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Abstract

In this thesis we discuss non-collinear central configurations for four masses which

are symmetric about the center of mass. Basically we consider a problem in which

we are given a symmetric concave configuration of four bodies under those con-

ditions in which it is permissible to select positive masses in order to make it

central. We get four equations of motions for four massive bodies. The arrange-

ment of masses are such that m1,m2 and m3 lies on the vertices of a tetrahedron

such that all distances between the masses are equal and m4 be any positive real

number greater then 0 lie either inside the triangle or on the symmetrical axis.

We also configure that no central configuration exist for positive masses in some

localities. Contrarily, if we consider any configuration in the complement of union

of these region, we may choose any possible positive masses in order to make these

configuration central.
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Chapter 1

Introduction

Celestial Mechanics is defined as the science of studying the motion of celes-

tial bodies. Basically it is that branch of astronomy which deals with the motion

of heavenly bodies in space. Historically, celestial mechanics applies standards

of physics (classical mechanics) to astronomical bodies, which includes stars and

planets. It is the science devoted to the study of the motion of the celestial bodies

on the basis of the laws of gravitation [1].

1.1 Historical background

Celestial Mechanics (CM) has its beginnings in early cosmology where the move-

ments of the Sun, the Moon, and the five planets perceptible to the unassisted

eye-Mercury, Venus, Mars, Jupiter, and Saturn were determined and investigated.

The word planet is plagiarized from the Greek word “wanderer”. In the 18th-19th

centuries, celestial mechanics was progressing with perpetual achievement in de-

veloping highly precise theories of the movements of the planets and the Moon.

In the end of 19th century, Poincare (who contributed so much to the improve-

ment of celestial mechanics) developed the aim of celestial mechanics to be the

solution of the question that whether Newtons law of gravitation alone is adequate

to clarify the entirety of the observed movements of celestial bodies.

1
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Poincare has indeed received general acknowledgment in pure mathematics and

theoretical physics. However, this formulation of aim of celestial mechanics ex-

hibits that Poincare has contributed an essential part to the conspiracy of astro-

nomical observations with the consequences of mathematical and physical theories.

Modern celestial mechanics initiated with Isaac Newton’s Principia of Mathemat-

ica in 1687 [2].

Johannes Kepler (1571 − 1630), the first astronomer to closely accommodate

the predictive geometrical astronomy, that have been prevalent from “Ptolemy” in

the 2nd century to “Copernicus”, with physical conception to yield a new astron-

omy, based upon Causes or Celestial Physics in 1609. His work depend upon the

modern laws of planetary orbits, which he refined using his physical assumptions

and the planetary conclusions made by Tycho Brahe. Kepler’s model significantly

enhanced the accuracy of predictions of planetary motion, years earlier than Isaac

Newton evolved his law of gravitation in 1686.

Isaac Newton (1642 − 1727) is one of the most famous mathematician who

introduces the idea that the movements of bodies in the heavens, such as the Sun,

the Moon and planets, and the movement of bodies on the ground, similar to can-

non balls and falling apples, could be characterized by the similar arrangement of

physical laws. In this way he combined celestial and terrestrial dynamics. Kepler’s

Laws for the case of a circular orbit is easy to prove by simple using “Newton’s law

of universal gravitation”. Elliptical orbits contain more complicated calculations,

that Newton defined in his “Principia of Mathematica” [3].

After Newton, Lagrange (1736 − 1813) attempted to solve the 3BP, analyzed

the stability of planetary orbits, and found the presence of the Lagrangian points.

Lagrange additionally reformulated the standards of classical mechanics, empha-

sizing energy more than force and building up a strategy to utilize a single polar

coordinate equation to describe any orbit, even those that are parabolic and hy-

perbolic. It is helpful for computing the conduct of planets and comets. More

recently, it has also become valuable to ascertain spacecraft trajectories.
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Simon Newcomb (1835 − 1909) was a Canadian-born mathematician who also

work on mathematical astronomy. He revised Peter Andreas Hansen’s table of

lunar positions. In 1877, under “George William Hill” (American astronomer)

counseling, he recalculated all the major astronomical constants.

Newcombs most important work appeared in the astronomical papers prepared

for the use of the American Ephemeris and Nautical Almanac, a series of mem-

oirs that he founded in 1879 with the object of giving a systematic determination

of the constants of astronomy from the best existing data, a re-investigation of

the theories of the celestial motions, and the preparation of tables, formulae, and

perceptions for the construction of ephemerides, and for other applications of the

same results. Among them were his tables of the Sun, Mercury, Venus, Mars,

Uranus, and Neptune, along with tables of Jupiter and Saturn that were devised

by G. W. Hill. These tables were used throughout most of the world for calculat-

ing daily positions of the objects from 1901 to 1959.

The 2-body problem (2BP) is to predict the motion of two massive objects which

are abstractly viewed as point particles. The 2BP [4] is most common in the

case of a gravity that occurs in astronomy to determine orbits of objects such as

satellites, planets and stars. Newton solved 2BP by using his fundamental law

of gravity. Newtonian mechanics is a mathematical model whose purpose is to

explore the motions of the various objects in the universe.

The basic concept of this model were first enunciated by sir Isaac Newton in a work

entitled “Philosophiae Naturalis Principia Mathematica”. This work was

published in 1687. The problem has no significant solution for N ≥ 3. Although

we have a R3BP that gives a particular solution. The 3BP is the problem of tak-

ing the initial positions and velocities of three point masses and solving for their

subsequent motion according to Newton’s laws of motion and Newton’s law of

universal gravitation. The 3BP is a special case of the N-body problem. The 3BP

deals with gravitationally interacting astronomical bodies and intends to predict

their motions. The 3BP have been studied over three hundred years. It arose in

an attempt to understand the Sun’s effect on the motion of the Moon around the
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Earth. NBP also known as many body problem [5].

The many body problem was first formulated precisely by Newton. In its form

where the object involve point masses: “it may be stated as given at any time

the position and velocities of three or more massive particles moving under their

mutual gravitational forces, the mass also being known, calculated their positions

and velocities at any other time”.

The NBP [6] which predicts the individual motion of a system of celestial bodies

that gravitationally attract with each other. Mathematicians and astronomers

continued to work on the NBP over the last four centuries. First of all, Kepler in

his planetary motion laws [7] defining the elliptical trajectories of planets around

the Sun. Most important works in science history in which Newton derived and

formulated Kepler’s law. Newton turned his attention to comparatively more dif-

ficult systems, after the justification of Kepler’s laws. Although, he was unable to

achieve any breakthrough in (3BP) throughout his life after much struggle.

1.2 Newtonian Four Body Problem (NFBP)

The NFBP is to determine the motion of four point masses that interacts each

other only by Newtons law of gravitation. In other words, they behave gravita-

tionally like four particles at a distance apart equal to the distance between their

centers. These four masses will be assumed to be sufficiently isolated from each

other in the universe so that only force acting is the inverse square force of their

mutual attraction along the line joining their centers.

Dziobek for the first time, discussed central configuration with relative distances

as coordinates. Moulton focused on the straight line solutions in the problem of

N bodies.

MacMillan and Bartky studied permanent configurations in the problem of four

bodies. Albouy, Fu and Sun have focused on the symmetry of planar four-body
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convex central configurations. Bernat, Llibre and Perez have discussed the pla-

nar central configurations of the 4BP with three equal masses. Pina and Lonngi

have studied central configurations for the planar Newtonian four-body problem.

[8]

1.2.1 Equation of Motion for NFBP

Let the system consists of four particles of masses m1,m2,m3 and m4 situated at

P1, P2, P3 and P4 respectively. Let Pi (i = 1, 2, 3, 4) be the position vectors of the

four particles respectively with respect to an inertial frame with O as the origin.

Considering the masses spherically symmetrical with homogeneous layers so that

they attract one another like point masses. The only forces acting are the mutual

Newtonian gravitational attractions between the bodies [8].

