the

relevant test cases, they focus on ordering the test cases in a prioritized sequence

so that the test cases with higher priority are executed prior in regression testing.

In prioritization process, no test case are removed or eliminated, rather it arranges

test cases based on certain criteria.

Hence the faults in software under test can be detected earlier which reduces

the time and cost of regression testing [20]. Test case prioritization detects a large

number of faults by executing only few test cases. The priority list is used to decide

when to stop the process of regression testing. Moreover, test case prioritization

ensures that if the testing process is halted prematurely then the test cases with

higher priority are executed earlier [13]. Test case prioritization was initialy of

all introduced by Wong et al., [21] and applied on selected test suite which was

selected by RTS technique. Harrold [22] and Rothermel et al., [23] extended this

concept and presented it in a more concise manner.

Introduction 6

Test case prioritization can be used in combination with regression test selection

and test case minimization. In such case, prioritization is applied on a selected or

minimized subset of test suite [24].

Formally, test case prioritization can be defined as:

Definition: The Test Case Prioritization Problem:

Given: A test suite ‘T’ initially designed for original program P; the set of per-

mutations of T, PT; and f: PT →R , a function from PT to the real numbers.

Problem: To find T’ ∈ PT such that (∀T“)(T”∈PT) (T“ 6=T’) [f(T’) ≥f(T”)]

1.2 Prioritization Criteria

The fault detection rate in regression testing is affected by the order in which

test cases are executed. This detection is actually the early detection of faults in

testing processing [20]. Due to limited time and resources, software testers use a

priority list of test cases to decide when to halt the process of testing. Priority list

increases the rate of fault detection and debugging at early stages. Moreover; if

the testing process is halted due to any reason, it ensures that the important test

cases with higher priorities have been executed first which increases the reliability

of testing process. [20]. Different prioritization techniques are available including

white box and black box techniques. These techniques enable testers to assign

priorities to test cases. Prioritization techniques may use one or more than one

criteria. Any prioritization criterion assigns the award values to test cases. These

values are used for prioritizing the test cases. The test case with higher award

value is assigned higher priority and is listed earlier in prioritized list. In other

words, based on the selected criteria, test cases with low cost are assigned higher

priority. Prioritization techniques can use:

1. The code coverage factor like, statements, branches, spanning entities or

functions for assigning award values to test cases [24].

Introduction 7

2. Some techniques use the information of specifications, requirements or inter-

action of different events for ordering the test cases [25].

All the prioritization criteria generate a prioritized list of test cases. The prioritized

list is then evaluated. The basic parameter to evaluate a prioritized list is fault

detection rate i.e., Average Percentage of Faults Detected (APFD). It is a measure

to check how early a particular test suite detects faults by using the particular

prioritized list of test cases in test suite [23]. APFD is calculated using following

formula:

APFD = 1− (TF1 + · · ·TFm)/nm + 1/2n (1.1)

Where T is the test suite with n test cases and F is the set of m faults identified

by T. For ordering T’, TFi represents the order of the first test case that exposes

the ith fault Fi.

Test case case prioritization approaches are classified into two broad categories:

Black box prioritization and white box prioritization techniques.

1.2.1 Black Box Proritization Approaches

Black box techniques are based on specifications and requirements. They do not

need the access to source code [26]. Thus, they have no knowledge of structure

of the software. Some common black box prioritization techniques are briefly

discussed below.

1.2.1.1 Interaction Coverage Based Prioritization:

In event driven systems, the number of event combinations and sequence grow

exponentially with the number of events. Therefore; in event driven systems, it

is very difficult to manage test suite. Bryce and Memon [27]in 2007 proposed

Introduction 8

a testing technique which extends the t-way software interaction over sequences

of events. The proposed algorithm by Bryce and Memon [27] greedily selects a

test case covering the maximum number of t-tuples of event interactions between

unique windows which remained uncovered previously. In case of more than one

test cases covering same number of event interactions, the tie is broken randomly.

1.2.1.2 Requirements Clustering Based Prioritization:

Software under test may contain many requirements of high priority but all of

the requirements are not equally important. A new approach was introduced by

Arafeen and Do [28] which uses requirements information to prioritize the test

cases. Text mining approach is used to extract words by their proposed approach.

On the basis of extracted words, requirements are clustered and later on test cases

are prioritized in these requirement clusters. Code complexity is used to prioritize

test cases within clusters.

1.2.1.3 History Based Test Case Prioritization:

In black box testing environment, source code of the program is not available.

Only limited information is available to prioritize the test cases. In 2007, a black

box technique was introduced by Qu et al., [29] for test case prioritization. Their

proposed approach uses the run-time and test history information. History infor-

mation is used to initialize the test suite. Test case relation matrix R is formed

by using available information. R matrix indicates the fault detection relationship

of test cases. Test cases are ordered using test case relation matrix and run time

information.

1.2.1.4 Hierarchical System Test Case Prioritization Technique:

Many approaches have been introduced to prioritize test cases on requirements

basis. However; along with requirements, many other factors like implementation

Introduction 9

and test case complexity also contribute in test case prioritization. In 2013 Kumar

et al., [30] introduced a hierarchical test case prioritization approach based on re-

quirements. They performed prioritization process at three levels. In first step, a

priority is assigned to each requirement on the basis of 12 different factors including

customer assigned priority, developer assigned priority, requirement volatility, fault

proneness, expected fault, implementation complexity, execution frequency, trace-

ability, show stopper requirement, penalty, cost and time. Customer, developer,

analyst and tester assign values to those requirement factors. After prioritizing all

of the requirements, a mapping between each requirement and its corresponding

modules is performed. In case of more than one modules corresponding to any re-

quirement, modules are prioritized using cyclomatic complexity. The last level of

prioritization process includes the test case prioritization. Test cases are mapped

to corresponding modules. In the last stage, test cases corresponding to modules

are then prioritized based on 4 factors including test impact, test case complexity,

requirement coverage and dependency.

1.2.2 White Box Prioritization Approaches

White box prioritization techniques are based on source code. The testers need

access to the actual source code of the program. Access to the actual code can

reveal the code coverage and it can help in early detection of faults in subject

program [25]. Different white box techniques are defined below.

1.2.2.1 History Based Prioritization:

In 2002 Kim and Porter [12] proposed history based prioritization approach to

prioritize test cases. In this approach, the information is used which is obtained

from previous execution cycles of software as criteria for selection of subset of test

suite that must be executed for a modified software. RTS technique was applied

to test suite T that produced T’ in the 1st step. After that in 2nd step, every

test in T’ was assigned selection probability. In 3rd step, probabilities assigned in

Introduction 10

previous step were used to select and execute a test case. The final step includes

the repetition of 3rd step until the testing time is finished.

1.2.2.2 Coverage Based Prioritization Techniques:

Rothermel et al., [24] introduced two white box prioritization strategies: “Total”

and “Additional” which include following techniques:

1. Total Function Coverage Prioritization: In this technique, the criterion

used to prioritize test cases is total number of functions covered. Test case

which achieves coverage of the maximum number of functions is assigned

the highest priority. In case of more than one test cases covering the same

number of functions, the test cases are selected randomly.

2. Additional Function Coverage Prioritization: This approach assigns

priorities to the test cases on the basis of uncovered functions. It selects a test

case which achieves coverage of maximum number of functions iteratively,

then updates the coverage information of un-prioritized test cases to indicate

their coverage of functions which were left uncovered. The process is repeated

until no function remains uncovered. If multiple test cases cover the same

number of functions, then random ordering is applied.

3. Total Statement Coverage Prioritization: The total number of state-

ments covered is used as criterion to order test cases. Test case covering

the maximum number of statements is given the highest priority. If same

number of statements is covered by multiple test cases then they are ordered

randomly.

4. Additional Statement Coverage Prioritization: It works the same as

additional function coverage but instead of using function, the prioritization

is done on the basis of statements remained uncovered by previous selection.

5. Total Branch Coverage Prioritization: Test cases are assigned priori-

ties using the maximum number of branches covered. The branch coverage

Introduction 11

is defined as coverage of each possible outcome (true and false) of the condi-

tion. If the function does not contain any branch, then the function itself is

considered as a branch entry and branch is said to be covered by each test

case that invokes that function.

6. Additional Branch Coverage Prioritization: It is same as additional

statement coverage prioritization but the prioritization is done using uncov-

ered branches.

1.3 Prioritization Algorithms

Regression testing is very important and a lot of research has been done on differ-

ent approaches of prioritization. Many prioritization algorithms have been intro-

duced which use different criteria to prioritize test cases. Few commonly known

prioritization algorithms are discussed below.

1.3.1 Greedy Algorithm

Greedy algorithm is a straight forward approach of prioritization. The test cases

are assigned priority on the basis of total number of entities covered. Test case

covering the maximum number of entities is assigned the highest priority in or-

dered list and those covering lesser number of entities are assigned lower priorities

according to the number of covered entities [20].

1.3.2 Additional Greedy Algorithm

Additional greedy algorithm assigns priorities to the entities which remain uncov-

ered by previously selected test case(s). Higher priority is assigned to the test case

which covers maximum number of entities not covered so far [20].

Introduction 12

1.3.3 Genetic Algorithm

Genetic algorithm selects random population from a given set. The population is

replaced by a new population using fitness function which is based on total code

coverage [31].

1.3.4 Combined Genetic and Simulated Annealing Algo-

rithm

Combined Genetic and Simulated Annealing Algorithm is combination of two al-

gorithms i.e., Genetic Algorithm(GA) and Stimulated Annealing (SA). Thus, it is

also called GASA. It takes the advantages of both of the algorithms. The quick

processing quality of GA and effective solution feature of SA is combinely used to

prioritize test cases. In the first step, solution is generated using GA, Later on, it

is refined and made more effective by using SA [32].

Algorithms, discussed above, use some coverage data for assigning priorities to test

cases either by using total strategy or additional strategy. The algorithm assigns

highest priority to the test case covering maximum entities.

1.3.5 Ant Colony Optimization

Ant Colony Optimization is an optimal path searching approach based on the

natural behavior of ants searching for food. During the search of food, the ant

leaves behind a chemical substance called ’pheromone’. The ants following that

path, smell the odor of chemical traces left behind by the leading ant and thus

follow the same path. The most optimal path is found out by teamwork and

evaporation process of ’pheromone’ [33].

Path Prioritization Ant Colony Optimization (PP-ACO) is an algorithm which

follows the Ants’ foraging behavior to generate optimized path sequence of decision

to decision (DD) paths of a graph. In path testing, the said algorithm takes the

Introduction 13

coverage of all paths and gives the most suitable and optimal path sequences.

The sequences are then prioritized according to the strength of paths. PP-ACO

algorithm uses forward move of ant from source (i.e. Nest) to destination (i.e.

Food) and vice versa in backward move. Ants take probabilistic decisions in

forward PP-ACO for their next move among the available nodes. Ants keep the

track of edges visited during forward movement and the cost of visiting each node

is recorded. The solution cost is built according to the weight (cost) of visiting

each node [34].

1.4 Problem Statement

Most of the existing prioritization techniques are based on code coverage [35].

Coverage alone cannot improve the effectiveness of fault detection rate of test

suite [36]. In such techniques, different coverage criteria are used to prioritize

test cases to improve rate of fault detection. The techniques using structural

complexity of the software can detect faults faster as compare to code coverage

based approaches [37]. Coverage based approaches consider entities covered by

the test cases in software under test.

While using coverage criteria, the test cases with greater coverage are given higher

priorities, whereas, there might be higher complexity value of test cases with

smaller coverage. The program complexity can affect the fault detection rate.

Thus, in this thesis two parameters for test case prioritization; the structural com-

plexity and branch coverage are taken into account to improve the fault detection

rate of test suite.

1.5 Research Questions

In this research work, we have used path complexity based on computational

complexity by Halstead’s Metric as a criterion to generate a priority list of test

Introduction 14

cases to improve rate of fault detection. However, the following questions are taken

into account:

RQ. 1: What are the gaps in existing white box prioritization techniques?

To answer this research question, a literature survey is conducted through which

we have identified the gaps in existing and most commonly used techniques.

RQ. 2: How well does the proposed prioritization technique compare with the

well studied white box prioritization techniques with respect to fault detection

rate?

Our research is focused on to find out answer to the above mentioned research

questions with reference to the prioritization algorithm.

1.6 Research Methodology

1. First of all we have done literature review to identify the most relevant and

most commonly used white box prioritization techniques. After studying

various prioritization techniques, we have reached the conclusion that these

techniques are coverage based. There are only a few fault proneness based

prioritization techniques and very few techniques have considered the struc-

tural complexity of the code in prioritization [37].

2. To overcome the gaps in existing techniques, we have proposed a new ap-

proach that will assign priority to each test case on the basis of its path

complexity and branch coverage.

3. The implementation of our approach has been performed in following steps:

(a) In the first phase, we collected all data including subject programs.

After collecting the data, our code analyze extracts the path executed

by each test case.

(b) The extracted path is passed to Halstead’s function to calculate the

path complexity (i.e. error proneness) of test cases for the complete

Introduction 15

test suite of the respective programs. The Halstead’s metric calculates

the complexity of entire program. We have made some modifications in

implementation of Halstead metric in such a way that it calculates the

complexity of extracted path(i.e. piece of code) rather than complete

program.

(c) The extracted path is also passed to our coverage analyzer which ana-

lyzes the extracted path and traces the branches covered by each test

case.

(d) In the next step, we generate the prioritized list of test cases based on

path complexity by assigning the higher priority to the test case with

higher path complexity. The tie among test cases is broken by using

branch coverage as secondary criterion.

(e) Next stage is about generating another prioritized list for same pro-

gram and its corresponding set of test cases by using additional branch

coverage technique, since additional branch coverage techniques is con-

sidered as one of the strongest approach in order to improve APFD of

test suite [25]. Additional Branch coverage is considered one of the best

prioritization method [38]. Therefore, we have used ’Additional Branch

Coverage’ white box technique for comparison and evaluation of our

proposed approach.

4. After creating both prioritized lists (additional branch coverage based and

path complexity combined with branch coverage), we perform a comparison

between both techniques. We have used the Average Percentage of Faults

Detected (APFD) as the main parameter for comparison.

1.7 Thesis Organization

Rest of the thesis is organized as follows:

Introduction 16

The Chapter 2 is about literature review. We have discussed different research

studies about fault based prioritization techniques and coverage based prioritiza-

tion techniques. Chapter 3 is based on proposed solution. In Chapter 4, implemen-

tation details are presented. Chapter 5 is about results and discussions. Chapter

6 is about conclusion we have made after comparing our proposed approach with

existing approach. Future work has also been discussed in Chapter 6 i.e., how this

work can further be extended.

