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Abstract

The present thesis discusses the impact of external sound source in discontinuous

waveguide. The Mode-matching technique is applied to solve the governing bound-

ary value problems. The attenuation of source radiation is analyzed through the

consideration of discontinuous channel and absorbent material. The attenuation

of source radiation with expansion chamber having porous medium is investigated.

The truncated solution satisfies matching conditions of pressures and velocities.

To insight physically, the transmission loss is investigated against frequency. It

is observed that by varying the length of Chamber as well as porous medium the

transmission loss is varied.
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Chapter 1

Introduction

Noise pollution is the biggest problem of modern era. It not only disrupts the

normal functioning of life but also affects the health of humans. The major effects

of noise on humans include: physiological effects, increase of blood pressure and

feeling of headache, psychological effects, stress and nervousness and social segre-

gation. The main sources of noise are road traffic, airplanes, railways, construction

sites and industrial areas. In order to reduce the unwanted noise various noise con-

trol measures are used. For example, silencers like components are employed at

the exhausts of automobiles. The inside of these silencers involve various geomet-

ric designs and sound absorbing materials that minimize the vibrational waves of

exhaust engines and fans.

Moreover for the noise of Heating, Ventilation and Air Conditioning (HVAC)

systems of building, different duct designs and sound proofing are used. It works

like a channel which transports vibrational energy from one point of the medium

to another point. The investigation on designs and materials properties of such

ducts in order to minimize the vibrational energy has gained much attention of

researcher and engineers. The current study is relevant to the propagation and

attenuation of sound radiation in a waveguide including porous material and split-

ting expansion chamber. The material properties of absorptive material can be

varied. Such waveguides may have applications in HVAC and silencer designs.

1
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The current study focuses on the modeling of acoustic waves, their propagation,

scattering and absorption.

1.1 Background and Literature Survey

The present study is related to the propagation and scattering of acoustics waves

in rectangular waveguide or channel. The performance of acoustical waveguide

to reduce unwanted noise can be increased by using the noise absorbent material

and/or introducing the locally reactive liners. The salient features of acoustics

scattering in guiding structures that contain expansions and/or contractions in

geometry have vital role in noise reduction applications. For example, expansion

chambers are widely used to reduce unwanted exhaust noise produced by internal

combustion engines that travels through the duct.

The propagation of wave along the ducts with rapid changes in the cross sectional

area can produce reactions that reduce the energy of transmitted wave. This is

the method together with cavity resonance mechanisms by which silencer box re-

duce noise in the car exhaust system [1]. Hassan and Rawlins [2], Rawlins [3, 4]

and Ayub et al. [5–7] discussed the propagation of sound waves in cylinderical

channel containing sound absorbing linings along the walls of the channel. They

used Wiener Hopf technique to analyze the effects of absorbing material. Lawrie

and Afzal [8] are concerned with the reflection and transmission of fluid-structure-

coupled waves at the junction between two flexible waveguides of different heights.

Ayub et al. [9] and Huang [10–12] considered the reactive silencer used in HVAC

system for reducing ducted tonal fan noise.

Using the silencer eigenmodes in an analytic Mode-matching approach, Cummings

and Chang [13] enforced pressures and velocities continuity over the inlet and out-

flow planes of the silencer. Cummings and Chang’s method was offered by Peat

[14] and afterwards by Kirby [15] as a more efficient alternative. They developed
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closed form analytic solutions based solely on the fundamental mode’s attenua-

tion. Peat and Kirby’s approaches, on the other hand, are accurate only across

a limited frequency range for a given waveguide structure. Folk and Herczynski

[16, 17] worked on the class of problems in which there are second and higher order

boundary conditions at the duct wall. They utilized the idea of separation of a

variable method to reduce the equation into a system of coupled and uncoupled

second order ordinary differential conditions, which were solved by utilizing the

boundary conditions. This outcome into a Strum-Liouville eigensystem and there

is a need to determine an orthogonality relation to solve the problem.

A Mode-matching method was used [18] to evaluate the sound waves in a three-

part duct containing porous material attached to the wall. Lawrie and Kirby [19]

use the Mode-matching technique for the analysis of absorbent silencer. In general

there are two possible approaches to modelling finite length (bulk reacting) dissipa-

tive silencers, one may analyse the problem numerically, which generally involves

the use either of the finite element method [20] or the boundary element method

[21], alternatively one may approach the problem analytically, which typically in-

volves finding roots of the governing dispersion relation and using orthogonality

relation to match the acoustic pressure and velocity fields over the inlet and outlet

planes of the silencer. Sound attenuation in rigid-walled ducts with bulk-reacting,

sound-absorbent porous liners or splitters has been fairly extensively studied, both

in the absence and in the presence of mean gas flow see refrances [22–27].