The equations of motion of the four particles given by Pina and Lonngi [9] can be

written as

m1ρ̈1 = +
Gm1m2(ρ2 − ρ1)

ρ312
+
Gm1m3(ρ3 − ρ1)

ρ313
+
Gm1m4(ρ4 − ρ1)

ρ314

m2ρ̈2 = −Gm2m1(ρ1 − ρ2)
ρ321

+
Gm2m3(ρ3 − ρ2)

ρ323
+
Gm2m4(ρ4 − ρ2)

ρ324

m3ρ̈3 = −Gm3m1(ρ1 − ρ3)
ρ331

+
Gm3m2(ρ2 − ρ3)

ρ332
+
Gm3m4(ρ4 − ρ3)

ρ334

m4ρ̈4 = −Gm4m1(ρ1 − ρ4)
ρ341

+
Gm4m2(ρ2 − ρ4)

ρ342
+
Gm4m3(ρ3 − ρ4)

ρ343

where ρij = ρji (i 6= j = 1, 2, 3, 4) are the distances between the ith and jth

particles, mj(j = 1, 2, 3, 4) denotes the masses of four particles and G is the grav-

itational constant.

The right hand sides of the above equations are the gravitational forces which are

derived from the potential energy given by

U = −Gm1m2

ρ12
− Gm1m3

ρ13
− Gm1m4

ρ14
− Gm2m3

ρ23
− Gm2m4

ρ24
− Gm3m4

ρ34
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Figure 1.1: Newtonian Four Body Problem

1.3 Central Configuration (CC)

In CM and the mathematics of the NBP, a central configuration (CC) is an

arrangement of point masses with the property that each mass is pulled by the

combined gravitational force of the system directly towards the center of mass,

with acceleration proportional to its distance from the center. CC’s play an im-

portant role in the study of the Newtonian N-body problem. For example,

they lead to the only explicit solutions of the equations of motion, they govern

the behavior of solutions near collisions, and they influence the topology of the

integral manifolds.[10]

1.3.1 Importance of CC’s

CC of the NBP are important because:

• They allow to compute all the homographic solutions [11].
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• If the N bodies are going to a simultaneous collision, then the particles tend

to a central configuration [12].

• If the N bodies are going simultaneously at infinity in parabolic motion (i.e.

the radial velocity of each particle tends to zero as the particle tends to

infinity), then the particles tend to a CC [13].

• There is a relation between central configurations and the bifurcations of the

hyper-surfaces of constant energy and angular momentum [14].

1.4 N-Body Problem (NBP)

The NBP consists in studying the motion of N point-like masses, interacting among

themselves through no other forces than their mutual gravitational attraction ac-

cording to Newtons gravitational law.

The 2BP deals with much of the essential work of astrodynamics, but by using

other bodies, we sometimes need to model the universe. The next logical move,

then, is to build 3BP formulas. NBP is another generalization of the 3BP. Gen-

erally, it takes a fixed number of integration constants to solve general differential

equations of motions in NBP.

Pizzetti [15] in 1904 proved that the configuration of the N bodies in a homo-

graphic solution is central at any instant of time. It is important to note that

homographic solutions with rotation and eventually with a dilatation only exist

for planar central configurations. For spatial central configurations all the homo-

graphic solutions only have a dilation [11].

Consider a simple gravity problem in which we have constant acceleration over

time, x(t) = x0. After integration, we get the velocity, ẋ(t) = x0t + x1. Integrat-

ing again gives, ẍ(t) = x2 + x1t + 1
2
x0t

2. We need to know the initial conditions

to complete the solution. This example is a straight forward analytical approach
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that uses initial values and constants of integration, called motion integrals. Un-

fortunately, this is not always a straightforward scenario. When initial conditions

itself do not have a solution, motion integrals will minimize the order of nonlinear

equations, also known as the dimensions of the dynamic system.

Preferably, if the number of integrals is equal to the order of nonlinear equations,

it should be reduced to zero. These integrals are the fixed functions of the initial

conditions, as well as the direction and velocity of the object at any moment, so

they are named as constants of the motion.

1.4.1 Equation of Motion in the NBP

The equations of motion of a system of N particles are described by a set of N

ordinary differential equations, each of which is simply Newton’s second law of

motion applied to an individual particle.

First, here we set up the equations of motions of N large particles of masses

mk(k = 1, 2, 3, 4...N) whose radius vectors are rk from a non-accelerated point O

while their mutual radius vectors are rkj and

rkj = rj − rk (1.1)

The equations of motion of the NBP are

mkr̈k = G

N∑
j=1j 6=k

mkmj

r3kj
rkj, (1.2)

for k = 1, ..., N where G is the gravitational constant, rk ∈ R3 is the position

vector of the punctual mass mk in an inertial system, and rjk is the Euclidean

distance between the masses mj and mk, thus

rkj = −rjk (1.3)
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1.5 Four Body Central Configuration

The four-body classification of CC’s is much more difficult and generally unsolved

than the three-body case. The equilateral triangle in the three-body case, is a rel-

ative equilibrium for any mass choice. No configurations are central configurations

for each mass vector in the N = 4 planar problem, although it is true that any N

masses arranged in a normal N − 1 simplex in RN−1 form a central configuration

[16]. Note that the Lagrange’s configuration is a specific example of Saari’s N = 3;

the N = 4 case was actually first discovered in 1891 by Lehmann-Filhes.

There are two special cases in which the central four-body configurations are un-

derstood. Gannaway [17] and Arensdorf [18] have studied the limiting case in

which one of the four masses goes to zero, often referred to as the 3 + 1 case, and

the case in which all four masses are equal has recently been classified by Albouy

[19].

There are only four classes of equivalence of planar central configurations for the

equal mass case: an equilateral triangle with a mass at its center, the square,

a collinear configuration, and a unique isosceles triangle with another mass on

its symmetry axis. The last type of central configuration will be referred to as an

isosceles configuration. Notice that all the CC’s have at least one axis of symmetry

under reflection for the equal mass case [20].

1.6 Thesis Contribution

In this thesis [21] we review and investigate a concave non-collinear NFBP which

involves symmetrical arrangements for four masses such that either one is present

inside the triangle formed by other three to form an equilateral triangle or it is

located at the center of the triangle to form an isosceles triangle. The masses are

m1,m2,m3 and m4. These four masses are arranged in a way that m1 = m2 =

m3 > 0 and m4 be any positive real number that is greater then 0.

In the first part we study the CC of all the four given masses, i.e m1 to m4.

Secondly we proved some theorems related to our problem. In the last we draw
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possible regions in st-plane so that the mass functions are positive and investigate

all the four point masses graphically .

1.7 Dissertation Outlines

We split this dissertation into five chapters.

In Chapter 1 we introduce the given problem and briefly discuss the purpose

of this research.

Chapter 2 includes some basic definitions related to CM like momentum, sym-

metry, central configuration etc and important terms related to research are also

defined..

In Chapter 3 the paper [21] is comprehensively reviewed.

Chapter 4 includes the graphical analysis of all the four point masses m1,m2,m3

and m4.

Chapter 5 summarizes the entire research with concluding remarks.

References used in the thesis are mentioned in Bibliography.



Chapter 2

Preliminaries

This chapter includes some basic definitions and basic concepts that will help us

in better understanding of our objective research.

2.1 Basic definitions

2.1.1 Mechanics

“The area of physics concerned with the study of motion is known as mechanics.”

[22]

2.1.2 Dynamics

“The branch of mechanics that deals with the motion of bodies under some action

of forces is known as Dynamics.” [22]

2.1.3 Kinematics

“The mechanical branch concerned with the object movement without reference

to the focus which induces motion is known as Kinematics.” [22]

11
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2.1.4 Statics

“The mechanical branch concerned with those conditions under which no motion

is evident.” [22]

2.1.5 Motion

“The phenomenon in which an object changes its location over time is motion.