Chapter 2

Literature Review

Test case prioritization orders test cases on the basis of some prioritization crite-

rion. The ordered list provides maximum benefits to software testers. Each test

case is assigned a priority. Software testers make sure that the test cases with

higher priorities run earlier during testing process [13]. The order of test cases

in which they are executed has great influence on test suite’s rate of fault detec-

tion [20]. In case of limited availability of resources, software testers use priority

list to decide when to stop the testing process by executing few top priority test

cases rather than executing the complete test suite. Prioritized list increases the

probability that if the testing process is halted due to some constraints, the most

important test cases with higher priorities have been executed. It enables debug-

ging at early stages of testing and increases the rate of fault detection as well

[20].

The test case prioritization techniques have been separated into White box and

Black box prioritization. Test case prioritization techniques prioritize test cases

in such a way that it helps to improve the rate of fault detection and meet the

goals earlier. Different prioritization techniques use different criteria to improve

the process of regression testing. The test cases are given priority on the basis of

selected criteria. Test cases with higher priority are executed earlier, increasing

the rate of fault detection and debugging at early stages of testing.

17

Literature Review 18

Two main white box prioritization strategies were introduced by Elbaum et al.,

[20] and Elbaum et al., [39]: “Total” and “Additional”, which have already been

discussed in Chapter 1.

Depending on these strategies, prioritization approach can be single criterion based

or multicriteria based. Prioritization techniques using single criterion, order test

cases on the basis of a single criterion. Whereas; multicriteria based prioritization

approaches use more than one criterion to prioritize test cases. The criteria can

be white box or black box.

Black box prioritization techniques have been less well studied as compared to

white box techniques; however recent advances have developed some black box

prioritization techniques which focus on promoting diversity among test cases.

Although, black box prioritization techniques are highly competitive but they are

not commonly used given that very less information is provided, i.e. no structural

information is provided to use as prioritization base [25].

White box criteria consider elements of source code, e.g., statements, branches,

functions etc for assigning priorities to test cases. In white box prioritization

techniques, code complexity has great importance. There are different software

complexity metrics to measure the complexity of code. Some commonly known

complexity metrics will be discussed in Chapter 3. The measure of the cost of

software development, maintenance and usage is known as Software Complexity

Metric [40]. Software complexity metrics are closely related to error distribution in

subject code [41]. Many testers use code coverage for prioritization. Only few re-

searchers have considered code complexity for test case prioritization [37]. Chances

of fault occurrence are higher in complex code as compare to simple statements.

Code coverage based approaches assume that there are more chances of fault oc-

currence in the test case covering maximum elements [36]. Whereas; complexity

based approaches assume that fault occurrence rate is higher in complex piece of

code [37]. Since large software systems can be used more than 15 years, computer

Literature Review 19

scientists and researchers have put great efforts to measure the complexity of soft-

ware in previous several years. Some estimates show that 40 to 70% expenses are

consumed on maintenance of existing software systems [42].

Focus of our research is on prioritization criteria. In this chapter, different fault

based and code coverage based prioritization techniques are being discussed.

2.1 Fault Based Prioritization Techniques

Test case prioritization techniques help in improving the rate fault detection in

regression testing. In most of the existing techniques, it is assumed that all faults

have equal severity; however, it is not practically correct. Zengkai et al.,[37] pro-

posed an approach on the basis of program structure analysis. It is claimed by

the authors that their proposed approach detects severe faults earlier. Moreover,

the technique can be applied both for regression testing and non –regression test-

ing. The main idea of their approach is to compute the testing importance of

each module. Testing importance of module considers two factors; fault proneness

and importance of module from system perspective and user perspective. Test

cases are prioritized on the basis of testing importance of module. To evaluate

the effectiveness of proposed approach, authors implemented it using Apros, a test

case prioritization tool. Authors also introduced a metric APMC (Average of the

Percentage of fault-affected Modules Cleared per test case) which measures the ef-

fectiveness of various prioritization techniques. Improved APFDC metric has been

proposed, which takes fault severity and test cost in account, is used to compute

the effectiveness of proposed approach based on module level complexity.

Prakash and Rangaswamy [43] proposed a modular based test case prioritization

technique. The proposed technique performs regression testing in two stages. First

stage comprises of the prioritization of test cases based on modules coverage. In

second stage, modular based ordered test suites are merged together for further

prioritization. The study was based on fault coverage. This empirical study used

three standard applications to validate the proposed approach. The algorithm

Literature Review 20

was compared with Greedy Algorithm and Additional Greedy Algorithm. APFD

values show that modular based prioritization based approach is better than overall

program test case prioritization. However, it considers fault coverage only whereas

the nature of fault has not been taken in account.

Ahmed et al.,[44] proposed an approach of test case prioritization in which Genetic

Algorithm with Multi-Criteria fitness Function is used. Fitness function considers

weight of test cases, fault severity, fault rates and number of structural coverage

items covered by each test case. Their proposed technique used total strategy

to prioritize test cases. Authors have compared their approach with Condition

Coverage, Multiple Condition Coverage and Statement Coverage using standard

metric of APFD.

Tyagi and Malhotra [45] proposed an approach for test case prioritization on the

basis of three factors, i.e., rate of fault detection, percentage of fault detected and

risk detection ability. Authors have made comparison of proposed approach with

different prioritization techniques such as un-prioritized test suite, reverse priori-

tization, random prioritization. The results were compared with those of Kavitha

and Sureshkumar [46]. The approach proposed by Kavitha and Sureshkumar [46]

detects severe faults earlier. The comparison of technique proposed by Kavitha and

Sureshkumar [46] was made with un-prioritized test suite on the basis of APFD.

The comparison of technique proposed by Tyagi and Malhotra, [45] with that of

R. Kavitha and N. Sureshkumar[46] was made on the basis of APFD (Average

Percentage of Faults Detected) value for each prioritization technique. Results

show that the proposed technique outperforms other techniques compared with.

Authors are simply using the values of three factors mentioned earlier. The fault

and coverage data was taken from initial testing of software.

Only based on coverage criteria; when there is tie between multiple test cases, ran-

dom test selection is made which may lead to decrease the rate of fault detection.

It also leads to increase the time and budget index. Therefore, Wang et al.,[47]

used fault severity as another criterion for test case prioritization. On the basis of

severity of faults’ effect on the software, faults are divided into four types; fatal,

Literature Review 21

serious, general and minor faults. Fault severity ranges from 20 to 23 (from minor

to fatal faults). On the basis of fault severity, importance of test case is calculated

and finally test cases are prioritized. Though authors have effectively described

their approach; however, random selection of test cases with equal fault severity

may cause important test cases to be prioritized at the end of the list rather than

early execution.

Alves et al., [48] proposed a Refactoring based approach (RBA) to improve test

case prioritization. Authors used five different refactoring faults models (RFMs)

i.e., rename method, pull up field, move method, pull up method and add param-

eter. Authors created five versions of programs under test by seeding refactoring

faults in programs. Authors gained APFD of 92% by RBA. The limitation of the

proposed approach was, it required execution of complete test suite at least once

which is very costly. Moreover, it deals with refactoring based modifications (i.e.

The modifications which do not affect the behavior of the software.)

Tahvili et al., [49] used multi-criteria decision making technique TOPSIS in com-

bination with fuzzy logic to prioritize test case. Authors used fault detection

probability and execution time for prioritization. Authors used fault failure rate

as a measure to detect the potential of test cases in test suite to detect faults.

The probability of fault detection and execution time of test cases are provided by

the testers which may prone to human error, thus this approach may not provide

desired outcome.

2.2 Coverage Based Prioritization Approaches

Hla et al., [50] proposed a multiple criteria based prioritization approach using

three criteria; Statement, Branch, Function coverage. This empirical study uses

the PSO (Particle Swarm Optimization) algorithm for test case prioritization.

Particle Swarm Optimization algorithm is a multi-object optimization technique

used to set the ordering of objects. The main objective of this approach is to

order the test cases to achieve high rate of fault detection. The empirical results

Literature Review 22

of this study show that Particle Swarm Optimization improves the performance

of regression testing.

Kaur et al., [51] proposed an approaches which uses more than one criterion to

generate a prioritized list of test cases. Authors used bank application for ex-

perimentation of their proposed approach. The main objective of the proposed

approach was to find out the effectiveness of prioritized and un-prioritized test

cases in terms of APFD (Average Percentage of Faults Detected), APSD (Average

Percentage of Statement Detection) , APBD (Average Percentage of Branch De-

tection) and APPD (Average Percentage of Path Detection). The results of this

study show that proposed method is outperforms the existing method.

Henard et al., [25] presented a comprehensive comparison of different white box

strategies and newly introduced black box approaches. They found a little differ-

ence approximately 4% in performance of white box and black box approaches.

They found hat the ’additional’ coverage based approaches outperform ’total’ cov-

erage based approaches. Authors used 5 different open source programs and six

versions of each program to perform and evaluate their proposed approach. They

used the initial version to generate code coverage information and test suite was

prioritized. Later 5 versions were used to execute the prioritized test suite and to

find out the average percentage of fault detection. The results of their compari-

son of 10 white box approaches to 10 black box approaches show that white box

approaches outperform black box approaches.

2.3 Analysis and Comparison

Very few studies have considered the structural complexity of the software under

test [37]. The techniques using fault severity has not clearly discussed how to

categorize faults or how to calculate fault severity [44].

The structural complexity in combination with coverage criteria has rarely been

considered. The rate of fault detection is affected by structural complexity of

the software [52]. The test cases giving larger code coverage may have smaller

complexity as compare to those with smaller coverage. Thus, overlooking the

Literature Review 23

structural complexity may decrease the rate of fault detection which results in

high cost of regression testing.

The studies which are considering multi-criteria based on code coverage, they

overlook the structural complexity of the code. Such studies consider the code

coverage, they do not consider the fault proneness of the code covered. Rather

than an assumption is made that the test cases covering maximum entities can

detect maximum number of faults, which is not always correct.

Table 2.1 provides an overview of some literature with respect to fault based

prioritization techniques.

Table 2.1: Overview of State of the art (Fault Based Approaches)

Year Author(s)
Prioritization

Criteria
Algorithm APFD Limitations

2008
Zengkai Ma and

Jianjun

Zhao[37]

Fault severity

Program

structure

analysis.

N/A •Module level
approach

•Needs info from
system perspective

as well as user
perspective so
difficult to find
module imp.

fault proned.

2012

N. Prakash and
T.R.

Rangaswamy

[43]

Module

coverage, fault

coverage

Modular

based test

case prioriti-

zation

Greedy
Algo:

83.33%,

Add.

Greedy

Algo:

86.51%

New Algo:

86.51%.

•Module based
• Considers fault

coverage only

• Does not consider

nature of fault

2012

Amr Abdel
Fatah Ahmed,
Dr.Mohamed

Sha-
heen,Dr.Essam

Kosba

[44]

Control-flow

coverage,

Statement

coverage,

Fault severity

Genetic

Algorithm
86.60%

• Uses existing
coverage and fault

data

•Does not consider

fault proneness or

path complexity of

test cases

Literature Review 24

Year Author(s)
Criteria

Covered
Algorithm APFD Limitations

2015

Manika Tyagi
and Sona
Malhotra

[45]

rate of fault

detection,

percentage of

fault

detection, risk

detection

Greedy

Algorithm
85.5% • Values from

original software
testing are used

2015

Yiting Wang,
Xiaomin Zhao
and Xiaoming

Ding

[47]

Additional

statement

coverage, fault

severity.

Optimized

Results
77.5% • Random selection

of test cases with

equal fault severity

may cause important

test cases to be

prioritized at the

end of the list rather

than early execution.

2016

Everton L. G.

Alves, Patrcia

D. L. Machado,

Tiago Massoni,

Miryung Kim

[48]

Faults

coverage
RBA 92% • Deals with

refactoring based
modifications

only

2016

Tahvili, S.,

Afzal, W.,

Saadatmand,

M., Bohlin, M.,

Sundmark, D.

and Larsson, S.,

[49]

Fault

detection

probability,

execution

time, or

complexity

TOPSIS N/A • Testers’
provided

execution time
may affect the
fault detection

rate.

Table 2.2 provides an overview of some literature with respect to coverage based

prioritization techniques.

Literature Review 25

Table 2.2: Overview of State of the art (Coverage Based)

Year Author(s)
prioritization

Criteria
Algorithm APFD Limitations

2008

Khin Haymar

Saw

Hla,YoungSik

Choi,Jong Sou

Park [50]

Statement

coverage,

Branch

coverage,

Function

coverage

PSO(Particle

Swarm Opti-

mization)

N/A • Test cases with
higher coverage

may detect lesser
faults

2014

Navleen Kaur,
Manish

Mahajan

[51]

Statement

coverage,

Fault

coverage, Path

coverage,

Branch

coverage

Optimized

Results
84.87% • Not necessarily,

the test cases with

high coverage have

higher path

complexity

2016

Henard C.,
Papadakis

M., Harman
M., Jia Y.,
Traon Y.L.

[25]

TS: Total
Statement,

AS:Additional
Statement,
TB: Total

Branch, AB:
Ad. Branch,

AM: Ad.
Method

White Box
Ap-

proaches

TS:70%,
AS:87%,
TB:70% ,
AB:87% ,
TM: 70%

•Test cases with
higher coverage
may not detect

higher number of
faults

2.4 Gap Analysis

As we have studied here the literature of two different types of prioritization ap-

proaches i.e., fault based approaches and coverage based approaches. After the

thorough study of above mentioned approaches, we have identified the following

gaps in existing white box prioritization approaches.

In fault based prioritization approaches, the data of faults and test cases is taken

from testing of original software. When software goes under some modification,

new faults possibly be introduced during modification. The modification of a

Literature Review 26

particular part of the software may also affect the other parts of software. There-

fore; in regression testing, the previous data of faults may not be useful due the

following reasons:

• The faults occurred in initial (original) version are already been fixed so

possibly, those faults may not occur again.

• Modification may introduce new faults in software. Thus, previous fault data

becomes invalid for the testing of modified software.

In fault based approaches, the test cases are assigned priority on the basis of their

potential to detect fault on the basis of availability of fault data by testing of

original software. Those prioritized test cases may not work well for the modified

software due to possibility of occurrence of new faults.

In coverage based approaches, only the number of entities (such as statements,

branches, modules) covered are considered to prioritize test cases. No fault prone-

ness is considered. As, there is a possibility that a test case covering less number

of entities may be more vulnerable to faults due to some structural complexity and

vice versa. Moreover; modification may cause the change of number of statements

or branches in some cases. Thus the structure of the software can also affect the

rate of fault detection. If the structural complexity is combined with any one of

the coverage criteria for test case prioritization, it may prove a useful milestone in

regression testing.