Cummings [28] discussed the attenuation of sound in ducts lined on two opposite

walls with porous material with some applications to splitter. Astley and Cum-

mings [29] used finite element scheme for attenuation in duct lined with porous

material. Lawrie and Kirby [30] discussed a point collocation approach to mod-

elling large dissipative silencers. The wave scatters through flexible guiding chan-

nels together with structural variations is discussed in [31–47]. Accordingly, the

dispersion of waves through different layered medium is discussed in [48–66]. The

present work is in continuation of the aforementioned studies with expansion cham-

ber containing sound absorbent material along with backward propagation. The
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influence of wall motion on sound propagation in unlined rectangular ducts with

flexible walls has been examined [70] in a study of noise break-out duct-work,

and it has also been shown [71] that structural/acoustic wave combinations exist

wherein the energy flow can concentrate itself predominantly either in the struc-

ture or in the fluid contained in the duct. In this thesis propagation of sound

source is investigated by using mode-matching technique and transmission loss is

calculated.

1.2 Thesis Structure

The rest of the thesis is organized as follows.

Chapter 1 The chapter wise details of the present study are enclosed in this

chapter. This chapter depicts background and literature survey relevant to the

current study along with thesis structure.

Chapter 2 comprises some basic definitions, physical laws, formulation of wave

equation and useful derivations.

Chapter 3 contains the propagation of acoustic waves in discontinuous waveguide.

Also this chapter includes sound absorbent material.

Chapter 4 includes four regions and second region involves porous material.

chapter 5 provides the summary and concluding remarks of the thesis.

References used in the thesis are mentioned in Bibliography



Chapter 2

Preliminaries

This thesis contains physical problems that are relevant to the reflection, transmis-

sion and absorption of acoustic waves propagating in rectangular ducts or chan-

nels. The purpose of present chapter is to discuss some basic terminologies which

are useful in understanding the mathematical modeling and associated physical

characteristics of the work presented in rest of the chapters.

2.1 Acoustics

Acoustics is the branch of science which deals with the propagation of mechanical

waves in matter. This branch covers how sound energy emits, reflect and transmits

through a medium. The word acoustics is derived from a Greek letter akoustikos

which means to hear. Normal human frequency range of hearing lies between 20Hz

to 20K.Hz. The vibrations with frequency less than 20Hz is known as infra sound

and above than 20K.Hz is ultra sound.

2.2 Wave

Wave is the disturbance in the medium which causes the particles of that medium

to vibrate from one place to another to transfer the energy. It is important to know

5
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that waves transfer energy of the matter without transferring matter. Typical

examples include light waves and sound waves etc.

2.2.1 Types of Wave

There are three types of waves based on the medium characteristics and energy

propagation. These types include:

Mechanical waves

The type of wave in which energy is transfered through the oscillation produced

in a material medium. Examples include waves produce on the strings, springs

and on water surface.

Longitudinal wave

The waves in which direction of particles of medium are parallel to the direction

of propagation of waves. Examples are, sound and pressure waves.

Transverse waves

The waves in which the direction of particles is perpendicular to the direction of

propagation waves.

Electromagnetic waves

The waves which are produced when electric and magnetic fields oscillate perpen-

dicular to each other. These waves do not need any material medium for transfer

of energy. Examples include radio waves, microwaves and X-rays.

2.3 Acoustic Wave Equation

The wave propagation in a medium can be expressed in terms of wave equation

which can be derived by using conservation of mass, momentum and equation of

state. The derivation of wave equation can be found in [67],

∇2Φ =
1

c2

∂2Φ

∂t2
, (2.1)

where c is the speed of sound in compressible fluid.
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2.4 Acoustic Monopoles Source

An acoustic monopole radiates sound equally in all directions. An example of

an acoustic monopole would be a small sphere whose radius alternately expands

and contracts. In practice, any sound source whose dimensions are much smaller

than the wavelength of the sound being radiated will act as a monopole, radiating

sound equally well in all directions. The sound pressure of a monopole source can

be expressed as follows

p(r) = S
ejkr

r
, (2.2)

where the complex variable S is the monopole amplitude. Here, the amplitude of

the sound source is the inertial force of fluid mass that the sound source exerts

per unit time and unit solid angle. In other words, it can be expressed as

S =
1

4π
ρ0(−jωq), (2.3)

where q represents the volume velocity which is radiated by a monopole sound

source per unit time.