Motion is mathematically defined in terms of displacement, distance, velocity,

acceleration, speed, and time.”[22]

2.1.6 Velocity

“In relation to a frame of reference, the velocity of an object is the rate of change

of its location and is a function of time.” [22]

2.1.7 Acceleration

“Acceleration is a vector quantity defined as the rate at which the object changes

its velocity.” [22]

2.1.8 Momentum

“Momentum can be defined in short as “mass in motion.” As all objects contains

mass so if an object is in motion, then it has momentum. Momentum depends upon

the two variables mass and velocity. Mathematically, momentum can be defined as

P = mv

where m is the mass and v is the velocity. Above expression illustrates that

momentum is directly proportional to an object’s mass and velocity.” [22]
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2.1.9 Angular Momentum

“Angular momentum for a point-like particle of mass m with linear momentum D

about a point O, defined by the equation

B = r×D,

where r is the vector from the point O to the particle. The torque about the point

O acting on the particle is equal to the rate of change of the angular momentum

about the point O of the particle i.e.,

τ =
dB

dt
.”[22]

2.1.10 Conservation of Angular Momentum

“ It states that if the net external torque acting on a particle is zero, the angular

momentum will remain unchange. Mathematically

d

dt
(r×D) = 0 or r×D = constant.”[22]

2.1.11 Conservation of Energy

“In a conservative force field the total energy (i.e the sum of kinetic energy and

potential energy) remains constant. This is known as the principle of conservation

of energy. Mathematically

U = W +Q,

where

• U is the total energy of a system.

• Q is the kinetic energy of a system.

• W is the potential energy of a system.”[22]



Preliminaries 14

2.1.12 Conservation of Momentum

“If we put F = 0 in Newton’s second law, we find

d

dt
(mv) = 0 or mv = constant

This leads to the following statement that if the net external force acting on a

particle is zero, its momentum will remain unchange. It is known as Principle of

Conservation of Momentum.” [22]

2.1.13 Conservative Force Field

“ A force field F is conservative if and only if there exists a continuously differ-

entiable scalar field V such that F = −∇V . If there is no scalar function V such

that F = ∇V , then F is called Non-conservative force field.” [22]

2.1.14 Center of mass

“The center of mass is a position defined relative to an object or system of ob-

jects. It is the average position of all the parts of the system, weighted according

to their masses. In general the center of mass can be found by vector addition of

the weighted position vectors which point to the center of mass of each object in

a system. Mathematically, it is defined as

c =
m1x1 +m2x2 + ...+mnxn

m1 +m2 + ...+mn

.”[22]

2.1.15 Moment of Inertia

“ Moment of inertia is defined as the product of mass of section and the square of

the distance between the reference axis and the centroid of the section . Moment
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of inertia I is defined as the ratio of the net angular momentum L of a system to

its angular velocity ω around a principal axis that is

I =
L

ω
.”[23]

2.1.16 Orthogonal transformation

“Basically an orthogonal transformation is a linear transformation T : V → V

on a real inner product space V, that preserves the inner product. That is, for

each pair u, v of elements of V , we have

〈u, v〉 = 〈Tu, Tv〉.”[24]

2.1.17 Open and Closed Region in R2

“A region is open if it consists entirely of interior points whereas a region is closed

if it also contains all of its boundary points.”

Figure 2.1: x2 + y2 < 1(Open unit disk)
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Figure 2.2: x2 + y2 = 1(Boundary of unit disk)

Figure 2.3: x2 + y2 ≤ 1(Closed unit disk)

“A region in the plane is bounded if it lies inside a disk of fixed radius and a

region is unbounded if it is not bounded.”
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2.1.18 Symmetry

“In general, two points P1 and P2 are said to be symmetric to a line if the line is

the perpendicular bisector of the line segment joining the two points. In a similar

fashion a graph is said to symmetric to a line if all points of the graph can be

grouped into pairs which are symmetric to the line and then the line is called the

axis of symmetry of the graph. A point of symmetry occurs if all points on the

graph can be grouped into pairs so that all the line segments joining the pairs are

then bisected by the same point.”[25]

Figure 2.4: Symmetry about a line

Figure 2.5: Symmetry about a point
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2.1.19 Planes and Axis of Symmetry

“If any homogeneous body is symmetrical with respect to any plane, the center of

mass will be in that plane, because each element of mass on one side of the plane

can be paired with the corresponding element of mass on the other side and the

whole body can be divided into such paired elements. This plane is called a plane

of symmetry. Whereas if a homogeneous body is symmetrical with respect to

two planes, then the center of mass is in the line of their intersection. Such a line

is called axis of symmetry.”[25]

2.1.20 Newtonian Potential

“In mathematics, the Newtonian potential or Newton potential is an op-

erator in vector calculus that acts as the inverse to the negative Laplacian, on

functions that are smooth and decay rapidly enough at infinity. In its general

nature, it is a singular integral operator, defined by convolution with a function

having a mathematical singularity at the origin, the Newtonian kernel which is

the fundamental solution of the Laplace equation. It is named for Isaac Newton,

who first discovered it and proved that it was a harmonic function in the special

case of three variables, where it served as the fundamental gravitational potential

in Newton’s law of universal gravitation. In modern potential theory, the Newto-

nian potential is instead thought of as an electrostatic potential.”

2.1.21 Planar Central Configuration

”The planar central configurations of the 4-BP are classified as convex or

concave. Thus a central configuration is convex if none of the bodies is located

in the interior of the triangle formed by the other three. A central configuration is

concave if one of the bodies is in the interior of the triangle formed by the other

three.” [26]
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2.2 Kepler’s Laws

Johannes Kepler, an astronomer and mathematician, discovered three laws con-

cerning the motion of the planets. He discovered these laws from experimental

data without the aid of calculus or vector analysis. Newton, using calculus, ver-

ified these laws with the model for the inverse square law of attraction. Kepler’s

three laws can be defined as follows:

1. “Keplers first law states that all the planets of the solar system describe

elliptical paths with the sun at one focus.

r =
p

1 + k cos θ
,

where p = h2

GM
and k = C

GM
.”

2. “Kepler’s second law states that the position vector r sweeps out equal areas

in equal time intervals. Consider the area swept out by the position vector

of a planet during a time interval 4t. This element of area, in polar coordi-

nates, is written as

dW =
1

2
r2dθ.”

3. “Keplers third law depicts the fact that the square of the period of one revo-

lution is proportional to the cube of the semi-major axis of the elliptical orbit.

T 2 =

(
4π2

GMs

)
a3,

where T is the time period, a is the semi major axis, Ms is the mass of Sun

and G is the universal gravitational constant.”[25]



Preliminaries 20

2.3 Newton’s Laws of Motion

The following three laws of motion given by Newton are considered the axioms of

mechanics:

1. First law of motion: “Every particle persists in a state of rest or of uni-

form motion in a straight line unless acted upon by a force.”

2. Second law of motion: “ If F is the external force acting on a particle of

mass m which as a reaction is moving with velocity v, then

F =
d

dt
(mv) =

dP

dt
.

If m is independent of time this becomes

F = m
dv

dt
= ma,

where a is the acceleration of the particle.”

3. Third law of motion: “For every action, there is an equal and opposite

reaction.”

2.4 Newton’s Universal Law of Gravitation

“Every particle in the universe attracts every other particle with a force along a

line joining them. The force is directly proportional to the product of their masses

and inversely proportional to the square of the distance between them. In equation

form, this is

F = G
mM

r2

where F is the magnitude of the gravitational force. G is the gravitational constant,

given by G = 6.674× 10-11 N ·m2/kg2 [27].”
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2.5 Two Body Problem(2BP)

The 2BP, first explored and resolved by Newton, states: Assume that at any time

t, given the positions and velocities of two massive bodies moving under their

mutual gravitational force, then what will be their position and velocities for any

other time t, if the masses are given? For-example a planet orbiting around a star

and two stars orbiting around each other (Earth-Sun, Moon-Earth).

2.5.1 The Solution to the 2BP

“Between any two bodies of masses m1 and m2 at a distance s from each other

there exist attractive forces F12 and F21 directed from one body to the other. The

two forces have equal magnitude which is directly proportional to the product of

the masses and inversely proportional to the square of the distance”. Now New-

ton’s universal gravitational law can be rewritten as:

F12 = F21 = G
m1m2

s3
s, (2.1)

and

F12 = −F21, (2.2)

where the G is the universal gravitational constant that depends only on the chosen

system of units.

Let us now consider, in a given inertial reference system, two bodies of mass m1

and m2 respectively, s1 and s2 are their distance vectors from the origin of the

system. The equations of motion for 2BP are given by

m1s̈1 = m1
d2s1
dt2

= G
m1m2

s3
s, (2.3)

and

m2s̈2 = m2
d2s2
dt2

= −Gm1m2

s3
s, (2.4)
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where s = |s2− s1|. Now if we multiply the equation (2.1) by m1 and m2 and then

after some simplification we obtain,

m1s̈1 +m2s̈2 = 0 (2.5)

and, by defining

c =
m1s1 +m2s2
m1 +m2

(2.6)

By integrating, we immediately get

m1ṡ1 +m2ṡ2 = k1, (2.7)

that means the total linear momentum of the system remains constant.