Chapter 3

Proposed Approach

From state of the art, we have observed that the existing prioritization techniques

are either based upon coverage criteria or rate of fault severity. In case of coverage

criteria based techniques, there exists a possibility that the test cases providing

greater coverage are not structurally complex, but they are given higher priority

based on coverage, thus the test cases covering complex part of the program may

be given least priority. Another observation is that some existing techniques use

fault severity as a criterion for test case prioritization. In these approaches, it is

assumed that the data of fault coverage and fault severity already exists. There

are only few techniques which take the complexity of program under consideration.

Those techniques are based on modular level complexity. The techniques based on

the complexity of the path covered by each test case lead to higher fault detection

rate. We are going to propose test case prioritization approach based on path

complexity combined with branch coverage.

Due to the use of path complexity of test cases rather than coverage, it is likely that

path complexity based prioritization will produce better prioritization in terms of

APFD as compared to only coverage based prioritization techniques [52].

27

Proposed Approach 28

3.1 Code Complexity Metrics

Complexity metrics help to locate complex portion of the code. Since past several

years, computer scientists have been putting their efforts to measure the com-

plexity of computer program. Program maintenance is affected by complexity

therefore complexity measurement is of great significance in software maintenance

[42]. There are many metrics used to measure software complexity, e.g., Mc-

Cabe’s Cyclomatic complexity number, Halstead’s metric, Lines of code, Henry

and Kafura’s Information Flow Metric, McClure’s Control Flow Metric, Wood-

field’s Syntactic Interconnection Measure etc. Among these metrics, McCabe’s,

Lines of code and Halstead’s metrics are code metrics and the others are structure

metrics [53]. Software complexity is an important feature which has been broadly

discussed in literature. In software structure complexity measurement, Lines of

Code (LOC), McCabe’s Cyclomatic Complexity and Halstead’s Volume have been

commonly used [54].

3.1.1 Lines of Code Metric

The Lines of Code (LOC) metric was proposed around 1960. It was used for

economic, productivity and quality studies. The simplest way to quantify the

complexity of program is Lines of code. It literally counts the number of lines/text

in a file of code. It is easy to count and understand [55]. LOC does not take

intelligent content of the code into account. It characterizes only one aspect of

the code, i.e., the length only. The functionality or complexity of the code is not

taken into account. Moreover the complexity of the code may vary as different

programmer may write the same code in different number of lines. Someone may

write a very long and simple code and the same code may be implemented by

someone else in complex but less number of lines. Thus it cannot be considered

as a suitable measure of program complexity. Keeping above discussion in view,

we do not consider LOC suitable for our prioritization approach.

Proposed Approach 29

3.1.2 Function Point (FP) Analysis

Function point analysis is an approach introduced by Allan Albrecht (1979) [56]

to compute the size of a computerized business information system. The technical

complexity factor takes technical and other factors during development and pro-

cessing of information into account. Function point analysis was widely accepted

for measuring the size of functional units, system development and enhancement

[57]. The limitation of function point analysis is; it needs great effort to compute

and only trained people can use this. Moreover, it is highly correlated to Lines of

Code [58]. There exist no standards, only 35 different methods are there. Thus

FP is not feasible for modern type of systems. FP analysis requires high cost and

great effort to implement. It is time consuming method.

3.1.3 McCabe’s Cyclomatic Complexity

Thomas McCabe introduced cyclomatic complexity v(G) in 1976. This metric is

used to measure complexity of linearly-independent paths (control flow) of the

code [59]. V(G) is number of conditional branches.

V (G) = e–n + p (3.1)

Where

e: the number of edges,

n: the number of nodes and

p: connected components.

The program having sequential statements only will have v(G) = 1 because there

exists only one path. McCabe’s Cyclomatic Complexity v(G) does not consider

unconditional branches like break-statements, goto statements, return statements

etc. Although, these statements also increase the complexity of the code but

McCabe’s cyclomatic complexity metric overlooks these statements. McCabe’s

cyclomatic complexity is the measure of program’s control complexity, not the

Proposed Approach 30

data complexity. Moreover, same weight is assigned to nested and non-nested

loops whereas if there is increase in the nesting level, the complexity of the pro-

gram is also increased. The deeply nested structures are difficult and complex

to understand as compared to non-nested structures. Thus, McCabe’s cyclomatic

complexity metric is inadequate for measuring the complexity of the code [60].

Keeping these weaknesses of Cyclomatic complexity metric in view, we do not

consider it suitable for our complexity based prioritization approach.

3.1.4 Halstead’s Metric

Halstead’s metric is structural complexity based metric. It was proposed by Mau-

rice Halstead in his theory of software science [61]. Halstead’s metric interprets the

source code on the basis of tokens and classifies each token either as an operand or

an operator. Halstead’s metric measures following different properties of software:

n1: number of unique operators

n2: number of unique operands

N1: total occurrences of operators

N2: total occurrences of operands

All other measures of Halstead’s metric are based on these four quantities with

certain fixed formulas which will be explained later. In Halstead complexity metric,

following are the operators and operands.

3.1.4.1 Operands

Following entities are treated as operands in Halstead’s metric.

• All the identifiers are considered as operands in Halstead’s metric.

All the TYPENAME

Proposed Approach 31

TYPESPEC (Type specifiers): Keywords used to specify the type are also operands

e.g., char, long, int, float, bool, double, short, signed, unsigned, void etc.

CONSTANT: All the numeric, string or character constants.

3.1.4.2 Operators

Below are given operators of Halstead.

Storage class specifiers: All the keywords which are used to reserve storage space

are considered as operators, i.e., register, typedef, inline, auto, extern, virtual,

mutable etc.

Type qualifiers which qualify type like friend volatile, class etc.

Keywords: All other reserved words like if, else, enum, do, while, break, case,

default, switch, struct, sizeof, union, namespace, const, true, false etc.

All operators e.g., ! , !=, % , && , —— , () , *, *=, + , ++ , +=, , - , -- , -=

, >, / , /= , <, <=, =, == , > , >= , ?, [] , ˆ , ˆ= , { } etc In case of control

structures for(), if(), switch, while etc the colon and parentheses are treated as

part of the structure and counted together.

Halstead’s metric is program flow control based structure complexity metric, there-

fore, in this research; we are using Halstead’s metric to measure the structure com-

plexity of flow of test cases. The other measures of Halstead’s metric are given

below with their derivation formulas.

3.1.4.3 Size of The Vocabulary (n)

Program vocabulary is sum of total number of unique operators and total number

of unique operands.

Size of vocabulary: n = n1 + n2

where n1: number of unique operators

Proposed Approach 32

n2: number of unique operands

3.1.4.4 Program Length (Program Size N)

Program vocabulary is used to measure program length N by following formula:

program length: N = N1 + N2

where N1: total number of operators

N2: total number of operands

Program length is also known as size of program. A very straight forward approach

is to use program size for test case prioritization. As it is assumed that larger is the

size, there is large number of faults or problems in the program. However, there

are different opinions about considering the lines of code either all the statements

including declaration statements or only executing statement should be considered.

Size of the program measure can be used for test case prioritization.

3.1.4.5 Volume of Program (V)

Program volume is actually the information content of the software. It represents

the space required to store the program. This parameter depends on specific algo-

rithm implementation. Halstead computes program volume by following formula.

V olume = Nlog2n (3.2)

Halstead’s volume V is the size of implementation of an algorithm. It uses program

vocabulary and size of the program.

Proposed Approach 33

3.1.4.6 Difficulty Level (D)

Difficulty is also known as error proneness of the program. Difficulty is propor-

tional to the ratio of total number of operands to the total number of unique

operands.

DifficultyD = (n1/2) ∗ (N2/n2) (3.3)

It means that if same operands are used multiple times in program, the program

is more prone to faults. This is very important measure of Halstead’s metric. In

our research, we are going to use this measure i.e., error proneness or difficulty for

test case prioritization.

3.1.4.7 Program Level (L)

Halstead’s metric also measures the program level (L).

L = 1/D (3.4)

Program level (L) is the inverse of fault proneness. It implies that a low level

program is more vulnerable to faults than a high level program.

3.1.4.8 Effort to Implement (E)

Halstead’s metric also measures effort (amount of mental activity) to implement

and comprehend. Effort is considered good for software complexity measure. This

measure is preferred in software maintenance. This measure can be used for test

case prioritization as well. Effort is measured using following formula.

programmingeffort : E = V ∗D (3.5)

Proposed Approach 34

3.1.4.9 Time to Implement (T)

Halstead’s metric measures the time to implement the program. The time is

directly proportional to effort. It is measured in seconds. Dividing the effort by

18 gives the approximate time to implement the program. This formula gives the

predicted time to develop the software.

Estimatedprogrammingtime : T = E/18 (3.6)

Where 18 is constant which is Stroud number S.

A psychologist John Stroud developed the concept of processing rate of human

brain.

By him,a moment was defined as: “the time required by the human brain to carry

out the most elementary decision”.

Stroud number S = 18 moments / second

3.1.4.10 Estimated Program Length

This is the predicted program length based on vocabulary. It is also a result of

Halstead metric.

Estimate of N is:

N ’ = n1log2n1 + n2log2n2 (3.7)

3.1.4.11 Number of Delivered Bugs (B)

The overall complexity of the program is correlated with the Number of delivered

bugs (B).

B =
(E2

3)

3000
(3.8)

Proposed Approach 35

It is an important measure for dynamic testing. The number of errors in the source

code is approximately equal to the number of bugs delivered in the source code.

3.1.5 Why Halstead’s Metric?

As in the previous discussion, it is observed that Halstead’s metric is very com-

prehensive metric to measure different aspects of software. Halstead’s metric does

not require in-depth analysis of the code. It can measure the overall quality of

the code. It is very simple to compute and can be used for any programming

language[62].

In LOC, merely the number of lines of the code is taken in account. The LOC may

vary depending upon the language used for writing the code. In case of program-

ming languages allowing multiple statements per line and similar cases are not

considered by LOC metric[62]. Whereas, in McCabe’s complexity metric, it ig-

nores the unconditional transfer of control statements like goto, break statements

and return statements which also have considerable influence on complexity of the

program [60]. FPA is also difficult and costly method to implement [58]. There-

fore, Halstead’s complexity Metric is better for measuring the software complexity.

Keeping these important characteristics of Halstead’s metric, we are using it in

our research. The difficulty D (Error proneness) is used in our thesis to prioritize

test cases.

In this research work, path complexity for each test case is calculated using Hal-

stead function of our proposed approach. Basically, Halstead’s metric is used to

compute the complexity of complete program. In this thesis, we have made Hal-

stead’s function to compute the complexity of a path (extracted piece of code)

executed by a particular test case. Halstead takes each path as input and calcu-

lates n, n1, n2, N, N1, N2, V, D, E, and T of the path executed by each test case

using Halstead’s metric. Among these calculated values, we will use Difficulty D

for our test case prioritization.

For example: For following piece of code:

Proposed Approach 36

public static void sort(int p [])

{ for (int a=0; a < p.length-1; a++)

{ for (int b=a+1; b < x.length; b++)

{ if (p[a] > p[b])

{ int save=p[a]; p[a]=p[b]; p[b]=save

}

}

}

}

Using Halstead’s metric:

Operators No. of occurrences
public 1
sort() 1

int 4
[] 7
{ } 4

for {; ;} 2
if () 1

= 5
¡ 2

n1 = 17 N1 = 39

Operand No of occurrences
p 9

length 2
a 7
b 6

save 2
0 1
1 2

n2 = 7 N2= 29

Proposed Approach 37

For this example: N = 68, N ’ = 89, V = 311.777, E = 10979.02, D = 35.21,

L = 0.028, B = 0.165

3.2 Path Complexity Based Prioritization

In complexity based prioritization approach, the test cases are prioritized on the

basis of path complexity. Path is actually the statements which are executed

by a particular test case. The path complexity is calculated using Halstead’s

Metric. Each test case executes a particular path of the software under test (SUT),

that path is extracted from the program and its complexity is calculated using

Halstead’s metric. Test case with the higher value of path complexity is given

higher priority as compare to those with lower value of path complexity.

Proposed solution context diagram is shown in Figure 3.1

Figure 3.1: An illustration of proposed approach

Proposed Approach 38

Following are important steps involved in our approach to achieve goal.

• Path extraction for each test case.

• Calculation of path complexity.

• Applying prioritization algorithm to generate priority lists.

3.2.1 Path Extraction

The basic function of code analyzer is to use a defined unit of measurement to

asses a code-base. In our approach, we give source code and test suite as input

to our algorithm. The code analyzer module of the algorithm takes each test case

from the test suite and executes it on software under test (SUT). Code analyzer

extracts that path (piece of code) which is executed by the particular test case and

saves the extracted code into a file. It takes each test case one by one, executes

it on the source code, extracts path for that particular test case and stores it into

a separate file. Later on, the extracted path is used by Halstead function of the

algorithm.

3.2.2 Calculation of Path Complexity

Halstead’s function is used to calculate the path complexity for each test case. It

takes the path as input and calculates the number of unique operators, number

of unique operands, total number of occurrences of operators and total number of

operands. These measures are used to calculate the error proneness(difficulty) i.e.

path complexity of the extracted path.

3.2.3 Applying Prioritization Algorithm

After collecting the above mentioned data, it will be used as input for prioritiza-

tion algorithm. The algorithm generates priority list of test cases based on path

Proposed Approach 39

complexity and branch coverage as well. In first step, the algorithm will follow the

greedy approach and find the test case t which has the highest path complexity

N(t).

In next step the selected test case will be appended to complexity based priority

list and removed from test suite. It will not further be considered. If there is a

tie on complexity, then number of branches covered Cov(t) is considered. The

test case covering greater number of branches not covered so far is assigned higher

priority. In case of multiple test cases with same number of branches covered,

random selection is made. The process is repeated until no test case remains

un-prioritized in the test suite.