From Euler’s equation, the velocity for the r direction can be written as

Ur(r) =
1

jkρ0c

∂p

∂r
=

Sejkr

ρ0cr

[
1 + j(

1

kr
)

]
. (2.4)

The velocity in near-field and far-field sound fields are approximately obtained as

Near field (kr << 1):

Ur(r) ≈
Sejkr

ρ0cr
j(

1

kr
). (2.5)
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Far field (kr >> 1):

Ur(r) ≈
Sejkr

ρ0cr
. (2.6)

From (2.2) and (2.4), the impedance can also be obtained as

Zr(r) =
p(r)

Ur(r)
= ρ0c

1

1 + j(
1

kr
)
. (2.7)

Near- field:

Zr(r) ≈ −jρ0c(kr). (2.8)

Far-field:

Zr(r) ≈ ρ0c. (2.9)

Equation (2.9) implies that it becomes a plane wave in a far field.

2.5 Boundary Conditions

The following boundary conditions are defined to model the BVP:

1. Soft conditions.

2. Rigid conditions.

3. Impedance conditions.

2.5.1 Soft Conditions

The soft boundary conditions are Drichlet’s type boundary conditions. In these

conditions, the pressure or displacement is taken as zero, i.e.

Φ(x, y) = 0.
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2.5.2 Rigid Conditions

Neumann’s type boundary conditions are actually rigid boundary conditions. In

rigid conditions, normal velocity is taken as zero, i.e.

∂Φ

∂x
= 0.

2.5.3 Impedance Conditions

The impedance boundary conditions are Robin’s type boundary conditions. Robin

boundary conditions are combination of Drichlet boundary conditions and Neu-

mann boundary conditions. These conditions are written as

β1Φ(x, y) + β2
∂Φ(x, y)

∂x
= 0,

where β1 and β2 are arbitrary constants.

2.6 Delta Function

When working with sound sources, delta function is crucial. The delta function

δ(p− p′) is defined as

δ(p− p′) = 0, p 6= p′, (2.10)

δ(p− p′) =∞, p = p′, (2.11)

and ∫
V

δ(p− p′)dv = 1 when volume V contains p′. (2.12)
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The shifting property of delta function is

∫
V

f(p)δ(p− p′)dv = f(p′). (2.13)

Take into account the delta function δ(p− p′) where x = x′ is the location of the

source. Then

δ(p− p′) = δ(x− x′). (2.14)

Likewise, for two-dimensional rectangular coordinates, we can write

δ(p− p′) = δ(x− x′)δ(y − y′). (2.15)

2.7 Sturm-Liouville Equation

Assume differential equation

{
d

dx

[
f(x)

d

dx

]
+ g(x) + λnh(x)

}
ϕn(x) = 0. (2.16)

In between a1 ≤ x ≤ b1 subject to restrictions

[
α1ϕn(x) + β1

dϕn(x)

dx

]
x=a1

= 0, (2.17)

[
α2ϕn(x) + β2

dϕn(x)

dx

]
x=b1

= 0, (2.18)

note that the functions f(x), g(x) and h(x) including the parameters α1, α2, β1

and β2 seem to be real.

When f(x) = 1, g(x) = 0, λn = k2
n and h(x) = 1, (2.16) turns into simple harmonic

motion differential equation.i.e

{
d2

dx2
+ k2

n

}
ϕn(x) = 0. (2.19)
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Let’s demonstrate that the eigenfunctions are orthogonal. Multiplying (2.16) by

ϕ∗m(x), where ∗ denotes complex conjugate and integrate from a1 to b1 gives

∫ b1

a1

ϕ∗m(x)
d

dx

[
f(x)

dϕn(x)

dx

]
dx

+

∫ b1

a1

g(x)ϕ∗m(x)ϕn(x)dx+ λn

∫ b1

a1

h(x)ϕ∗m(x)ϕn(x)dx = 0. (2.20)

Integration by parts gives

∫ b1

a1

ϕ∗m(x)
d

dx

[
f(x)

dϕn(x)

dx

]
dx

=

[
ϕ∗m(x)f(x)

dϕn(x)

dx

]b1
a1

−
∫ b1

a1

dϕ∗m(x)

dx
f(x)

dϕn(x)

dx
dx

= f(a1)
α1

β1

ϕ∗m(a1)ϕn(a1)− f(b1)
α2

β2

ϕ∗m(b1)ϕn(b1)−
∫ b1

a1

dϕ∗m(x)

dx
f(x)

dϕn(x)

dx
dx.