Integrating again implies that

m1ṡ1 +m2ṡ2 = k1t+ k2, (2.8)

where k1 and k2 are constant vectors.

Now by using the equation (2.6), S is defined as:

(m1 +m2)S = m1s1 +m2s2,

mtS = m1s1 +m2s2, (2.9)

where mt = m1 +m2.

After taking derivative of equation (2.9) and comparing with equation (2.7),

we get

mtṠ = k1 ⇒ Ṡ =
k1

mt

= constant
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. Solving the equations (2.3) and (2.4), we get:

s̈1 − s̈2 =
Gm2

s3
s +

Gm1

s3
s, (2.10)

⇒ s̈ = α
s

s3

⇒ s̈ + α
s

s3
= 0, (2.11)

where α = G(m1 +m2).

Now taking the cross product of s with equation (2.11), we get:

s× αs̈ +
α2

s3
s× s = 0

⇒ s× s̈ = 0, (2.12)

⇒ s× αs̈ = 0,

⇒ s× F = 0, (2.13)

where F = αs̈ = αa (α is reduced mass i.e. constant). After integrating above

equation (2.12), we get:

s× ṡ = T, (2.14)

where T is a constant vector.

2.6 Three-Body Problem (3BP)

“The 3BP is the problem of taking the initial positions and velocities (or mo-

menta) of three point masses and solving for their subsequent motion according to

Newton’s laws of motion and Newton’s law of universal gravitation.” It originated

as an effort to understand the influence of the Sun on the movement of the Moon
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around the Earth.

The 3BP led to the discovery of the planet Neptune, describing the position and

stability of the planet and has strengthened our knowledge of the solar system’s sta-

bility. In the past, many physicists, astronomers and mathematicians attempted

unsuccessfully to find closed form solutions to the 3BP.

Such solutions do not exist because motions of the three bodies are in general

unpredictable, which makes the 3BP one of the most challenging problems in the

history of science.

2.6.1 The Solution to the 3BP

We assume a problem having 3-mass points moving under their mutual gravita-

tional attraction.

So the equation of motion for the 3BP will be

ma
d2ra
dt2

=
∑
b6=a

Gmamb
rb − ra
|rb − ra|3

, a = 1, 2, 3. (2.15)

where ma are the point masses with position vectors ra for a = 1, 2, 3.

Figure 2.6: Three Body problem



Preliminaries 25

where O is the origin of the coordinate system and J1,J2 and J3 are Jacobi vectors

defined as

J1 = r2 − r1, (2.16)

J2 = r3 −
m1r1 +m2r2
m1 +m2

, (2.17)

J3 =
m1r1 +m2r2 +m3r3

m1 +m2 +m3

. (2.18)

J3 is the coordinate of the CM (center of mass), J1 the position vector of m2

relative to m1 and J2 that of m3 relative to the CM of m1 and m2 (see figure

(2.6)). The important thing related to Jacobi vectors is that T =
1

2

∑
a=1,2,3maṙ

2
a

(kinetic energy) and I =
∑

a=1,2,3mar
2
a (moment of inertia) remains diagonal:

T =
1

2

∑
a=1,2,3

maJ̇
2
a,

I =
∑

a=1,2,3

maJ
2
a.

Here the potential energy V (in terms of J1 and J2) can be expressed as

V = −Gm1m2

|J1|
− Gm2m3

|J2 − µJ1|
− Gm3m1

|J2 + µJ1|
, (2.19)

where µ1 = m1

m1+m2
and µ2 = m2

m1+m2
. An instantaneous configuration of the three

bodies defines a triangle with masses at its vertices. The moment of inertia about

the center of mass ICM = M1J
2
1 +M2J

2
2 defines the size of the triangle.[28]

2.6.2 Restricted Three-Body Problem(R3BP)

“The R3BP is a simplified version of the 3BP where one of the mass m3 is assumed

much smaller than the other two m1 and m2. Thus, m1 and m2 move in Keplerian

orbits which are not affected by m3. In the planar circular R3BP, m1 and m2

move in fixed circular orbits around their common CM with angular speed ∧ =

(G(m1 +m2)/d
3)1/2 defined by Kepler‘s third law and m3 moves in the same plane

as m1 and m2. The two masses m1 and m2 are separated by d.”

This system has 2 degrees of freedom associated with the planar motion of m3 and
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therefore, a 4-D phase space just like the planar Kepler problem for the reduced

mass. However, unlike the latter which has three conserved quantities and is

exactly solvable, the planar R-3BP has only one known conserved quantity “Jacobi

integral”, which is the energy of m3 in the non-inertial frame of the primaries (i.e

m1 and m2):

E =

(
1

2
M3ṙ

2 +
1

2
m3r

2φ̇2

)
− 1

2
m3 ∧2 r2 −Gm3

(
m1

r1
+
m2

r2

)
≡ T + Veff . (2.20)

Here (r, φ) are the plane polar coordinates of m3 in the co-rotating frame of the

primaries (m1 and m2) with origin located at their CM while r1 and r2 are the

distances of m3 from m1 and m2. [28]

Figure 2.7: The secondary m3 in the co-rotating frame of primaries m1 and
m2 in the R3BP. The origin is located at the CM of m1 and m2 which coincides

with the CM of the system since m3 << m1 and m2.



Chapter 3

Planar Symmetric Concave

Central Configuration in

Newtonian Four Body Problem

3.1 Introduction and Important Results

The Newtonian N-Body problem [29–37] involves the motion of N points

with masses mi ∈ R+, i = 1, ...N .

The equation of motion for N -positive masses is directed by Gravitational law and

Newton’s second law:

miq̈i =
N∑
k 6=i

mkmi
qk − qi

|qk − qi|3
, i = 1, 2, ...N. (3.1)

Here qi ∈ Rd, (d = 1, 2, 3) is the position vector of the ith body, mi is the mass of

the ith body.

The above equation (3.1) can be written as

miq̈i =
∂U(q)

∂qi

, i = 1, 2, ...N (3.2)

27



Planar Symmetric Concave CC in NFBP 28

and

U(q) = U(q1, q2, q3, ..., qN) (3.3)

=
∑

1≤k<j≤i

mkmi

|qk − qj|
,

where U(q) is the Newtonian potential of the above system )3.1). The first mo-

mentum, total mass and center of mass is defined by

C = m1q1 +m2q2 + ....+mNqN ,

M = m1 +m2 +m3 + ...+mN ,

c =
C

M

respectively.

The set defined by ∆ = {q ∈ (Rd)N : qi = qj, i 6= j} is the set of collision

configurations, where a configuration q = (q1,q2, ...,qN) ∈ (Rd)N \ ∆ is called a

central configuration [11].

“A CC is basically a particular configuration of N-bodies where the acceleration

vector of each body is proportional to its position vector, and the constant of pro-

portionality is the same for N bodies.” Now if there exit some positive constant λ

then equation (3.1) can be written as

N∑
j=1,j 6=i

mj(qj − qi)

|qj − qi|3
= −λ(qi − c), i = 1, 2, 3, ..., N. (3.4)

Moreover, it can easily be classified [38] that λ = U
I

where I =
∑N

i=1mi|qi − c|2

denotes the inertial of the system (3.1). The set ∆ of central configuration re-

mains unchange under some transformations on (Rd)N . These transformations

are named as translation, scaling and orthogonal transformation.

Different forms of NBP persuade the analysis of CC. We can have a look in these

papers [16, 39–42], that allow to calculate the homographic solutions, and if the
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N-bodies are describing for a simultaneous collision, then the bodies turn to CC.

These configurations also appear as a key point when stating the topological re-

forms of the integral augment.