The algorithm 1 is given below:

Algorithm 1 Procedure for prioritizing regression tests

Input: T : Set of Regression tests for P, N : Set of Path Complexity value for
each test case in T, Cov : Set of entities covered by executing P against t, X ′ :
A temporary set of regression tests for calculations

Output: PrT : A sequence of tests based on path complexity N
1: X ′ = T
2: while X ′ 6= ∅ & Cov 6= ∅ do
3: for all dot ∈ X ′

4: if N(t)>N(u) then
5: PrT = PrT + t
6: X ′ = X ′ − {t}
7: else if N(t)=N(u) then
8: if Cov(t) ≥ Cov(u) then
9: PrT = PrT + t

10: X ′ = X ′ − {t}
11: else
12: PrT = PrT + t
13: end if
14: end if
15: end for
16: end while

Proposed Approach 40

3.3 Example

To further elaborate the algorithm, consider the information given as an input to

the path complexity based prioritization algorithm:

T = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13}

Table 3.1: Mapping of the test case to entities covered and path complexity

Test Cases Branches Covered No. of Br. Covered Path Complexity

T1 2,4,6,7,9 5 4

T2 2,4,6,7,10,12,14 7 4

T3 2,4,6,7,10,12,14 7 4

T4 1,4,6,8,15,18 6 6

T5 2,3,6,8,16,19,22 7 6

T6 2,4,6,7,9 5 4

T7 1,4,6,8,15,18 6 6

T8 2,4,6,7,10,12,14 7 4

T9 2,4,6,7,10,12,14 7 4

T10 2,3,6,8,16,19,22 7 6

T11 2,4,5,8,16,20,23,26 8 9

T12 2,4,6,7,9 5 4

T13 2,4,6,7,9 5 4

Now, we will explain this example for our proposed path complexity based pri-

oritization algorithm. Initially test case T11 is selected by considering the path

complexity since it has maximum value of complexity measure. The next selection

is T5 with second highest path complexity. Test cases with same path complexity

are selected randomly. Following the same procedure, we prioritize all test cases

and final prioritization list becomes:

PrT : { T11, T5, T10, T4, T2, T8, T3, T1, T7, T12, T9, T13, T6 }

Proposed Approach 41

Same test cases will be prioritized on the basis of branches covered. The branches

covered by each test case are recorded. Test case achieving maximum branch

coverage is assigned the highest priority. Therefore, T11 is selected since it covers

maximum entities. In next step, the test case covering second highest number of

entities. So, T2 is selected. In case, there exist mote than one test cases which

have same number of branch coverage, one test case is selected randomly for that

branch coverage. Considering this definition T3, T4, T5, T8 and T9 are selected

randomly. By repeating the same process, we will prioritize all the test cases.

Final prioritization list becomes as follows:

PrT : {T11, T2, T3, T5, T8, T9, T10, T4, T7, T1, T6, T12, T13}

In the end, we will compare our prioritization technique with already existing

coverage based, white box prioritization technique.

Chapter 4

Implementation

This chapter includes implementation details of our proposed approach. In order

to automate the process, we have developed a tool in Python 2.7.14 and Windows

10 operating system. Python is very powerful and easy to learn programming

language. Python has high level and efficient data structures which help to develop

applications for any platform. Our tool has three main components; the first

component takes test cases and source code as inputs and executes test cases on

source code; this component consists of code analyzer, it extracts the path executed

by each test case and stores it in a separate text file. The second component is

based on Halstead’s function. It calculates different measures of Halstead e.g.,

Number of operators n1 and operands n2 , length of the program N, Effort E to

implement the program, Volume V of the program, Difficulty D or error proneness

and Estimated Time T. The third component of our tool prioritizes test cases on

the basis of difficulty D and generates an ordered list of test cases. The other list

is generated on the basis of branch coverage by using ‘total’ strategy.

Test cases are generated using a combination of Equivalence Class Partition (ECP)

and worst case Boundary Value Analysis (BVA).

The architecture of tool is given below in Figure 4.1

42

Implementation 43

Figure 4.1: Architecture diagram of tool

4.1 Implementation Details

Here is given the complete detail of the implementation of our proposed approach.

the tool is developed by using python. it consists of three components. the first

component is test case generation. There are many approaches to generate test

cases, i.e., Equivalence Class Partitioning (ECP), Boundary value Analysis (BVA),

Decision Table etc [63].

4.1.1 Equivalence Class Partitioning

In ECP, it is assumed that program’s input and output can be classified or par-

titioned into multiple finite number of classes. some of them are valid (for valid

input and output), some are invalid (for dealing exceptions). Thus; for each parti-

tion, only one test is required.In this way, the number of test cases to achieve the

goal of testing is reduced.

ECP enables the tester to cover large domain of input and output by using a

limited and smaller subset chosen from an equivalence class. another advantage

of ECP is: it enables testers to select a subset of test cases with high chances of

identifying defects [63].

Implementation 44

4.1.2 Boundary Value Analysis

Boundary value analysis uses edges of input and output classes to generate test

case. Boundaries of equivalence class can also be used to derive test cases. The

errors occurring at the boundaries of equivalence class is called boundary value

analysis [63].

In our proposed approach, we are using a combination of ECP and BVA to generate

the test cases for our source programs. First of all, we have identified the classes

on the basis of input and output of the program. Later on, the test cases for

each class are generated on the boundaries of the class by using boundary value

analysis. The source code of software under test and test cases are passed as input

to our tool. The first component; code analyzer of the tool, takes each test case

one by one and executes it on the source code. The code analyzer function of the

too extracts code (path) executed by the particular test case and saves it to a

separate file.

After completion of the path extraction process, the extracted path is passed as

input to the second component, The Halstead function. The Halstead function

computes different metrics of the path (code) and the complexity value is calcu-

lated for each test case. The value of error proneness (difficulty) is used as path

complexity to prioritized the test cases.

The third component of the tool is mainly involved in prioritization of test cases

according to our proposed approach. The test cases’ complexity value and code

coverage is given as input to the prioritization algorithm. Algorithm gives the

higher priority to the test case with higher complexity value. If there are multiple

test cases having same complexity measure, the test case which covers the entities

not covered yet is chosen by following the additional strategy. In our proposed

approached, if there is a tie among multiple test cases on code coverage, then test

case is selected randomly. Finally, the prioritized list is generated.

Implementation 45

4.2 User Interface

Here is the detail given how our proposed system works.

4.2.1 Test Case Generation

First of all, the test cases are generated using a combination of equivalence class

partitioning (ECP) and boundary value analysis (BVA). The test case generation

is automated by using mutation testing tool developed by Hassaan Minhas and

Mubashir Kaleem, students of BS (CS). First of all, for generating test suite,

system takes the min and max values for each variable from user through a user

interface which is shown in Figure 4.2.

Figure 4.2: Taking Boundary values

The boundary values for the variables in the source code are analyzed and system

asks for confirmation of boundary values as shown in the figure 4.3.

Implementation 46

Figure 4.3: Displaying all five values

After confirmation from the user, by using worst case boundary value analysis,

test cases are generated. Worst case boundary value analysis uses all the possible

combinations of boundary values to generate test cases.

The system will display test cases with an option of test cases execution as shown

in Figure 4.4.

Implementation 47

Figure 4.4: Displaying test cases

The test cases are copied and stored into a text file and later on along with the

source code are passed as input to the algorithm.

4.2.2 Path Extraction

The proposed algorithm reads test cases one by one and executes on the source

code as shown in the figure 4.5.

Implementation 48

Figure 4.5: Test Case execution

The code analyzer analyses the path (code) followed by the particular test case,

extracts the path and stores in a separate text file. For each test case, extracted

path is stored in a separate file.

4.2.3 Path Complexity Calculation

The Halstead function of the algorithm takes the extracted path as input and

calculates the path complexity for each test case. Normally, Halstead’s metric

is used to calculate the complexity of the whole source code but in this research

thesis, we have made it to calculate the complexity of a path (a small chunk of

code) executed by a particular test case. Following figure 4.6 shows the Halstead

measures for each test case about a particular path. These measures are stored in

file with .csv extension.

Implementation 49

Figure 4.6: Halstead measures for test suite

4.2.4 Test Case Prioritization

The prioritization algorithm, takes error proneness (difficulty D) to prioritize test

cases. The test cases with higher value of D are given higher priority and placed

earlier in the prioritized list. For the test cases having same value of D, branch

coverage is taken into account. Then the test case covering additional branches

(not covered so far) is selected. If still tie remains there on coverage, test cases

are chosen randomly.

Chapter 5

Results and Discussion

In this chapter we have discussed the results of our experiments which we have

performed on subject programs. by using Halstead metric, we have calculated the

path complexity of test cases for the respective test suites of subject programs. We

have generated path complexity based prioritization list for each program. The

existing criterion which we have used for comparison is total branch coverage. Both

the techniques, i.e., path complexity and branch coverage based prioritization and

additional branch coverage based prioritization are compared by using APFD.

For the evaluation of our technique, we have used three different programs. Our

proposed approach is applied on method level. Methods usually consist of few

lines of code. Therefore, the case studies used for evaluation are not very large in

terms of lines of code. Source code of the program and test suite are given as input

to our tool which executes each test case on the source code, extracts the path

executed by particular test case and calculates the path complexity for each test

case. The data generated is then given to prioritization algorithm for generating

prioritization list. Branch coverage information is also collected for each program

using its respective test suite and branch coverage based prioritization lists are

also generated.

50

Results and Discussion 51

5.1 Subject programs

We have used a Simple Calculator program, Quadratic Equation problem and

Date problem as subject programs to evaluate our approach. A brief description

of each program is given below.

5.1.1 Simple Calculator Program:

The source code of simple calculator is taken from MYCPLUS 1. This program

takes three inputs i.e., two operands and one operator.The operator is used to

decide what type of arithmetic operation is to be performed on operands. There

are different types of basic arithmetic operations like addition, subtraction, mul-

tiplication, division, power of one number raised to another given number etc.

5.1.2 Quadratic Equation Problem:

The source code of quadratic equation problem is taken from Sanfoundary 2. It

take s three inputs, i.e., a, b and c. On the basis of these inputs, the program

calculates the roots of quadratic equation.

5.1.3 Triangle Problem:

Triangle program takes three input variable a, b and c which represents the sides

of a triangle. The input variables must satisfy the following conditions:

C1. a <b + c

C2. b <a + c

C3. c <a + b

1http://www.mycplus.com
2http://www.sanfoundry.com

Results and Discussion 52

There are three types of triangle which are equilateral, Isosceles and Scalene.

Triangle problem returns the type of the triangle on the basis of input variables

values if the above conditions are satisfied. If these values do not meet any of the

above conditions then the program returns Not a Triangle as an output.

The source codes of these programs are given in appendix A. Different character-

istics of these subjects programs are given below in Table 5.1.

Table 5.1: Subject Programs summary

Program LOC No. of inputs No. of branches

Simple Calculator Program 223 3 10

Quadratic Equation Problem 41 3 04

Triangle Problem 80 3 40

Path complexity is calculated for each program and two priority lists are generated.

One is path complexity based and the other is branch coverage based using the

data given in appendix B where each program’s data is given in tabular form.

First column gives the path complexity, the second column lists all the branches

covered and the third column shows the total number of branches covered.

Table 5.2 shows both priority lists for all 3 programs.

Results and Discussion 53

Table 5.2: Subject Programs’ Priority Lists

Program Path complexity based

priority list

Branch coverage based

priority list

Quadratic

Equation

problem

[t31, t36, t41, t47, t61, t91,

t1, t3, t5, t7, t11, t19, t26,

t48, t27, t29, t30, t40, t60,

t75, t42, t66, t111, t46, t2,

t25, t6, t10, t18, t15, t37,

t101, t28, t34, t52, t73,

t114, t35, t55, t105, t100,

t56, t96, t86, t71, t4, t8,

t16, t21, t51, t32, t49, t69,

t112, t89, t45, t90, t120,

t72, t116, t12, t13, t24, t76,

t38, t64, t107, t79, t67, t65,

t110, t50, t121, t81, t20, t9,

t54, t97, t57, t108, t88,

t115, t70, t106, t23, t17,

t77, t98, t122, t44, t59, t80,

t95, t14, t117, t93, t68, t43,

t85, t22, t99, t118, t94,

t124, t84, t62, t82, t39, t78,

t125, t83, t53, t113, t119,

t109, t123, t58, t102, t104,

t87, t74, t33, t103, t92, t63]

[t1, t5, t26, t30, t2, t3, t4,

t6, t7, t8, t9, t10, t11, t12,

t13, t14, t15, t16, t17, t18,

t19, t20, t21, t22, t23, t24,

t25, t27, t28, t29, t31, t32,

t33, t34, t35, t36, t37, t38,

t39, t40, t41, t42, t43, t44,

t45, t46, t47, t48, t49, t50,

t51, t52, t53, t54, t55, t56,

t57, t58, t59, t60, t61, t62,

t63, t64, t65, t66, t67, t68,

t69, t70, t71, t72, t73, t74,

t75, t76, t77, t78, t79, t80,

t81, t82, t83, t84, t85, t86,

t87, t88, t89, t90, t91, t92,

t93, t94, t95, t96, t97, t98,

t99, t100, t101, t102, t103,

t104, t105, t106, t107, t108,

t109, t110, t111, t112, t113,

t114, t115, t116, t117, t118,

t119, t120, t121, t122, t123,

t124, t125]

Results and Discussion 54

Simple

Calculator

Program

[t25, t27, t31, t39, t75, t77,

t81, t89, t131, t133, t1, t3,

t7, t15, t105, t107, t111,

t119, t129, t135, t137, t50,

t52, t56, t64, t26, t30, t38,

t37, t76, t80, t88, t104,

t132, t2, t6, t14, t13, t106,

t110, t118, t117, t130, t136,

t140, t51, t55, t63, t62, t28,

t36, t33, t47, t78, t86, t102,

t92, t134, t4, t12, t9, t22,

t108, t116, t113, t126, t138,

t53, t61, t58, t71, t32, t48,

t45, t82, t98, t84, t83, t8,

t24, t21, t112, t128, t125,

t139, t57, t73, t70, t40, t42,

t43, t90, t93, t97, t16, t18,

t23, t120, t122, t127, t65,

t67, t72, t41, t35, t34, t79,

t94, t85, t17, t10, t121,

t114, t66, t59, t46, t49,

t100, t87, t101, t19, t5,

t123, t109, t68, t54, t44,

t91, t95, t20, t124, t69, t29,

t96, t103, t11, t115, t60,

t99, t74]

[t1, t25, t50, t75, t99, t105,

t127, t2, t3, t4, t5, t6, t7,

t8, t9, t10, t11, t12, t13,

t14, t15, t16, t17, t18, t19,

t20, t21, t22, t23, t24, t26,

t27, t28, t29, t30, t31, t32,

t33, t34, t35, t36, t37, t38,

t39, t40, t41, t42, t43, t44,

t45, t46, t47, t48, t49, t51,

t52, t53, t54, t55, t56, t57,

t58, t59, t60, t61, t62, t63,

t64, t65, t66, t67, t68, t69,

t70, t71, t72, t73, t74, t76,

t77, t78, t79, t80, t81, t82,

t83, t84, t85, t86, t87, t88,

t89, t90, t91, t92, t93, t94,

t95, t96, t97, t98, t100,

t101, t102, t103, t104, t106,

t107, t108, t109, t110, t111,

t112, t113, t114, t115, t116,

t117, t118, t119, t120, t121,

t122, t123, t124, t125, t126,

t128, t129, t130, t131, t132,

t133, t134, t135, t136, t137,

t138, t139, t140]

Results and Discussion 55

Triangle

problem

[t56, t6, t124, t87, t12,

t123, t113, t118, t92, t71,

t26, t27, t29, t59, t89, t122,

t121, t119, t114, t46, t18,

t22, t47, t75, t101, t11, t1,

t5, t20, t64, t24, t62, t31,

t49, t108, t82, t51, t66, t28,

t58, t57, t72, t41, t48, t67,

t43, t94, t16, t117, t2, t13,

t53, t65, t37, t112, t97, t77,

t30, t90, t76, t100, t111,

t38, t83, t23, t42, t4, t35,

t105, t81, t106, t61, t60,

t88, t96, t21, t98, t120,

t102, t73, t9, t3, t34, t74,

t103, t86, t36, t78, t115,

t52, t68, t125, t44, t91,

t107, t25, t63, t95, t32, t69,

t80, t99, t116, t109, t70,

t17, t93, t14, t50, t19, t104,

t84, t33, t15, t55, t39, t10,

t45, t7, t79, t40, t110, t8,

t85, t54]

[t6, t11, t26, t51, t1, t32,

t71, t101, t2, t3, t4, t5, t7,

t8, t9, t10, t12, t13, t14,

t15, t16, t17, t18, t19, t20,

t21, t22, t23, t24, t25, t27,

t28, t29, t30, t31, t33, t34,

t35, t36, t37, t38, t39, t40,

t41, t42, t43, t44, t45, t46,

t47, t48, t49, t50, t52, t53,

t54, t55, t56, t57, t58, t59,

t60, t61, t62, t63, t64, t65,

t66, t67, t68, t69, t70, t72,

t73, t74, t75, t76, t77, t78,

t79, t80, t81, t82, t83, t84,

t85, t86, t87, t88, t89, t90,

t91, t92, t93, t94, t95, t96,

t97, t98, t99, t100, t102,

t103, t104, t105, t106, t107,

t108, t109, t110, t111, t112,

t113, t114, t115, t116, t117,

t118, t119, t120, t121, t122,

t123, t124, t125]

5.2 Comparison

Both of the prioritization techniques are compared by using APFD; which is stan-

dard criterion for evaluation of prioritization techniques. For APFD computation,

faults are seeded in the original program to generate its mutants(i.e. the faulty

Results and Discussion 56

versions). The mutation faults are representative of real faults. Hand seeded faults

can be problematic for validity of results [64].