Few important results related to CC’s for NBP’s along with their masses are

greatly explained by some authors. Specially, Hampton-Moeckal [43] proved that

the number of relative equilibrium of the NFBP is finite with any given positive

masses, up to symmetry. They also show that this number always lie between 32

and 8472. But, except for the collinear one, the shapes of CC’s are very difficult to

research and it is still an important development about Smale-Wintner’s finiteness

conjecture of CC for NBP with given positive masses up to symmetry. Smale’s

problems are a list of 18 unsolved math problems suggested by Steve Smale in

1998. [11, 42]

Another scientist Cors-Roberts [44] also worked on four-body problem. They ba-

sically investigated four-body co-circular central configurations, where the bodies

are assumed to lie on a common circle with positive masses. They also proved

that it is a set of 2-D surface and the configuration has a line of symmetry if any

two of the masses of four-body co-circular configurations are equal. They also

studied that there are four-body central configurations with positive masses and

no symmetries.

Let m1,m2,m3,m4 be the four mass points. If one of these point mass lies in-

side the triangle formed by the remaining three point mass then a configuration

q = q1, q2, q3, q4 is said to be concave. Long and Sun [45] proved that:

3.1.1 Lemma

“Let α, β > 0 be any two given real numbers. Let q = (q1, q2, q3, q4) ∈ (R2)4 be

a concave non-collinear central configuration with masses (β, α, β, β) respectively,

and with q2 located inside the triangle formed by q1, q3 and q4. Then the con-

figuration q must posses a symmetry, so either q1, q2 and q4 form an equilateral

triangle and q2 is located at the center of the triangle, or q1, q3 and q4 form an
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isosceles triangle, and q2 is on the symmetrical axis of the triangle.”

Figure 3.1: The Symmetric Concave Configuration

In order to solve any problem or any theorem, first we consider an inverse of that

problem. Let a configuration is given, we have to calculate mass vectors to prove

that the given configuration is CC. In order to understand this problem we can see

that Moultan [39] and Wintner [11] take the inverse problem to solve for collinear

NBP. Moultan proved the two closely related problem for collinear NBP. One is

that, for N arbitrary positive masses we have to determine the ratios of the dis-

tances in order to show that the bodies will always remain collinear under proper

initial projection. Second problem is that of determining, if they are placed at N

arbitrary collinear points for N masses, they will always remain in a straight line

under proper initial projection.

Moeckel and Albouy [29] proved that for a given central configuration, each of

them determines a two-parameter family of masses to make it central where neg-

ative masses are also permitted. Similarly, Xie and Ouyang prove that it is often

possible to pick positive masses for any configuration in the complement of the
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compact region to make the configuration central. They also show that for any

given configuration, it can be a CC for infinitely many masses. A configuration is

said to be a super central configuration if it is a CC for m mass vector and another

mass vector m′, where m′ is the permutation of m and m′ 6= m.

Xie [46] also proved the super central configuration also exist in the collinear 4BP

by considering the inverse problem of CC of NBP. Their results were also used to

examine the number of central configurations under geometric equivalence in [47].

Marshall Hampton study few results of concave CC’s for 4BP in theorem 6, 7 and 8

in paper [48]. They proved that for a strictly admissible triangle, there is a special

CC, for which the triangle is the outer triangle with suitable parameter and the

forth point traces out a simple curve from the circumcenter to the equilateral point.

In the current study, we take an inverse problem that is for a given planar symmet-

ric concave configuration (see figure 3.1), we have to find a positive mass vectors

to make the configuration a central configuration.

Now, for 4 bodies, substituting N = 4 in equation (3.4), we get equations for CC

for general 4BP that are given below:

m2
q2 − q1

|q2 − q1|3
+m3

q3 − q1

|q3 − q1|3
+m4

q4 − q1

|q4 − q1|3
= −λ(q1 − c),

m1
q1 − q2

|q1 − q2|3
+m3

q3 − q2

|q3 − q2|3
+m4

q4 − q2

|q4 − q2|3
= −λ(q2 − c),

m1
q1 − q3

|q1 − q3|3
+m2

q2 − q3

|q2 − q3|3
+m4

q4 − q3

|q4 − q3|3
= −λ(q3 − c),

m1
q1 − q4

|q1 − q4|3
+m2

q2 − q4

|q2 − q4|3
+m3

q3 − q4

|q3 − q4|3
= −λ(q4 − c).


(3.5)

Chunhua Deng and Shiqing Zhang proved the following theorems:

3.1.2 Theorem 1

Let q1 = (−1, 0), q2 = (1, 0), q3 = (0, t), q4 = (0, s) where 0 < s < t and consider

that c = C
M

= (cx, cy) = q4 is the center of mass. The symmetric concave config-

uration q = (q1, q2, q3, q4) can be a central configuration iff t =
√

3, s =
√
3
3

. The
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masses of q1, q2 and q4 are all equal, i.e m1 = m2 = m3 > 0, where the mass of q4

can be any positive number m4 > 0.

3.1.3 Theorem 2

Let us consider q1 = (−1, 0), q2 = (1, 0), q3 = (0, t), q4 = (0, s) where 0 < s < t

and consider that c = C
M

= (cx, cy) 6= q4 is the center of mass. Then there ex-

ist two open bounded regions E and F which can be seen in the figure (3.8), the

configuration q = (q1, q2, q3, q4) can be a central configuration with positive masses:

m1 = m2 = λ
4
√

1 + t2
3
(t− cy)

t
√

1 + s2
3
(t− s)3

(t− s)3 −
√

1 + s2
3(

2√
1+s2

)3
−
(√

1+t2

t−s

)3 , (3.6)

m3 =
λs
√

1 + t2
3

√
1 + s2

6
(t− s)3

β

γ
, (3.7)

m4 =
λ(t− cy)
(t− s)

(8−
√

1 + t2
3
)((

2√
1+s2

)3
−
(√

1+t2

t−s

)3) , (3.8)

where β = (
√

1 + s2
3 − 8)(

√
1 + s2

3 − (t− s)3) and

γ =
(

t−s
(t−s)3 + s√

1+s2
3 − t√

1+t2
3

)
((

2√
1+s2

)3
−
(√

1+t2

t−s

)3)
.

3.2 Isosceles Concave Central Configuration with

Four Bodies

As we are given the values of q1 = (−1, 0), q2 = (1, 0), q3 = (0, t), q4 = (0, s) where

0 < s < t, then by using all these values in the the equation (3.5), it can be divided

into two parts:
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For x-axis:

m2

4
+

1
√

1 + t2
3m3 +

1
√

1 + s2
3m4 = λ(1 + cx)

m2

4
+

−1
√

1 + t2
3m3 +

−1
√

1 + s2
3m4 = −λ(1− cx)

−1
√

1 + t2
3m1 +

1
√

1 + t2
3m2 = λcx

−1
√

1 + s2
3m1 +

1
√

1 + s2
3m2 = λcx.


(3.9)

For y-axis:

t
√

1 + t2
3m3 +

s
√

1 + s2
3m4 = λcy

t
√

1 + s2
3m3 +

s
√

1 + s2
3m4 = λcy

−t
√

1 + t2
3m1 +

−t
√

1 + t2
3m2 +

s− t
(t− s)3

m3 = −λ(t− cy)

−s
√

1 + s2
3m1 +

−s
√

1 + s2
3m2 +

t− s
(t− s)3

m3 = −λ(s− cy).


(3.10)

As we can see that the first two equations equation (3.10) are similar.

Now, solving the third and forth equation in equation (3.9), we get the following

results

(
1

√
1 + s2

3 −
1

√
1 + t2

3

)
m1 +

(
1

√
1 + t2

3 −
1

√
1 + s2

3

)
m2 = 0,

(
1

√
1 + s2

3 −
1

√
1 + t2

3

)
(m2 −m1) = 0, (3.11)

for 0 < s < t, we have m1 = m2.

Adding the first two equations in equation (3.9) with m1 = m2. We get the

following result:

cx = 0
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Now, using all the above values and combining equation (3.9) and (3.10), we get

a system of equations for central configuration.

m2

4
+

1
√

1 + t2
3m3 +

1
√

1 + s2
3m4 = λ

t
√

1 + t2
3m3 +

s
√

1 + s2
3m4 = λcy

−2t
√

1 + t2
3m2 +

s− t
(t− s)3

m4 = −λ(t− cy)

−2s
√

1 + s2
3m2 +

t− s
(t− s)3

m3 = −λ(s− cy).


(3.12)

3.3 Proof of Theorem 1

In this part, we will find the solutions of all the four masses m1,m2,m3,m4 with

two given parameters s and t for the given 4 body CC.