In this research work, AORB (Arithmetic Operator Replacement Binary) mutation

operator has been used to generate mutants of the original program. AORB

replaces every occurrence of one of the arithmetic operators +, -, /, * and % with

each of the remaining operators. We tried different combinations, tested with test

cases and it was observed that the program is working properly and ensured the

100% coverage of the program codes by using AORB mutation operator.

Errors detected by each test case are shown in column 4 of each program’s table

given in appendix B. APFD is calculated by using following formula.

APFD = 1− (TF1 + · · ·TFm)/nm + 1/2n (5.1)

Where T is the test suite containing n test cases and F is the set of m faults

revealed by T. For prioritizing T‘, let TFi be the order of the first test case that

reveals the ith fault. For APFD calculation, only those faults which are detected

by the test suite are considered and undetected faults are ignored.

For example, consider the Quadratic Equation problem where:

F= {1,2,3,4,5, 6, 7, 8, 9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32}

T(Path Complexity based): [t31, t36, t41, t47, t61, t91, t1, t3, t5, t7, t11, t19,

t26, t48, t27, t29, t30, t40, t60, t75, t42, t66, t111, t46, t2, t25, t6, t10, t18, t15,

t37, t101, t28, t34, t52, t73, t114, t35, t55, t105, t100, t56, t96, t86, t71, t4, t8,

t16, t21, t51, t32, t49, t69, t112, t89, t45, t90, t120, t72, t116, t12, t13, t24, t76,

t38, t64, t107, t79, t67, t65, t110, t50, t121, t81, t20, t9, t54, t97, t57, t108, t88,

t115, t70, t106, t23, t17, t77, t98, t122, t44, t59, t80, t95, t14, t117, t93, t68, t43,

t85, t22, t99, t118, t94, t124, t84, t62, t82, t39, t78, t125, t83, t53, t113, t119,

t109, t123, t58, t102, t104, t87, t74, t33, t103, t92, t63]

n=125, m=30

Results and Discussion 57

APFD = 1− 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+2+2+3+4+5+......+14+59
125(30)

+ 1
2(125)

APFD = 1- 148
3750

+ 1
250

APFD = 96.50%

Using this data APFD for path complexity based prioritization for Quadratic

equation problem is calculated.

APFDs of all three programs for both prioritization techniques are given below in

5.3.

Table 5.3: Subject Programs‘ APFD

Program No. of

test cases

No. of

faults

seeded

No. of

faults

detected

APFD

for Path

complex-

ity based

prioriti-

zation

APFD

for

branch

coverage

prioriti-

zation

Quadratic

Equation

Problem

125 32 30 96.50% 87.40%

Simple

Calculator

Problem

140 24 24 96.10% 52.80%

Triangle

Problem

125 48 36 95.30% 92.51%

For Quadratic Equation problem, there is a remarkable difference of 9.10% between

APFD of both priority lists. The test case t31 detects maximum faults (i.e. 18

faults) out of 30 faults which is prioritized at position 1 due to highest path

complexity value, where as the same test case t31 is placed at position 10 in

branch coverage prioritization which results in remarkable difference of APFD in

both prioritization techniques. The difference between APFD shows that path

Results and Discussion 58

complexity based prioritization technique can detect faults earlier as compared to

simple branch coverage based prioritization. The graphical representation of fault

detection of test cases for Quadratic Equation problem is given below in Figure

5.1

Figure 5.1: Graphical representation of fault detection of test cases for
Quadratic Equation Problem

In simple calculator problem, the number of mutants are less than the other two

example programs. Only two test cases are sufficient to kill all mutants. The test

case t131, which covers 50% faults is positioned at rank 10 in path complexity

based priority list, where as the same test case i.e. t131 is placed at position 131

in branch coverage priority list. this considerable difference in priority list position

of test case results in a big difference of 43.30% in APFD of both priority lists.

The graphical representation of fault detection of test cases for Simple Calculator

Problem in Figure 5.2

Results and Discussion 59

Figure 5.2: Graphical representation of fault detection of test cases for Simple
Calculator Problem

For triangle problem, the difference between APFDs is only 2.79% because both

priority lists include almost identical test cases with their positions varying.In

path complexity based priority list the test case t56 is given the highest priority

because of its highest fault exposing potential, but in branch based priority list

t56 is on 58th position and out of 36 errors 8 are detected by t56. The graphical

representation of fault detection of test cases for triangle problem is given below

in Figure 5.3

Results and Discussion 60

Figure 5.3: Graphical representation of fault detection of test cases for Tri-
angle Problem

Following figure 5.4 explains the Graphical representation of APFDs of Subject

Programs.

Figure 5.4: Graphical Representation of APFD

Results and Discussion 61

By comparing the APFD of path complexity based prioritization with branch

coverage based prioritization, it can be concluded that it is higher than the latter.

In coverage based prioritization, it is assumed that the coverage will maximize the

fault detection rate, but from the above results and comparison, it can be seen

that this assumptions does not always hold. The test cases which have higher fault

detection potential can be given low priorities or they can be treated as redundant

test cases. The test case covering maximum entities, may not be structurally com-

plex. Whereas; a test case covering less entities may be structurally more complex

and can cover maximum faults. Since int the path complexity based prioritiza-

tion, test cases are assigned priorities on the basis of their path complexity, thus it

performs better than coverage based prioritization techniques in terms of APFD.

Chapter 6

Conclusion and Future Work

After reviewing literature, it has been concluded that test case prioritization is of

considerable importance because it decreases the cost of regression testing. A lot

of work has been done in this field and many researchers have contributed their

efforts to achieve improved results. To overcome the drawbacks of other regression

techniques, test case prioritization is more commonly used.

A literature survey is conducted through which we identify the existing and most

commonly used techniques. A large number of white box and black box priori-

tization techniques have been proposed to find out the solution to the problem

of test case prioritization. White box techniques use source code to for test case

prioritization and black box techniques are specification based approaches to pri-

oritize test cases. It is also observed that white box prioritization techniques,

specifically those proposed by Rothermel et al., [24] including branch, statement

and function coverage based, are more commonly used than black box prioriti-

zation. Many black box techniques are also very effective and giving improved

results. the APFD comparison shows that the difference between white box and

black box technique’s APFD ranges from 2% to 5% , yet they are not commonly

used due to lack of availability of structural information. In general, white box

prioritization approaches outperform black box prioritization approaches in 50 to

60% cases. Through the detailed literature survey and experimentation, we are

able to answer our research questions described in Chapter 1 as follows:

62

Conclusion and Future Work 63

RQ. 1: What are gaps in existing white box prioritization techniques?

Though existing white box prioritization approaches perform well, but most of

these approaches are not fault based. They order the test cases on the basis

of some coverage criteria with assumption that the test case covering maximum

entities can detect maximum faults. moreover, it is assumed that the test case with

high coverage is more proned to faults but this assumption not always hold. The

test case covering maximum entities may consist of simple I/O statements whereas;

the one with less coverage may contain structurally complex statements and high

fault proneness. Very few prioritization approaches exist which are fault based or

complexity based. Thus, the structural complexity matter a lot in prioritization.

RQ. 2: How well does the proposed prioritization technique compare with the

well studied white box prioritization techniques with respect to fault detection

rate?

Fault based prioritization techniques normally assume that the fault data is avail-

able, very few techniques in literature use some criteria to calculate fault proneness

of any module or entity. Moreover, when the software undergoes some modifica-

tion, test suite changes and thus the fault data may also change. Existing fault

data may not be valid for modified software thus this may affect the prioritiza-

tion process. Fault based approaches still perform better than coverage based

prioritization approaches.

The technique used in this research is simply based on path complexity. Here the

path means the statements executed by a particular test case. The path com-

plexity has been calculated using Halstead,s complexity metric. The test case

having high value of path complexity is assigned higher priority. The proposed

approach breaks the tie among test cases with same path complexity by using

branch coverage as secondary criterion. Thus, the use of path complexity along

with branch coverage has provided better rate of fault detection. Using three

different subject programs, we have generated priority lists for both path com-

plexity based and branch coverage. We have concluded that the branch coverage

based approach has assigned lower priority to the test cases with higher value of

Conclusion and Future Work 64

path complexity which is the major drawback of branch coverage approach. The

proposed approach based on path complexity has addressed this drawback and as-

signed higher priorities to the test cases with higher value of path complexity (i.e.

structurally complex test cases). The main objective of the proposed technique

was to increase the average percentage of fault detection (APFD) of test suite. Af-

ter generating the complexity based prioritization list and comparing it with the

existing approach, we have observed that the APFD of our proposed technique is

more than the strongest coverage based prioritization technique which is branch

coverage [25], [38]. The difference between the APFDs of branch coverage and

complexity based coverage ranges from 2.5 to 42%.

6.1 Future Work

After successful experiments of the proposed technique, we plan to use a combi-

nation of complexity metrics for prioritization of test suites in near future. Use of

more than one complexity metric may help in increase rate of fault detection. We

also plan to perform experiments with larger case studies.

Bibliography

[1] I. Burnstein, Practical software testing: a process-oriented approach, Springer,

Ed. Springer Science & Business Media, 2006.

[2] D. Jeffrey and N. Gupta, “Test case prioritization using relevant slices,” in

Computer Software and Applications Conference, 2006. COMPSAC’06. 30th

Annual International, vol. 1. IEEE, 2006, pp. 411–420.

[3] R. Feldt, S. Poulding, D. Clark, and S. Yoo, Test set diameter: Quantifying

the diversity of sets of test cases, 2016, pp. 223–233.

[4] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for pair-wise

coverage with seeding and constraints,” Information and Software Technology,

vol. 48, no. 10, pp. 960–970, 2006.

[5] F. Spaven, “Cost of software errors: How much could software errors be cost-

ing your company?” raygun.com/blog/cost-of-software-errors/, Mar. 2017.

[6] S. G. Singh S and S. S., “Software testing.” International Journal of Advanced

Research in Computer Science, no. 1(3), 2010.

[7] B. L. P. M., “An introduction to software testing,” Electronic Notes in The-

oretical Computer Science, vol. 148, pp. 89–111, 2006.

[8] S. Quadri and S. Farooq, “Software testing: Goals, principles and limita-

tions.” International Journal of Computer Applications,, pp. 7–10, 2010.

[9] D. Jeffrey and N. Gupta, “Experiments with test case prioritization using

relevant slices,” Journal of Systems and Software, vol. 81, no. 2, pp. 196–221,

2008.

65

Bibliography 66

[10] P. S. Hooda A and K. S., “Regression testing: A complete overview.” In-

ternational Journal of Advanced Research in Computer Science and Software

Engineering,, no. 5(5), 2015.

[11] R. Pradeepa and K. VimalDevi, “Effectiveness of testcase prioritization using

apfd metric: Survey,” in IJCA Proceedings on International Conference on

Research Trends in Computer Technologies, 2013, pp. 1–4.

[12] J.-M. Kim and A. Porter, “A history-based test prioritization technique for

regression testing in resource constrained environments,” in Proceedings of

the 24th international conference on software engineering. ACM, 2002, pp.

119–129.

[13] S. Yoo and M. Harman, “Regression testing minimization, selection and pri-

oritization: a survey,” Software Testing, Verification and Reliability, vol. 22,

no. 2, pp. 67–120, 2012.

[14] H. K. Leung and L. White, “Insights into regression testing (software test-

ing),” in Software Maintenance, 1989., Proceedings., Conference on. IEEE,

1989, pp. 60–69.

[15] M. R. Garey, “A guide to the theory of np-completeness,” Computers and

intractability, 1979.

[16] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of a test

suite,” Information Processing Letters, vol. 60, no. 3, pp. 135–141, 1996.

[17] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for controlling

the size of a test suite,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 2, no. 3, pp. 270–285, 1993.

[18] J. R. Horgan and S. London, “A data flow coverage testing tool for c,” in

Assessment of Quality Software Development Tools, 1992., Proceedings of the

Second Symposium on. IEEE, 1992, pp. 2–10.

Bibliography 67

[19] J. Pan and L. T. Center, “Procedures for reducing the size of coverage-based

test sets,” in Proceedings of International Conference on Testing Computer

Software, 1995.

[20] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization:

A family of empirical studies,” IEEE transactions on software engineering,

vol. 28, no. 2, pp. 159–182, 2002.

[21] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of effec-

tive regression testing in practice,” in Software Reliability Engineering, 1997.

Proceedings., The Eighth International Symposium on. IEEE, 1997, pp. 264–

274.

[22] M. J. Harrold, “Testing evolving software1,” Journal of Systems and Software,

vol. 47, no. 2-3, pp. 173–181, 1999.

[23] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prior-

itization: An empirical study,” in Software Maintenance, 1999.(ICSM’99)

Proceedings. IEEE International Conference on. IEEE, 1999, pp. 179–188.

[24] Rothermel and C. C. H. M. J. Gregg Untch, Roland H., “Prioritizing test cases

for regression testing,” IEEE Transactions on software engineering, vol. 27,

no. 10, pp. 929–948, 2001.

[25] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Comparing

white-box and black-box test prioritization,” in Software Engineering (ICSE),

2016 IEEE/ACM 38th International Conference on. IEEE, 2016, pp. 523–

534.

[26] M. E. Khan, F. Khan et al., “A comparative study of white box, black box

and grey box testing techniques,” Int. J. Adv. Comput. Sci. Appl, vol. 3, no. 6,

2012.

[27] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction cover-

age,” in Workshop on Domain specific approaches to software test automation:

in conjunction with the 6th ESEC/FSE joint meeting. ACM, 2007, pp. 1–7.

Bibliography 68

[28] M. J. Arafeen and H. Do, “Test case prioritization using requirements-based

clustering,” in Software Testing, Verification and Validation (ICST), 2013

IEEE Sixth International Conference on. IEEE, 2013, pp. 312–321.

[29] B. Qu, C. Nie, B. Xu, and X. Zhang, “Test case prioritization for black box

testing,” in Computer Software and Applications Conference, 2007. COMP-

SAC 2007. 31st Annual International, vol. 1. Ieee, 2007, pp. 465–474.

[30] H. Kumar, V. Pal, and N. Chauhan, “A hierarchical system test case pri-

oritization technique based on requirements,” in 13th Annual International

Software Testing Conference, 2013, pp. 4–5.

[31] A. Kaur and S. Goyal, “A genetic algorithm for regression test case prioriti-

zation using code coverage,” International journal on computer science and

engineering, vol. 3, no. 5, pp. 1839–1847, 2011.

[32] R. U. Maheswari and D. J. Mala, “Combined genetic and simulated annealing

approach for test case prioritization,” Indian Journal of Science and Technol-

ogy, vol. 8, no. 35, pp. 1–5, 2015.

[33] A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized regression test

using test case prioritization,” Procedia Computer Science, vol. 79, pp. 152–

160, 2016.

[34] M. Mann, “Generating and prioritizing optimal paths using ant colony op-

timization,” Computational Ecology and Software, vol. 5, no. 1, pp. 1–15,

2015.

[35] H. Hemmati, Z. Fang, and M. V. Mantyla, “Prioritizing manual test cases in

traditional and rapid release environments,” in Software Testing, Verification

and Validation (ICST), 2015 IEEE 8th International Conference on. IEEE,

2015, pp. 1–10.

[36] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test

suite effectiveness,” in Proceedings of the 36th International Conference on

Software Engineering. ACM, 2014, pp. 435–445.

Bibliography 69

[37] Z. Ma and J. Zhao, “Test case prioritization based on analysis of program

structure,” in Software Engineering Conference, 2008. APSEC’08. 15th Asia-

Pacific. IEEE, 2008, pp. 471–478.

[38] A. M. Sinaga, “Branch coverage based test case prioritization,” ARPN Jour-

nal of Engineering and Applied Sciences, vol. 10, no. 3, pp. 1131–1137, 2015.

[39] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Selecting

a cost-effective test case prioritization technique,” Software Quality Journal,

vol. 12, no. 3, pp. 185–210, 2004.

[40] T. Honglei, S. Wei, and Z. Yanan, “The research on software metrics and

software complexity metrics,” in Computer Science-Technology and Applica-

tions, 2009. IFCSTA’09. International Forum on, vol. 1. IEEE, 2009, pp.

131–136.

[41] T. M. Khoshgoftaar and J. C. Munson, “Predicting software development

errors using software complexity metrics,” IEEE Journal on Selected Areas

in Communications, vol. 8, no. 2, pp. 253–261, 1990.

[42] K. Magel, R. M. Kluczny, W. A. Harrison, and A. R. Dekock, “Applying soft-

ware complexity metrics to program maintenance,” IEEE, pp. 65–79, 1982.

[43] N. Prakash and T. Rangaswamy, “Modular based multiple test case prioriti-

zation,” in Computational Intelligence & Computing Research (ICCIC), 2012

IEEE International Conference on. IEEE, 2012, pp. 1–7.

[44] A. A. Ahmed, M. Shaheen, and E. Kosba, “Software testing suite prioritiza-

tion using multi-criteria fitness function,” in Computer Theory and Applica-

tions (ICCTA), 2012 22nd International Conference on. IEEE, 2012, pp.

160–166.

[45] M. Tyagi and S. Malhotra, “An approach for test case prioritization based

on three factors,” International Journal of Information Technology and Com-

puter Science (IJITCS), vol. 7, no. 4, p. 79, 2015.

Bibliography 70

[46] R. Kavitha and N. Sureshkumar, “Test case prioritization for regression test-

ing based on severity of fault,” International Journal on Computer Science

and Engineering, vol. 2, no. 5, pp. 1462–1466, 2010.

[47] Y. Wang, X. Zhao, and X. Ding, “An effective test case prioritization method

based on fault severity,” in Software Engineering and Service Science (IC-

SESS), 2015 6th IEEE International Conference on. IEEE, 2015, pp. 737–

741.

[48] E. L. Alves, P. D. Machado, T. Massoni, and M. Kim, “Prioritizing test cases

for early detection of refactoring faults,” Software Testing, Verification and

Reliability, vol. 26, no. 5, pp. 402–426, 2016.

[49] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, and S. Lars-

son, “Towards earlier fault detection by value-driven prioritization of test

cases using fuzzy topsis,” in 13th International Conference on Information

Technology: New Generations ITNG 2016, 2016.

[50] K. H. S. Hla, Y. Choi, and J. S. Park, “Applying particle swarm optimization

to prioritizing test cases for embedded real time software retesting,” in Com-

puter and Information Technology Workshops, 2008. CIT Workshops 2008.

IEEE 8th International Conference on. IEEE, 2008, pp. 527–532.

[51] M. M. Navleen Kaur, “Regression testing with multiple criteria based test

case prioritization.” ijraset, 2017.

[52] P. Kaur, P. Bansal, and R. Sibal, “Prioritization of test scenarios derived from

uml activity diagram using path complexity,” in Proceedings of the CUBE

International Information Technology Conference. ACM, 2012, pp. 355–359.

[53] D. Kafura and G. R. Reddy, “The use of software complexity metrics in

software maintenance,” IEEE Transactions on Software Engineering, no. 3,

pp. 335–343, 1987.

[54] H. Zhang, X. Zhang, and M. Gu, “Predicting defective software components

from code complexity measures,” in Dependable Computing, 2007. PRDC

Bibliography 71

2007. 13th Pacific Rim International Symposium on. IEEE, 2007, pp. 93–

96.

[55] T. M. Khoshgoftaar and J. C. Munson, “The lines of code metric as a pre-

dictor of program faults: A critical analysis,” in Computer Software and Ap-

plications Conference, 1990. COMPSAC 90. Proceedings., Fourteenth Annual

International. IEEE, 1990, pp. 408–413.

[56] A. J. Albrecht, “Measuring application development productivity,” in Proc. of

the Joint SHARE/GUIDE/IBM Applicaiton Development Symposium, 1979,

pp. 83–92.

[57] C. R. Symons, “Function point analysis: difficulties and improvements,”

IEEE transactions on software engineering, vol. 14, no. 1, pp. 2–11, 1988.

[58] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and

development effort prediction: a software science validation,” IEEE transac-

tions on software engineering, no. 6, pp. 639–648, 1983.

[59] T. J. McCabe, “A complexity measure,” IEEE Transactions on software En-

gineering, no. 4, pp. 308–320, 1976.

[60] M. Shepperd, “A critique of cyclomatic complexity as a software metric,”

Software Engineering Journal, vol. 3, no. 2, pp. 30–36, 1988.

[61] M. H. Halstead, Elements of software science. Elsevier New York, 1977,

vol. 7.

[62] H. R. Bhatti, “Automatic measurement of source code complexity,” 2011.

[63] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a lit-

erature review,” International Journal of Embedded Systems and Applications

(IJESA), vol. 2, no. 2, pp. 29–50, 2012.

[64] H. Do and G. Rothermel, “A controlled experiment assessing test case pri-

oritization techniques via mutation faults,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE International Conference on. IEEE,

2005, pp. 411–420.

Appendix A

Source code of Quadratic Equation problem:

import java.util.Scanner;

public class calculateQuadraticEqua{

public static void main(String[] args) {

double discr, root1, root2;

System.out.println(”Applying the quadratic formula”);

Scanner input = new Scanner(System.in);

double a = input.nextDouble();

double b = input.nextDouble();

double c = input.nextDouble();

// Solve the discriminant (SQRT (b2 - 4ac)

discr = Math.sqrt((b * b) - (4 * a * c));

System.out.println(”Discriminant = ” + discr);

// Determine number of roots

// if discr> 0 equation has 2 real roots

// if discr == 0 equation has a repeated real root

// if discr< 0 equation has imaginary roots

// if discr is NaN equation has no roots

if(Double.isNaN(discr))

System.out.println(”Equation has no roots”);

if(discr> 0)

{

System.out.println(”Equation has 2 roots”);

root1 = (-b + discr)/2 * a;

72

Appendix 73

root2 = (-b - discr)/2 * a;

System.out.println(”First root = ” + root1);

System.out.println(”Second root = ” + root2);

}

if(discr == 0)

{

System.out.println(”Equation has 1 root”);

root1 = (-b + discr)/2 * a;

System.out.println(”Root = ” + root1);

}

if(discr< 0)

System.out.println(”Equation has imaginary roots”);

}

}

Source code of Simple Calculator Program:

/***

* MYCPLUS Sample Code - http://www.mycplus.com *

* *

* This code is made available as a service to our *

* visitors and is provided strictly for the *

* purpose of illustration. *

* *

* Please direct all inquiries to saqib at mycplus.com *

***/

package calculator;

/**

* Title: Calculator

* Description: Calculator

* Copyright: Copyright (c) 2003

* Company: Nagina Computers

* @author Muhamnmad Saqib

* @version 1.0

*/

Appendix 74

import java.io.*;

import java.math.*;

public class Calculator {

static double numAdd1=0,numAdd2=0;

static double numSub1=0,numSub2=0,numMul1=0;

static double numMul2=0,numDiv1=0,numDiv2=0;

static double numSqr1=0,numCube1=0,numPow1=0;

static double numPow2=0,numSqrt1=0;

static int choice;

static String myString;

//makes the full user interface at start up

public static int UI()throws Exception {

BufferedReader input = new BufferedReader(new InputStreamReader(System.in));

System.out.println(”\ n\ n****************************\ nWel Come to Java Language”);

System.out.println(” CALCULATOR \ n*****************************”);

System.out.println(”0:\ tEXIT()”);

System.out.println(”1:\ tAdd two Numbers”);

System.out.println(”2:\ tSubtract two Numbers”);

System.out.println(”3:\ tMultiply two Numbers”);

System.out.println(”4:\ tDivide two Numbers”);

System.out.println(”5:\ tSquare of a number”);

System.out.println(”6:\ tCube of a number”);

System.out.println(”7:\ tFind the SQUARE-ROOT of a Number”);

System.out.println(”8:\ tFind the X power Y”);

choice = Integer.parseInt(input.readLine());

return choice; }

//Calculate the Addition of two numbers

public static double add(double numAdd1, double numAdd2){

return numAdd1 + numAdd2;

}

//Calculate the subtraction of two numbers

public static double sub(double numSub1, double numSub2){

return numSub1 - numSub2;

Appendix 75

}

//Calculate the multiplication of two numbers

public static double multiply(double numMul1, double numMul2){

return numMul1 + numMul2;

}

//Calculate the Division of two numbers

public static double divide(double numDiv1, double numDiv2){

return numDiv1 / numDiv2;

}

//Calculate the Square of a numbers

public static double square(double numSqr1){

return numSqr1*numSqr1;

}

//Calculate the Cube of a numbers

public static double cube(double numCube1){

return numCube1 * numCube1 * numCube1;

}

//Calculate the SQUARE-ROOT of a numbers

public static double squareRoot(double numSqrt1){

return Math.sqrt(numSqrt1);

}

//Calculate the power of numbers

public static double power(double numpow1, double numPow2){

return Math.pow(numPow1,numPow2);

}

//press any key to Goto Main Menu

public static void mainMenu(){

System.out.print(”Press Enter key.....”);

try {

System.in.read();

}

catch(IOException e){

Appendix 76

return;

}

}

//Function to check the input validation

public static boolean checkInput(String str){

int stringLength = str.length();

if (stringLength
<

=300){ return false;}

for (int i=0;i¡stringLength-1;i++)

if (str.charAt(i) ¡=0 —— str.charAt(i)
<

=9)

return false;

return true;

}

//main function

public static void main(String[] args)throws Exception {

boolean isValidInput;

BufferedReader input = new BufferedReader(new InputStreamReader(System.in));

choice= UI();

while (choice!=0){

switch(choice){

case 0:

return;

case 1:

//Add two numbers code Code

System.out.println(”\ nEnter First Number”);

String str = input.readLine();

isValidInput = checkInput(str);

if(isValidInput==true){

numAdd1= Double.parseDouble(str);

}

else {System.out.println(”\ n****************\ nInput ERROR\ n************** ”);}

System.out.println(”\ nEnter second Number”);

Appendix 77

str = input.readLine();

isValidInput = checkInput(str);

if(isValidInput==true){

numAdd2 = Double.parseDouble(str);

double numAddSum= add(numAdd1,numAdd2);

System.out.println(”\ n**********\ nThe Sum is= ” + numAddSum + ”\ n********** ”);

}

else{System.out.println(”\ n****************\ nInput ERROR\ n************** ”);}

mainMenu();

UI();

break;

case 2:

//Code

//subtract two numbers code Code

System.out.println(”\ nEnter First Number”);

numSub1= Double.parseDouble(input.readLine());

System.out.println(”\ nEnter second Number”);

numSub2 = Double.parseDouble(input.readLine());

double numSub = sub(numSub1,numSub2);

System.out.println(”\ n**********\ nThe Difference is= ” + numSub + ”\ n********** ”);

mainMenu();

UI();

break;

case 3:

//Code

//subtract two numbers code Code

System.out.println(”\ nEnter First Number”);

numMul1= Double.parseDouble(input.readLine());

System.out.println(”\ nEnter second Number”);

numMul2 = Double.parseDouble(input.readLine());

double numMul = multiply(numMul1,numMul2);

System.out.println(”\ n**********\ nThe Multiplication is= ” + numMul + ”\ n**********
”);

Appendix 78

mainMenu();

UI();

break;

case 4:

//Code

//Divide two numbers code Code

System.out.println(”\ nEnter First Number”);

numDiv1= Double.parseDouble(input.readLine());