We consider that the center of masses is denoted by c and its value can be deter-

mined by c = C
M

= q4 i.e cy = s. Now using all these assumptions, the system of

equation (3.12) for central configuration becomes

m2

4
+

1
√

1 + t2
3m3 +

1
√

1 + s2
3m4 = λ

t
√

1 + t2
3m3 +

s
√

1 + s2
3m4 = λs

−2t
√

1 + t2
3m2 +

s− t
(t− s)3

m4 = −λ(t− s)

−2s
√

1 + s2
3m2 +

t− s
(t− s)3

m3 = 0.


(3.13)

From the above system of equation, we can rewrite the forth equation as

2s
√

1 + s2
3m2 =

t− s
(t− s)3

m3,
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which implies,

m2 =

√
1 + s2

3

2s

t− s
(t− s)3

m3. (3.14)

Now using equation (3.14) in the third equation of system (3.13), we get

−2t
√

1 + t2
3

√
1 + s2

3

2s

t− s
(t− s)3

m3 +
s− t

(t− s)3
m4 = −λ(t− s), (3.15)

for 0 < s < t, we have

−t
√

1 + t2
3

√
1 + s2

3

s

1

(t− s)2
m3 −

1

(t− s)2
m4 = −λ(t− s),

which implies

t
√

1 + t2
3

√
1 + s2

3

s

1

(t− s)3
m3 +

1

(t− s)3
m4 = λ. (3.16)

From the second equation of system (3.13) we get

m3 =

(
λs− s

√
1 + s2

3m4

) √
1 + t2

3

t

Now using the above value of m3 in the equation (3.16), we get

t
√

1 + t2
3

√
1 + s2

3

s(t− s)3

(
λs− s

√
1 + s2

3m4

) √
1 + t2

3

t
+

1

(t− s)3
m4 = λ,

which implies
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t− s =
√

1 + s2. (3.17)

Using equation (3.17) in equation (3.14) and third equation of system (3.13), we

get

m2 =
t− s
2s

m3

and

m4 = λ
√

1 + s2
3
− 2t
√

1 + t2
3

√
1 + s2

3

t− s
m2.

Therefore, the last three equations in system (3.13) will be

t− s =
√

1 + s2

m4 = λ
√

1 + s2
3
− 2t
√

1 + t2
3

√
1 + s2

3

t− s
m2

m3 =
2s

t− s
m2


(3.18)

Now, using all the above values of equation (3.18) in the first equation of system

(3.13), we get

m2

4
+

1
√

1 + t2
3

2s

t− s
m2 + λ− 2t

√
1 + t2

3

√
1 + s2

3

t− s
m2 = λ,

m2

(
1

4
+

1
√

1 + t2
3

2s

t− s
− 2t
√

1 + t2
3

√
1 + s2

3

t− s

)
= 0.

After simplifying the above equation we get the following values of parameters s

and t.

t =
√

3, s =

√
3

3
. (3.19)

As we knew the values of s and t, so we have m1 = m2 = m3 and m4 =

8
9

√
3λ−

√
3
3
m2.
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Moreover, for any positive mass m4 > 0, we can take any value of λ > 0 such that

m4 = 8
9

√
3λ−

√
3
3
m2. Hence we have proved theorem 1.

3.4 The Proof of Theorem 2

Now, in this part, we consider that the center of mass is given by c = C
M
6= q4

i.e cy 6= s.

Now combining the second and third equation in system (3.12) and then eliminat-

ing m4, we get the following results:

s− t
(t− s)3

t
√

1 + t2
3m3 +

s
√

1 + s2
3

2t
√

1 + t2
3m2 = λ(acy + b), (3.20)

where a = s−t
(t−s)3 −

s√
1+s2

3 and b = st√
1+s2

3 .

Now taking the forth equation in (3.12) and multiply both sides by t√
1+t2

3 , we

get

t
√

1 + t2
3

2s
√

1 + s2
3m2 +

s− t
(t− s)3

t
√

1 + t2
3m3 = λ(cy − s)

t
√

1 + t2
3 . (3.21)

Now by solving equation (3.20) and (3.21), we get the following suitable conditions

for solving the system of equation (3.12).

λ

((
s− t

(t− s)3
− s
√

1 + s2
3

)
cy +

ts
√

1 + s2
3

)
− λ(cy − s)

t
√

1 + t2
3 = 0,

(
s− t

(t− s)3
− s
√

1 + s2
3

)
cy +

ts
√

1 + s2
3 = (cy − s)

t
√

1 + t2
3 . (3.22)

By solving the above equation (3.22), we get the value of cy, i.e

(
s− t

(t− s)3
− s
√

1 + s2
3

)
cy −

t
√

1 + t2
3 cy =

st
√

1 + s2
3 −

st
√

1 + t2
3 ,
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then

cy =

(
st

√
1 + s2

3 −
st

√
1 + t2

3

)
/

(
t− s

(t− s)3
+

s
√

1 + s2
3 −

t
√

1 + t2
3

)
. (3.23)

Now using the above, the system (3.12) becomes

cy =

(
st

√
1 + s2

3 −
st

√
1 + t2

3

)
/

(
t− s

(t− s)3
+

s
√

1 + s2
3 −

t
√

1 + t2
3

)
m2

4
+

1
√

1 + t2
3m3 +

1
√

1 + s2
3m4 = λ

t
√

1 + t2
3m3 +

s
√

1 + s2
3m4 = λcy

−2t
√

1 + t2
3m2 +

s− t
(t− s)3

m4 = −λ(t− cy)


(3.24)

Hence, third and forth equation in system (3.24) can be re-written as

t
√

1 + t2
3m3 = λcy −

s
√

1 + s2
3m4,

1
√

1 + t2
3m3 =

1

t

(
λcy −

s
√

1 + s2
3m4

)
(3.25)

and

2t
√

1 + t2
3m2 +

t− s
(t− s)3

m4 = λ(t− cy),

m2

4
=

(
λ(t− cy)−

t− s
(t− s)3

m4

) √
1 + t2

3

8t
. (3.26)

Substituting the above equation (3.25) and (3.26) into the second equation of
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system (3.24), we get

√
1 + t2

3

8t
X +

1

t
Y +

1
√

1 + S2
3m4 = λ, (3.27)

where X = λ(t− cy)−
t− s

(t− s)3
m4 and Y = λcy −

s
√

1 + s2
3m4. So

m4 =
λ(t− cy)
(t− s)

(8−
√

1 + t2
3
)((

2√
1+s2

)3
−
(√

1+t2

t−s

)3) (3.28)

Now, using the value of m4 in equation (3.25) and equation (3.26) we get the

following results.

m3 =

√
1 + t2

3

t

λcy − s
√

1 + s2
3

λ(t− cy)
(t− s)

(23 −
√

1 + t2
3
)((

2√
1+s2

)3
−
(√

1+t2

t−s

)3)

 .

(3.29)

m2 =

(
λ(t− cy)−

t− s
(t− s)3

m4

) √
1 + t2

3

2t
. (3.30)

After some manipulation, we get the final results.

m3 =
λs
√

1 + t2
3

√
1 + s2

6
(t− s)3

β

γ
, (3.31)

where β = (
√

1 + s2
3−8)(

√
1 + s2

3− (t−s)3) and γ =
(

t−s
(t−s)3 + s√

1+s2
3 − t√

1+t2
3

)
((

2√
1+s2

)3
−
(√

1+t2

t−s

)3)
.

Similarly

m2 = λ
4
√

1 + t2
3
(t− cy)

t
√

1 + s2
3
(t− s)3

((t− s)3 −
√

1 + s2
3
)

(( 2√
1+s2

)3 − (
√
1+t2

t−s )3)
. (3.32)
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As it is given that m1 = m2. So,

m1 = m2 = λ
4
√

1 + t2
3
(t− cy)

t
√

1 + s2
3
(t− s)3

((t− s)3 −
√

1 + s2
3
)((

2√
1+s2

)3
−
(√

1+t2

t−s

)3) . (3.33)

Hence we apply the condition (3.23) for the solution of masses and find the solu-

tion of all the four masses accuracy in the series of equation (3.28-3.33).

In the following equation we will compute the mass functions and compute the

most possible region in st-plane where we get the positive mass functions.

3.5 Lemma 1

The region in which m4 > 0 for 0 < s < t is the union of A and B in figure (3.11),

surrounded by curves t =
√

3, 2(t − s) −
√

1 + t2
√

1 + s2 = 0 and t − s = 0, i.e.

A = {(s, t)|0 < s < t <
√

3, p2 > 0} and B = {(s, t)|0 < s < t, t >
√

3, p2 < 0}

(shown in figure 3.11).

Proof

By simple calculations, one can calculate the center of masses i.e.

c = (cx, cy) = (0,
sm4 + tm3

m1 +m2 +m3 +m4

). (3.34)

then from equation (3.28) we have t− cy > 0 for 0 < s < t. For ease, let us denote

p1 = 8 −
√

1 + t2 and p2 =
(

2√
1+s2

)3
−
(√

1+t2

t−s

)3
. So it implies that, if m4 > 0
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then p1
p2
> 0.

In the following graphs it is shown that by taking p2 = 0 (figure (3.2)), we get a

smooth monotone increasing curve above the curve t = s and bounded by s =
√

3

from right.

The graphs of p2 > 0 and p2 < 0 are separately shown in figure (3.3 and 3.4)

respectively. In figure (3.3 and 3.7) the shaded region shows that t > s and t < s

respectively.

p2 = 0

p2 > 0

p2<0

0 1 2 3 4 5

0

1

2

3

4

5

s

t

Figure 3.2: The sign of p2
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Figure 3.3: p2 > 0 (shaded part)
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Figure 3.4: p2 < 0 (shaded part)
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t > s

t=s

t<s
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0
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t

Figure 3.5: The sign of t = s
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Figure 3.6: t > s (shaded part)
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s

t

Figure 3.7: t < s (shaded part)

Now we can see that if p2 = 0 then
(

2√
1+s2

)3
−
(√

1+t2

t−s

)3
= 0, implies that

√
1 + s2

√
1 + t2 = 2(t− s).

We can clearly examine that

√
1 + s2

√
1 + t2 = 2(t− s) < 2t (3.35)

then
√

1 + s2 <
2t√

1 + t2
< 2.

Hence

s <
√

3 (3.36)

Moreover, by applying limit on
√

1 + s2
√

1 + t2 = 2(t− s), we get

lim
t→+∞

2
(

1− s

t

)
= lim

t→+∞

√
1 + s2

√
1 +

1

t2
,
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then

lim
t→+∞

s =
√

3. (3.37)

Now, let us take the derivative of equation
√

1 + s2
√

1 + t2 = 2(t−s) with respect

to s. We have (
2− t

√
1 + s2√
1 + t2

)
dt

ds
= 2 +

s
√

1 + t2√
1 + s2

. (3.38)

As we know that

2− t
√

1 + s2√
1 + t2

> 2− 2t√
1 + t2

> 0.

Therefore

dt

ds
> 0.

p1 < 0

p1 = 0

p1 > 0
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Figure 3.8: The sign of p1
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Figure 3.9: p1 < 0 (shaded part)
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Figure 3.10: p1 > 0 (shaded part)
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Figure 3.11: The region of A and B for m4 > 0

The signs of p1, p2 are also shown in the mentioned figure (3.2) and (3.8).

It also configures that the region of m4 > 0 is the union of two non-empty open

sets A,B shown in figure (3.11).

The shaded part in figure (3.9, 3.10) shows that p1 < 0 and p1 > 0 respectively.

3.6 Lemma 2

The region in which m3,m4 > 0 for 0 < s < t is the union of E,F and G in figure

(3.21), where E = {(s, t)|0 < s <
√
3
3
,
√

1 + t2 + s < t <
√

3}, F = {(s, t)|
√
3
3
<

s <
√

3,
√

3 < t <
√

1 + s2 + s} and G = {(s, t)|
√

3 < s < +∞,
√

1 + s2 + s < t <

+∞}.

Proof
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For our easiness, let us denote

p3 =
√

1 + s2
3
− 8,

p4 =
√

1 + s2
3
− (t− s)3,

p5 =
t− s

(t− s)3
+

s
√

1 + s2
3 −

t
√

1 + t2
3 .

By using these substitution in equation 3.31, we have m3 > 0 which is equal to

p3p4
p5p2

> 0.

When t > s and t− s <
√

1 + t2, we get

p5 =
t− s

(t− s)3
+

s
√

1 + s2
3 −

t
√

1 + t2
3

= t

(
1

(t− s)3
− 1
√

1 + t2
3

)
+ s

(
1

√
1 + s2

3 −
1

(t− s)2

)

> s

(
1

(t− s)3
− 1
√

1 + t2
3

)
+ s

(
1

√
1 + s2

3 −
1

(t− s)2

)

= s

(
1

√
1 + s2

3 −
1

√
1 + t2

3

)

Therefore

p5 > 0. (3.39)

At p5 = 0, we get a curve line (see figure (3.18)). In figure (3.19 and 3.20) the

shaded region shows that p5 > 0 and p5 < 0 respectively. When p3 = 0, we get

a straight line i.e s =
√

3 in the st-plane (see figure (3.12))and p3 > 0 in the

first quadrant (see shaded part in figure (3.13)) and for p3 < 0 see shaded region

in figure (3.14). When p4 = 0, we get a smooth monotone increasing curve at

t = s+
√

1 + s2 (see figure (3.15)). Also p4 < 0 above this curve (shown in figure

(3.15)).

The shaded part in figure (3.16 and 3.17) shows that p4 > 0 and p4 < 0 respectively.

After some calculations, we can get the implicit curves p1 = 0, p2 = 0 and p4 = 0.

They have only one common point i.e (
√
3
3
,
√

3) with given domain 0 < s < t.

It can be shown in figure (3.21). Hence, the locality of m3,m4 > 0 is the union of

the three given non-empty open sets E,F and G as shown in the figure (3.21).
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Figure 3.12: The sign of p3
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Figure 3.13: p3 > 0 (shaded part)
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Figure 3.14: p3 < 0 (shaded part)
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Figure 3.15: The sign of p4
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Figure 3.16: p4 > 0 (shaded part)
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Figure 3.17: p4 < 0 (shaded part)
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Figure 3.18: The sign of p5
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Figure 3.19: p5 > 0 (shaded part)
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Figure 3.20: p2 < 0 (shaded part)

3.7 Lemma 3

The region in which mi > 0, where i = 1, 2, 3, 4 for 0 < s < t is the union of

non-empty open sets E and G shown in figure (3.21).

Proof

From theorem 2, we know that

m1 = m2 = λ
4
√

1 + t2
3
(t− cy)

t
√

1 + s2
3
(t− s)3

((t− s)3 −
√

1 + s2
3
)((

2√
1+s2

)3
−
(√

1+t2

t−s

)3) .

By using the substitutions in the above equation from Lemma 1 and Lemma 2,

we get the following result.

m1 = m2 = −λ4
√

1 + t2
3
(t− cy)

t
√

1 + s2
3
(t− s)3

p4
p2
. (3.40)
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The signs of p2 and p4 indicate the sign of mi for i = 1, 2. We obtained p2, p4 > 0

for (s, t) ∈ G and therefore m1 = m4 < 0. If (s, t) ∈ E ∪ F , we can easily find

that m1 = m2 > 0. By this we get a complete proof of Lemma 3.

We get a complete proof of Theorem 2 by using all the above three Lemmas

(1-3).

p2 = 0
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p4 = 0

p3 = 0

t=s
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Figure 3.21: The E,F and G for m3,m4 > 0



Chapter 4

Graphical Analysis of Newtonian

Four-Body Problem

4.1 Introduction

In this section, the graphical structure of all the solutions of Newtonian four-body

problem i.e m1,m2,m3 and m4 will be discussed.

By taking the solutions of all these four masses mentioned in the previous chapter

3 named (3.28, 3.31, 3.33), we will discuss them graphically in detail.

Positivity analysis of all the mass functions m1,m2,m3 and m4 is also discussed

in this section. There are different cases of theorem 2 (mentioned in chapter 3)

which will be discussed in this section.