System.out.println(”\ nEnter second Number”);

numDiv2 = Double.parseDouble(input.readLine());

double numDiv = divide(numDiv1,numDiv2);

System.out.println(”\ n**********\ nThe Division is= ” + numDiv + ”\ n********** ”);

mainMenu();

UI();

break;

case 5:

//Code

//square of a number code

System.out.println(”\ nEnter a Number”);

numSqr1= Double.parseDouble(input.readLine());

double numSqr = square(numSqr1);

System.out.println(”\ n**********\ nThe SQUARE is= ” + numSqr + ”\ n********** ”);

mainMenu();

UI();

break;

case 6:

//Code

//cube of a number code

System.out.println(”\ nEnter a Number”);

numCube1= Double.parseDouble(input.readLine());

double numCube = cube(numCube1);

System.out.println(”\ n**********\ nThe CUBE is= ” + numCube + ”\ n********** ”);

mainMenu();

Appendix 79

UI();

break;

case 7:

//Code

//square-root of a numbver

System.out.println(”\ nEnter a Number”);

numSqrt1= Double.parseDouble(input.readLine());

double numSqrt = squareRoot(numSqrt1);

System.out.println(”\ n**********\ nThe SQUARE-ROOT is= ” + numSqrt + ”\ n**********
”);

mainMenu();

UI();

break;

case 8:

//Code

//Divide two numbers code Code

System.out.println(”\ nEnter a Number”);

numPow1= Double.parseDouble(input.readLine());

System.out.println(”\ nEnter a 2nd Number”);

numPow2= Double.parseDouble(input.readLine());

double numPow = power(numPow1,numPow2);

System.out.println(”\ n**********\ nThe ” + numPow1 + ” power ” + numPow2 + ” is= ” +
numPow + ”\ n********** ”);

mainMenu();

UI();

break;

default:

UI();

break;

}

}

}

}

Source code of Triangle Program:

Appendix 80

public class TriangleProbelm {

String newline = System.getProperty(”line.separator”);

public void triangle(inta,intb,int c){

int match=0,d,e;

if(a==b)

match = match - match + 1;

if(a==c)

match= match - match + 2;

if(b==c)

match= match - match + 3;

d=a+b;

e=b+c;

if(match==0){

if(d<=c)

System.out.print(”NOT A TRIANGLE” +newline);

else if(e<=a)

System.out.print(”NOT A TRIANGLE” +newline);

else if(a+c<=b)

System.out.print(”NOT A TRIANGLE” +newline);

else

System.out.println(”Scalane” +newline);

}

else if(match==1){

if(a+c<=b)

System.out.println(”NOT A TRIANGLE” +newline);}

else

System.out.println(”Isoscles” +newline);

}

else if (match==2){

if(a+c<=b)

System.out.print(”NOT A TRIANGLE” +newline);

else

System.out.print(”Isoscles” +newline);

Appendix 81

}

else if(match==3){

if(b+c<=a)

System.out.print(”NOT A TRIANGLE” +newline);

else

System.out.print(”Isoscles” +newline);

}

else

System.out.println(”Equilaterial” +newline);

}

}

Appendix B

Test data for Quadratic Equation Problem

Test

case

Test

Case

Value

Path

Complex-

ity

Branches

covered

Cov(t)

for

branches

Faults detected (Mutants

Killed)

t1 (0,0,0) 8 3 1 3,4,7,8,15,16,27,28

t2 (0,0,1) 8 3 1 3,4,7,8,14,27,28

t3 (0,0,4) 8 3 1 3,4,7,8,14,27,28

t4 (0,0,7) 8 4 1 3,4,7,8,14,27,28

t5 (0,0,8) 8 4 1 3,4,7,8,14,27,28

t6 (0,1,0) 8 4 1
2,4,5,6,7,8,15,16,

23,24,29,30,31,32

t7 (0,1,1) 8 4 1
2,4,5,6,7,8,13,23,

24,29,30,31,32

t8 (0,1,4) 8 4 1
2,4,5,6,7,8,13,14,23

,24,29,30,31,32

t9 (0,1,7) 8 4 1
2,4,5,6,7,8,13,14,23,

24,29,30,31,32

t10 (0,1,8) 8 4 1
2,4,5,6,7,8,13,14,23,

24,29,30,31,32

t11 (0,2,0) 8 4 1
2,3,4,5,6,7,8,15,16,23,

24,29,30,31,32

t12 (0,2,1) 8 4 1
2,3,4,5,6,7,8,13,23,

24,29,30,31,32

t13 (0,2,4) 8 4 1
2,3,4,5,6,7,8,13,23,

24,29,30,31,32

82

Appendix 83

t14 (0,2,7) 8 4 1
2,3,4,5,6,7,8,13,14,23,

24,29,30,31,32

t15 (0,2,8) 8 4 1
2,3,4,5,6,7,8,13,14,23,

24,29,30,31,32

t16 (0,3,0) 8 4 1
1,2,3,4,5,6,7,8,15,16,23,

24,29,30,31,32

t17 (0,3,1) 8 4 1
1,2,3,4,5,6,7,8,13,23,

24,29,30,31,32

t18 (0,3,4) 8 4 1
1,2,3,4,5,6,7,8,13,23,

24,29,30,31,32

t19 (0,3,7) 8 4 1
1,2,3,4,5,6,7,8,13,14,23,

24,29,30,31,32

t20 (0,3,8) 8 4 1
1,2,3,4,5,6,7,8,13,14,23,

24,29,30,31,32

t21 (0,4,0) 8 4 1
1,2,3,4,5,6,7,8,15,16,23,

24,29,30,31,32

t22 (0,4,1) 8 4 1
1,2,3,4,5,6,7,8,13,23,24,

29,30,31,32

t23t (0,4,4) 8 4 1
1,2,3,4,5,6,7,8,13,23,24,

29,30,31,32

t24 (0,4,7) 8 4 1
1,2,3,4,5,6,7,8,13,23,24,

29,30,31,32

t25 (0,4,8) 8 3 1
1,2,3,4,5,6,7,8,13,23,24,

29,30,31,32

t26 (1,0,0) 6 1 1 3,4,15,16,27,28

t27 (1,0,1) 6 1 1 3,4,27,28

t28 (1,0,4) 6 1 1 3,4,27,28

t29 (1,0,7) 6 1 1 3,4,6,14,27,28

t30 (1,0,8) 14 2 1 3,4,6,14,27,28

t31 (1,1,0) 6 1 1
2,4,5,6,9,13,14,15,16,17,18,19,20,

21,22,29,30,32

t32 (1,1,1) 6 1 1 8,16,27,28

t33 (1,1,4) 6 1 1 6,8,14,16,27,28

t34 (1,1,7) 6 1 1 6,8,14,16,27,28

t35 (1,1,8) 14 2 1 6,8,14,16,27,28

Appendix 84

t36 (1,2,0) 8 3 1
2,3,4,5,6,9,10,13,14,15,16,17,19,20,

21,22,29,30,32

t37 (1,2,1) 6 1 1 6,8,14,16,26,27,28

t38 (1,2,4) 6 1 1 6,8,14,15,16,26,27,28

t39 (1,2,7) 6 1 1 6,8,14,15,26,27,28

t40 (1,2,8) 14 2 1 6,8,14,15,26,27,28

t41 (1,3,0) 14 2 1
1,2,3,4,5,6,9,10,13,14,15,16,

17,18,19,20,21,22,29,30,32

t42 (1,3,1) 6 1 1
1,2,3,4,8,9,10,16,17,18,19,

20,21,22,29,30,32

t43 (1,3,4) 6 1 1 5,6,8,13,14,15,16,26,27,28

t44 (1,3,7) 6 1 1 6,8,14,15,16,26,27,28

t45 (1,3,8) 14 2 1 6,8,14,15,16,26,27,28

t46 (1,4,0) 14 2 1
1,2,3,4,5,6,9,10,13,14,15,

16,17,18,19,20,21,22,29,30,32

t47 (1,4,1) 8 2 1
1,2,3,4,8,9,10,16,17,18,

19,20,21,22,29,30,32

t48 (1,4,4) 6 1 1 5,6,8,13,14,15,16,26,27,28

t49 (1,4,7) 6 1 1 5,6,8,13,14,15,16,26,27,28

t50 (1,4,8) 8 2 1 5,6,8,13,14,15,16,26,27,28

t51 (3,0,0) 6 1 1 3,4,15,16,27,28

t52 (3,0,1) 6 1 1 3,4,27,28

t53 (3,0,4) 6 1 1 3,4,6,27,28

t54 (3,0,7) 6 1 1 3,4,6,27,28

t55 (3,0,8) 14 2 1 3,4,6,27,28

t56 (3,1,0) 6 1 1
2,4,5,6,9,13,14,15,16,17,18,

19,20,21,22,29,30,31,32

t57 (3,1,1) 6 1 1 16,27,28

t58 (3,1,4) 6 1 1 6,16,27,28

t59 (3,1,7) 6 1 1 6,27,28

t60 (3,1,8) 14 2 1 6,27,28

t61 (3,2,0) 6 1 1
2,3,4,5,6,9,10,13,14,15,16,

17,19,20,21,22,29,30,31,32

t62 (3,2,1) 6 1 1 6,7,8,16,26,27,28

t63 (3,2,4) 6 1 1 6,15,16,26,27,28

Appendix 85

t64 (3,2,7) 6 1 1 6,15,26,27,28

t65 (3,2,8) 14 2 1 6,15,26,27,28

t66 (3,3,0) 6 1 1
1,2,3,4,5,6,9,10,13,14,15,16,

17,18,19,20,21,22,29,30,31,32

t67 (3,3,1) 6 1 1 5,6,7,8,16,26,27,28

t68 (3,3,4) 6 1 1 6,7,8,14,15,16,26,27,28

t69 (3,3,7) 6 1 1 6,7,8,14,15,16,26,27,28

t70 (3,3,8) 14 2 1 6,7,8,14,15,16,26,27,28

t71 (3,4,0) 14 1 1
1,2,3,4,5,6,9,10,13,14,15,

16,17,18,19,20,21,22,29,30,31,32

t72 (3,4,1) 6 1 1
1,2,3,4,5,6,7,8,9,10,12,13,16,

17,18,19,20,21,22,23,24,29,30,31,32

t73 (3,4,4) 6 1 1 6,7,8,14,15,16,26,27,28

t74 (3,4,7) 6 1 1 6,7,8,14,15,16,26,27,28

t75 (3,4,8) 8 3 1 6,7,8,14,15,16,26,27,28

t76 (5,0,0) 6 1 1 3,4,15,16,27,28

t77 (5,0,1) 6 1 1 3,4,6,27,28

t78 (5,0,4) 6 1 1 3,4,6,27,28

t79 (5,0,7) 6 1 1 3,4,6,27,28

t80 (5,0,8) 14 2 1 3,4,6,27,28

t81 (5,1,0) 6 1 1
2,4,5,6,9,13,14,15,16,17,18,

19,20,21,22,29,30,31,32

t82 (5,1,1) 6 1 1 6,7,16,27,28

t83 (5,1,4) 6 1 1 6,7,16,27,28

t84 (5,1,7) 6 1 1 6,7,27,28

t85 (5,1,8) 14 2 1 6,7,27,28

t86 (5,2,0) 6 1 1
2,3,4,5,6,9,10,13,14,15,16,17,19,

20,21,22,29,30,31,32

t87 (5,2,1) 6 1 1 6,7,16,26,27,28

t88 (5,2,4) 6 1 1 6,7,16,26,27,28

t89 (5,2,7) 6 1 1 6,7,16,26,27,28

t90 (5,2,8) 14 2 1 6,7,16,26,27,28

t91 (5,3,0) 6 1 1
1,2,3,4,5,6,9,10,13,14,15,

16,17,18,19,20,21,22,29,30,31,32

t92 (5,3,1) 6 1 1 6,7,8,16,26,27,28

Appendix 86

t93 (5,3,4) 6 1 1 6,7,15,16,26,27,28

t94 (5,3,7) 6 1 1 6,7,15,16,26,27,28

t95 (5,3,8) 14 2 1 6,7,15,16,26,27,28

t96 (5,4,0) 6 1 1
1,2,3,4,5,6,9,10,13,14,15,

16,17,18,19,20,21,22,29,30,31,32

t97 (5,4,1) 6 1 1 5,6,7,8,16,26,27,28

t98 (5,4,4) 6 1 1 6,7,15,16,26,27,28

t99 (5,4,7) 6 1 1 6,7,14,15,16,26,27,28

t100 (5,4,8) 8 3 1 6,7,14,15,16,26,27,28

t101 (6,0,0) 6 1 1 3,4,15,16,27,28

t102 (6,0,1) 6 1 1 3,4,6,27,28

t103 (6,0,4) 6 1 1 3,4,6,27,28

t104 (6,0,7) 6 1 1 3,4,6,27,28

t105 (6,0,8) 14 2 1 3,4,6,27,28

t106 (6,1,0) 6 1 1
2,4,5,6,9,13,14,15,16,17,

18,19,20,21,22,29,30,31,32

t107 (6,1,1) 6 1 1 6,7,16,27,28

t108 (6,1,4) 6 1 1 6,7,16,27,28

t109 (6,1,7) 6 1 1 6,7,27,28

t110 (6,1,8) 14 2 1 6,7,16,27,28

t111 (6,2,0) 6 1 1
2,3,4,5,6,9,10,13,14,15,

16,17,19,20,21,22,29,30,31,32

t112 (6,2,1) 6 1 1 6,7,16,26,27,28

t113 (6,2,4) 6 1 1 6,7,16,26,27,28

t114 (6,2,7) 6 1 1 6,7,15,16,26,27,28

t115 (6,2,8) 14 2 1 6,7,15,16,26,27,28

t116 (6,3,0) 6 1 1
1,2,3,4,5,6,9,10,13,14,15,

16,17,18,19,20,21,22,29,30,31,32

t117 (6,3,1) 6 1 1 6,7,8,16,26,27,28

t118 (6,3,4) 6 1 1 6,7,15,16,26,27,28

t119 (6,3,7) 6 1 1 6,7,15,16,26,27,28

t120 (6,3,8) 14 2 1 6,7,15,16,26,27,28

t121 (6,4,0) 6 1 1
1,2,3,4,5,6,9,10,13,14,15,16,

17,18,19,20,21,22,29,30,31,32

t122 (6,4,1) 6 1 1 5,6,7,8,16,26,27,28

Appendix 87

t123 (6,4,4) 6 1 1 6,7,15,16,26,27,28

t124 (6,4,7) 6 1 1 6,7,15,16,26,27,28

t125 (6,4,8) 8 1 1 6,7,15,16,26,27,28

Test data for Simple Calculator Program

Test

case

Test Case

Value

Path

Complex-

ity

Branches

covered

Cov(t)

for

branches

Faults detected (Mutants

Killed)

t1 (-2 + -1) 3 1,3,5,6, 8 4

t2 (-1 + -1) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t3 (7 + -1) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t4 (11 + -1) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t5 (12 + -1) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t6 (-2 + 0) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t7 (-1 + 0) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t8 (7 + 0) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t9 (11 + 0) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t10 (12 + 0) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t11 (-2 + 6) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t12 (-1 + 6) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t13 (7 + 6) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t14 (11 + 6) 3 1,3,5,6, 8 4 1,2,4,5,6,7

t15 (12 + 6) 3 1,3,5,6, 8 4

t16 (-2 + 9) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t17 (-1 + 9) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t18 (7 + 9) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t19 (11 + 9) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t20 (12 + 9) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t21 (-2 + 10) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t22 (-1 + 10) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t23 (7 + 10) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t24 (11 + 10) 3 1,3,5,6, 8 4 1,2,3,4,5,6,7,8,9,10,11,12

t25 (12 + 10) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t26 (-2 - -1) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

Appendix 88

t27 (-1 - -1) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t28 (7 - -1) 4 1,3,10 3 1,2,4,5,6,7

t29 (11 - -1) 4 1,3,10 3

t30 (12 - -1) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t31 (-2 - 0) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t32 (-1 - 0) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t33 (7 - 0) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t34 (11 - 0) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t35 (12 - 0) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t36 (-2 - 6) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t37 (-1 - 6) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t38 (7 - 6) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t39 (11 - 6) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t40 (12 - 6) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t41 (-2 - 9) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t42 (-1 - 9) 4 1,3,10 3 1,2,4,5,6,7

t43 (7 - 9) 4 1,3,10 3

t44 (11 - 9) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t45 (12 - 9) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t46 (-2 - 10) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t47 (-1 - 10) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t48 (7 - 10) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t49 (11 - 10) 4 1,3,10 3 1,2,3,4,5,6,7,8,9,10,11,12

t50 (12 - 10) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t51 (-2 * -1) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t52 (-1 * -1) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t53 (7 * -1) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t54 (11 * -1) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t55 (12 * -1) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t56 (-2 * 0) 2 1,3, 11 3 1,2,4,5,6,7

t57 (-1 * 0) 2 1,3, 11 3

t58 (7 * 0) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t59 (11 * 0) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t60 (12 * 0) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

Appendix 89

t61 (-2 * 6) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t62 (-1 * 6) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t63 (7 * 6) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t64 (11 * 6) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t65 (12 * 6) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t66 (-2 * 9) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t67 (-1 * 9) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t68 (7 * 9) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t69 (11 * 9) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t70 (12 * 9) 2 1,3, 11 3 1,2,4,5,6,7

t71 (-2 * 10) 2 1,3, 11 3

t72 (-1 * 10) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t73 (7 * 10) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t74 (11 * 10) 2 1,3, 11 3 1,2,3,4,5,6,7,8,9,10,11,12

t75 (12 * 10) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t76 (-2 / -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t77 (-1 / -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t78 (7 / -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t79 (11 / -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t80 (12 / -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t81 (-2 / 0) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t82 (-1 / 0) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t83 (7 / 0) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t84 (11 / 0) 4 1,3, 12 3 1,2,4,5,6,7

t85 (12 / 0) 4 1,3, 12 3

t86 (-2 / 6) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t87 (-1 / 6) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t88 (7 / 6) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t89 (11 / 6) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t90 (12 / 6) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t91 (-2 / 9) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t92 (-1 / 9) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t93 (7 / 9) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t94 (11 / 9) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

Appendix 90

t95 (12 / 9) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t96 (-2 / 10) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t97 (-1 / 10) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t98 (7 / 10) 4 1,3, 12 3 1,2,4,5,6,7

t99 (11 / 10) 4 1,3, 12 3

t100 (12 / 10) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t101 (-2 ˆ -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t102 (-1 ˆ -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t103 (7 ˆ -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t104 (11 ˆ -1) 4 1,3, 12 3 1,2,3,4,5,6,7,8,9,10,11,12

t105 (12 ˆ -1) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t106 (-2 ˆ 0) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t107 (-1 ˆ 0) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t108 (7 ˆ 0) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t109 (11 ˆ 0) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t110 (12 ˆ 0) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t111 (-2 ˆ 6) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t112 (-1 ˆ 6) 3 1,3, 16 3 1,2,4,5,6,7

t113 (7 ˆ 6) 3 1,3, 16 3

t114 (11 ˆ 6) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t115 (12 ˆ 6) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t116 (-2 ˆ 9) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t117 (-1 ˆ 9) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t118 (7 ˆ 9) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t119 (11 ˆ 9) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t120 (12 ˆ 9) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t121 (-2 ˆ 10) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t112 (-1 ˆ 10) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t123 (7 ˆ 10) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t124 (11 ˆ 10) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t125 (12 ˆ 10) 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

t126 (-2)2 3 1,3, 16 3 1,2,4,5,6,7

t127 (-1)2 3 1,3, 16 3

t128 (7)2 3 1,3, 16 3 1,2,3,4,5,6,7,8,9,10,11,12

Appendix 91

t129 (11)2 3 1, 3, 14 3 1,2,3,4,5,6,7,8,9,10,11,12

t130 (12)2 3 1, 3, 14 3 1,2,3,4,5,6,7,8,9,10,11,12

t131 (-2)3 3 1, 3, 14 3
13,14,15,16,17,18,19,20,21,22,

23,24

t132 (-1)3 3 1, 3, 14 3
13,14,15,16,17,18,19,20,21,22,

23,24

t133 (7)3 3 1, 3, 14 3
13,14,15,16,17,18,19,20,21,22,

23,24

t134 (11)3 3 1, 3, 14 3
13,14,15,16,17,18,19,20,21,22,

23,24

t135 (12)3 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

t136 (-2)1/2 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

t137 (-1)1/2 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

t138 (7)1/2 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

t139 (11)1/2 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

t140 (12)1/2 3 1,3,15 3
13,14,15,16,17,18,19,20,21,22,

23,24

Test data for Triangle Problem

Test

case

Test Case

Value

Statements

Covered

Branches

covered

Cov(t)

for

branches

Faults detected (Mutants

Killed)

t1 (1,2,3) 4 2,4,6,7,9 5

t2 1,2,4) 4 2,4,6,7,9 5

t3 (1,2,5) 4 2,4,6,7,9 5

t4 (1,2,7) 4 2,4,6,7,9 5

t5 (1,2,8) 4 2,4,6,7,9 5

t6 (1,3,3) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t7 1,3,4) 4 2,4,6,7,9 5

t8 (1,3,5) 4 2,4,6,7,9 5

Appendix 92

t9 (1,3,7) 4 2,4,6,7,9 5

t10 (1,3,8) 4 2,4,6,7,9 5

t11 (1,4,3) 4 2,4,6,7,10,12,13 7

t12 1,4,4) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t13 (1,4,5) 4 2,4,6,7,9 5

t14 (1,4,7) 4 2,4,6,7,9 5

t15 (1,4,8) 4 2,4,6,7,9 5

t16 (1,6,3) 4 2,4,6,7,10,12,13 7

t17 1,6,4) 4 2,4,6,7,10,12,13 7

t18 (1,6,5) 4 2,4,6,7,10,12,13 7

t19 (1,6,7) 4 2,4,6,7,9 5

t20 (1,6,8) 4 2,4,6,7,9 5

t21 (1,7,3) 4 2,4,6,7,10,12,13 7

t22 1,7,4) 4 2,4,6,7,10,12,13 7

t23 (1,7,5) 4 2,4,6,7,10,12,13 7

t24 (1,7,7) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t25 (1,7,8) 4 2,4,6,7,9 5

t26 (2,2,3) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t27 (2,2,4) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t28 (2,2,5) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t29 (2,2,7) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t30 (2,2,8) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t31 (2,3,3) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t32 (2,3,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,32,34,35,36

t33 (2,3,5) 4 2,4,6,7,9 5 25

t34 (2,3,7) 44 2,4,6,7,9 5

t35 (2,3,8) 4 2,4,6,7,9 5

t36 (2,4,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t37 (2,4,4) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t38 (2,4,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,32, 34,35,36

t39 (2,4,7) 4 2,4,6,7,9 5 25

t40 (2,4,8) 4 2,4,6,7,9 5

t41 (2,6,3) 4 2,4,6,7,10,12,13 7

t42 (2,6,4) 4 2,4,6,7,10,12,13 7 33

Appendix 93

t43 (2,6,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t44 (2,6,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,32, 34,35,36

t45 (2,6,8) 4 2,4,6,7,9 5 25

t46 (2,7,3) 4 2,4,6,7,10,12,13 7

t47 (2,7,4) 4 2,4,6,7,10,12,13 7 33

t48 (2,7,5) 4 2,4,6,7,10,12,13 7 33

t49 (2,7,7) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47, 48

t50 (2,7,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,32, 34,35,36

t51 (3,2,3) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43, 44

t52 (3,2,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32, 34, 36

t53 (3,2,5) 4 2,4,6,7,9 5 25

t54 (3,2,7) 4 2,4,6,7,9 5

t55 (3,2,8) 4 2,4,6,7,9 5

t56 (3,3,3) 9 1,3,5,8,16,20,23,26 8 17,20,21,22,23,24, 46,47,48

t57 (3,3,4) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t58 (3,3,5) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t59 (3,3,7) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t60 (3,3,8) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t61 (3,4,3) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t62 (3,4,4) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t63 (3,4,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,32,34,35,36

t64 (3,4,7) 4 2,4,6,7,9 5 25

t65 (3,4,8) 4 2,4,6,7,9 5 25

t66 (3,6,3) 6 2,3,6,8,16,19,22 7 16,41

t67 (3,6,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t68 (3,6,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t69 (3,6,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t70 (3,6,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t71 (3,7,3) 6 2,3,6,8,16,19,21 7 16,41

t72 (3,7,4) 4 2,4,6,7,10,12,13 7

t73 (3,7,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t74 (3,7,7) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t75 (3,7,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t76 (4,2,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

Appendix 94

t77 (4,2,4) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t78 (4,2,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t79 (4,2,7) 4 2,4,6,7,9 5 25

t80 (4,2,8) 4 2,4,6,7,9 5

t81 (4,3,3) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t82 (4,3,4) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t83 (4,3,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t84 (4,3,7) 4 2,4,6,7,9 5 25

t85 (4,3,8) 4 2,4,6,7,9 5 25

t86 (4,4,3) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t87 (4,4,4) 9 1,3,5,8,16,20,23,26 8 17,20,21,22,23,24,46,48,49

t88 (4,4,5) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t89 (4,4,7) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t90 (4,4,8) 6 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t91 (4,6,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t92 (4,6,4) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t93 (4,6,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t94 (4,6,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t95 (4,6,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t96 (4,7,3) 4 2,4,6,7,10,12,13 7 33

t97 (4,7,4) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t98 (4,7,5) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t99 (4,7,7) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t100 (4,7,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t101 (5,2,3) 4 2,4,6,7,10,11 6 29,30

t102 (5,2,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t103 (5,2,5) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t104 (5,2,7) 4 2,4,6,7,9 5 25

t105 (5,2,8) 4 2,4,6,7,9 5 25

t106 (5,3,3) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t107 (5,3,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t108 (5,3,5) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t109 (5,3,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t110 (5,3,8) 4 2,4,6,7,9 5 25

Appendix 95

t111 (5,4,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t112 (5,4,4) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t113 (5,4,5) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t114 (5,4,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t115 (5,4,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t116 (5,6,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t117 (5,6,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t118 (5,6,5) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t119 (5,6,7) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t120 (5,6,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t121 (5,7,3) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t122 (5,7,4) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

t123 (5,7,5) 6 2,3,6,8,16,19,22 7 13,14,15,16,42,43,44

t124 (5,7,7) 9 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,48

t125 (5,7,8) 4 2,4,6,7,10,12,14 7 26,27,28,30,31,32,34,35,36

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Regression Testing
	1.1.1 Test Suite Minimization
	1.1.2 Regression Test Selection (RTS)
	1.1.3 Test Case Prioritization

	1.2 Prioritization Criteria
	1.2.1 Black Box Proritization Approaches
	1.2.1.1 Interaction Coverage Based Prioritization:
	1.2.1.2 Requirements Clustering Based Prioritization:
	1.2.1.3 History Based Test Case Prioritization:
	1.2.1.4 Hierarchical System Test Case Prioritization Technique:

	1.2.2 White Box Prioritization Approaches
	1.2.2.1 History Based Prioritization:
	1.2.2.2 Coverage Based Prioritization Techniques:

	1.3 Prioritization Algorithms
	1.3.1 Greedy Algorithm
	1.3.2 Additional Greedy Algorithm
	1.3.3 Genetic Algorithm
	1.3.4 Combined Genetic and Simulated Annealing Algorithm
	1.3.5 Ant Colony Optimization

	1.4 Problem Statement
	1.5 Research Questions
	1.6 Research Methodology
	1.7 Thesis Organization

	2 Literature Review
	2.1 Fault Based Prioritization Techniques
	2.2 Coverage Based Prioritization Approaches
	2.3 Analysis and Comparison
	2.4 Gap Analysis

	3 Proposed Approach
	3.1 Code Complexity Metrics
	3.1.1 Lines of Code Metric
	3.1.2 Function Point (FP) Analysis
	3.1.3 McCabe’s Cyclomatic Complexity
	3.1.4 Halstead’s Metric
	3.1.4.1 Operands
	3.1.4.2 Operators
	3.1.4.3 Size of The Vocabulary (n)
	3.1.4.4 Program Length (Program Size N)
	3.1.4.5 Volume of Program (V)
	3.1.4.6 Difficulty Level (D)
	3.1.4.7 Program Level (L)
	3.1.4.8 Effort to Implement (E)
	3.1.4.9 Time to Implement (T)
	3.1.4.10 Estimated Program Length
	3.1.4.11 Number of Delivered Bugs (B)

	3.1.5 Why Halstead’s Metric?
	For this example:

	3.2 Path Complexity Based Prioritization
	3.2.1 Path Extraction
	3.2.2 Calculation of Path Complexity
	3.2.3 Applying Prioritization Algorithm

	3.3 Example

	4 Implementation
	4.1 Implementation Details
	4.1.1 Equivalence Class Partitioning
	4.1.2 Boundary Value Analysis

	4.2 User Interface
	4.2.1 Test Case Generation
	4.2.2 Path Extraction
	4.2.3 Path Complexity Calculation
	4.2.4 Test Case Prioritization

	5 Results and Discussion
	5.1 Subject programs
	5.1.1 Simple Calculator Program:
	5.1.2 Quadratic Equation Problem:
	5.1.3 Triangle Problem:

	5.2 Comparison

	6 Conclusion and Future Work
	6.1 Future Work

	Bibliography
	Appendix A
	Appendix B