1. When m1 > 0 for 0 < s < t and λ > 0.

2. When m2 > 0 for 0 < s < t and λ > 0.

3. When m3 > 0 for 0 < s < t and λ > 0.

4. When m4 > 0 for 0 < s < t and λ > 0.

5. When mk > 0 (k = 1, 2, 3, 4) for 0 < s < t and λ > 0.

55
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4.2 Case-1

In this case, the graphical representation of m1 is discussed. Here m1 is the func-

tion of s and t.

So by using the values of s and t, we will show that m1 > 0.
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0.0
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1.0

1.5

2.0

s

t

Figure 4.1: m1 > 0 (Shaded part)

In the graph above, the shaded region shows that all the values of m1 are greater

then zero for λ = 1. The intervals of s and t are shown in the above graph.
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4.2.1 Positivity of m1

In the following table, we basically choose some selective points (from shaded

region) and check the positivity of m1 as

Coordinate points (s, t) Values of m1 > 0

(0.1745, 1.804) 2.5504

(0.4425, 1.843) 2.95371

(0.9733, 1.876) 3.07018

(1.105, 1.34) 3.98971

(1.462, 1.03) 4.07596

(1.541, 0.5486) 4.71417

Table 4.1: Positivity for m1

4.2.2 3-D Graphical Representation of m1

The following graph shows the graphical structure of m1 in 3-D i.e s, t and λ.

In this graph the shaded region defines that all the values of m1 are positive for

t > s > 0 and λ > 0. By taking the intervals of s ∈ [0.1, 2], t ∈ [1, 2] and λ ∈ [0, 2],

one can get a 3-D graph of m1 > 0.

Figure 4.2: m1 > 0 (shaded part)
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4.3 Case-2

In the second case, the graphical representation of m2 is discussed. Here m2 is the

function of s and t.

So by using the values of s and t, we will show that that region in which m2 > 0.
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s
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Figure 4.3: m2 > 0 (Shaded part)

In the graph above, the shaded region shows that all the values of m2 are greater

then zero for λ = 1.

The intervals of s and t can be seen in the above graph.
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4.3.1 Positivity of m2

In the following table, we basically choose some selective points (from shaded part)

and check the positivity of m2 on those points.

Coordinate points (s, t) Values of m1 > 0

(0.1745, 1.804) 3.09751

(0.4425, 1.843) 3.96809

(0.9733, 1.876) 3.95661

(1.105, 1.34) 4.0094

(1.462, 1.03) 4.14323

(1.541, 0.5486) 4.71417

Table 4.2: Positivity for m2

4.3.2 3-D Graphical Representation of m2

The following graph shows the graphical structure of m2 in 3-D i.e s, t and λ.

In this graph the shaded region defines that all the values of m2 are positive for

t > s > 0 and λ > 0. By taking the intervals of s ∈ [0.1, 2], t ∈ [1, 2] and λ ∈ [0, 2],

one can get a 3-D graph of m2 > 0.

Figure 4.4: m2 > 0 (shaded part)
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4.4 Case-3

In the third case, m3 is graphically analyze. It can be clearly seen from the solu-

tions mentioned in chapter 3 that m3 is the function of s and t. So by putting the

values of s and t, one can show that m3 > 0.
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Figure 4.5: m3 > 0 (Shaded part)

In the above graph, the shaded region shows that all the values of m3 are positive

for λ = 1.

The intervals of s and t are clearly shown in the above graph.
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4.4.1 Positivity of m3

The following table defines the positivity of the mass function m3 by taking some

selective points of the coordinates s and t.

Coordinate points (s, t) Value of m3 > 0

(0.1745, 1.804) 0.030859

(0.4425, 1.843) 0.040617

(0.9733, 1.876) 0.0498802

(1.105, 1.34) 0.0180938

(1.462, 1.03) 0.1158434

(1.541, 0.5486) 0.313208

Table 4.3: Positivity for m3

4.4.2 3-D Graphical Representation of m3

The following graph shows the graphical structure of m3 in 3-D i.e s, t and λ.

In this graph the shaded region defines that all the values of m3 are positive for

t > s > 0 and λ > 0. By taking the intervals of s ∈ [0.1, 2], t ∈ [1, 2] and λ ∈ [0, 2],

one can get a 3-D graph of m3 > 0.

Figure 4.6: m3 > 0 (shaded part)
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4.5 Case-4

In the fourth case, the graphical representation of m4 is discussed briefly. Here m4

is the function of s and t. So by using the values of s and t, one can get a result

that m4 > 0.
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Figure 4.7: m4 > 0 (Shaded part)

In the above graph, the shaded region shows that all the values of m4 are greater

then zero for λ = 1.

The values of s and t are taken from the above mentioned intervals of s and t.
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4.5.1 Positivity of m4

In the following table, we basically choose some points of coordinates s and t (from

shaded part) and put in the given mass function m4 to check its positivity.

Coordinate points (s, t) Values of m4

(0.1745, 1.804) 0.0109978

(0.4425, 1.843) 0.0221466

(0.9733, 1.876) 0.035059

(1.935, 1.975) 0.0966863

(0.9062, 1.911) 0.526793

(o.5238, 1.702) 0.00198729

Table 4.4: Positivity for m4

4.5.2 3-D Graphical Representation of m4

The following graph shows the graphical structure of m4 in 3-D i.e s, t and λ.

In this graph the shaded region defines that all the values of m4 are positive for

t > s > 0 and λ > 0. By taking the intervals of s ∈ [0.1, 2], t ∈ [1, 2] and λ ∈ [0, 2],

one can get a 3-D graph of m4 > 0.

Figure 4.8: m4 > 0 (shaded part)
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4.6 Case-5

Here m1,m2,m3 and m4 are the functions of s and t. So by using the values of s

and t, one can show that the values of all the masses are positive at some locality.
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Figure 4.9: mk > 0 (Shaded part for k = 1, 2, 3, 4)

In the graph above, the shaded region shows that all the values of m1,m2,m3 and

m4 are greater then zero for λ = 1.

The intervals of s and t are shown in the above graph. In the graph above,
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the shaded region shows that all the values of m1 are greater then zero for λ = 1.

The intervals of s and t are shown in the above graph.

4.6.1 Positivity of mk > 0 (k = 1, 2, 3, 4)

In the following table, we basically choose some values of coordinates s and t (from

shaded part)in the given mass functions (m1,m2,m3 and m4) to check either they

satisfy the given condition (i.e m1,m2,m3,m4 > 0) or not.

Coordinate points (s, t) Positivity condition for mk > 0 (k = 1, 2, 3, 4)

(1.016, 1.893) True

(0.7972, 1.79) True

(0.2589, 1.639) True

(1.052, 1.784) True

(1.047, 1.948) True

(1.448, 1.806) True

Table 4.5: Positivity for mk > 0 (k = 1, 2, 3, 4)

4.6.2 3-D Graphical Representation of mk > 0 (k = 1, 2, 3, 4)

The following graph shows the graphical structure of all the four masses in 3-D i.e

s, t and λ.

In this graph the shaded region defines that all the values of the four masses

m1,m2,m3 and m4 are positive for t > s > 0 and λ > 0.

By taking the intervals of s ∈ [0.1, 2], t ∈ [1, 2] and λ ∈ [0, 2], one can get a

3-D graph of mk > 0 (i.e m1 > 0,m2 > 0,m3 > 0 and m4 > 0).
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Figure 4.10: mk > 0 (k = 1, 2, 3, 4) (shaded part)



Chapter 5

Conclusion

The work of Chunhua Deng and Shiqing Zhang [21] on “Planar symmetric concave

central configuration in Newtonian four body problem” is discussed and elaborated

to represent the complete analysis of the article [21] in this thesis.

We basically used the CC condition with this arrangement of masses (see equation

(3.4)) to find the equations of motion for four massive bodies (m1, m2, m3 and m4).

We then solved these equations for the two cases mentioned in theorem 1 and 2.

After finding the solutions of all the masses, we analyzed the mass functions and

found all the possible regions in st plane such that the mass functions are positive

by using three Lemmas (3.5, 3.6 and 3.7). We have also drawn the graphs of these

regions where their value is zero. Lastly, we analyzed the graphical structure of

all the four point masses m1,m2,m3 and m4 (see chapter 4) and investigated that

there are some possible regions where the given masses m1,m2,m3 and m4 are

positive. We have also shown the graphical representation of all the four given

masses in 3-D.
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