(2.21)

Now on invoking (2.21) into (2.20), we get

f(a1)
α1

β1

ϕ∗m(a1)ϕn(a1)− f(b1)
α2

β2

ϕ∗m(b1)ϕn(b1)−
∫ b1

a1

dϕ∗m(x)

dx
f(x)

dϕn(x)

dx
dx

+

∫ b1

a1

g(x)ϕ∗m(x)ϕn(x)dx+ λn

∫ b1

a1

h(x)ϕ∗m(x)ϕn(x)dx = 0. (2.22)

When the indices m, n are swapped and taking complex conjugate of (2.22), we

get

f(a1)
α1

β1

ϕn(a1)ϕ∗m(a1)− f(b1)
α2

β2

ϕn(b1)ϕ∗m(b1)−
∫ b1

a1

dϕn(x)

dx
f(x)

dϕ∗m(x)

dx
dx+∫ b1

a1

g(x)ϕn(x)ϕ∗m(x)dx+ λ∗m

∫ b1

a1

h(x)ϕn(x)ϕ∗m(x)dx = 0. (2.23)

Subtracting (2.23) from (2.22), finally yields

(λn − λ∗m)

∫ b1

a1

h(x)ϕn(x)ϕ∗m(x)dx = 0. (2.24)
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Suppose that h(x) does not change sign in between (a1, b1). For m 6= n

∫ b1

a1

h(x)ϕn(x)ϕ∗m(x)dx = 0. (2.25)

For m = n ∫ b1

a1

h(x)ϕn(x)ϕ∗m(x)dx 6= 0, (2.26)

λn − λ∗n = 0. (2.27)

The eigenfunctions ϕn(x) are normalized as

∫ b1

a1

h(x)ϕn(x)ϕ∗m(x)dx = 1. (2.28)

The condition λn = λ∗n shows that the eigenvalues are real. The property (2.25)

and (2.28) referred to orthogonality of the eigenfunctions ϕn(x). Eigenfunctions

ϕn(x) make up a whole set. This whole set means that any given function q(x)

can be expressed as a linear combination ϕn(x) to any desired accuracy.

q(x) =
∞∑
n=0

qnϕn(x). (2.29)

On multiplying (2.29) by h(x)ϕ∗m(x) and integrating over a1 to b1, gives the ex-

pansion coefficient

qn =

∫ b1

a1

h(x)q(x)ϕ∗n(x)dx. (2.30)

2.8 Definition of Fourier Transform

If Φ(x) is a continuous, piecewise smooth, absolutely integrable function, then the

Fourier transform of Φ(x) is

F{Φ(x)} = Φ̃(α) =
1√
2π

∫ ∞
−∞

e−iαxΦ(x)dx, (2.31)
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where α is Fourier transform variable. The inverse Fourier transform of Φ̃(α) can

be defined as

F−1{Φ̃(α)} = Φ(x) =
1√
2π

∫ ∞
−∞

eiαxΦ̃(α)dα. (2.32)

Fourier transform of nth derivative

Let Φ be continuous and piecewise smooth over (−∞,∞) and Φ(x) approach zero

as |x| → ∞. If Φ and Φn are absolutely integrable, then

F [Φn(x)] = (iα)nF [Φ(x)] = (iα)nΦ̃(α), n = 0, 1, 2... (2.33)

2.8.1 One-Dimensional Green’s Function

In this section, we discuss the derivation of one-dimensional Green’s function in

free space. The derivation is useful in chapters 3 and 4.

In one-dimensional free space (−∞ < x <∞), consider Sturm-Liouville equation

with the parameters f(x) = h(x) = 1, g(x) = 0 and λ = k2, which may be written

as {
d2

dx2
+ k2

}
Φ(x, x′) = −δ(x− x′), (2.34)

under the presence of the radiation condition Φ(±∞;x′) = 0. The response

Φ(x, x′) at x is due to the delta source at x′, as shown in Fig.1.

Figure 2.1: Free space Green’s function
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In terms of eigenfunctions, Φ(x; x′) can be represented in inverse Fourier transform

Φ(x, x′) =
1

2π

∫ ∞
−∞

Φ̃(α;x′)eiαdα. (2.35)

On invoking (2.35) as well as the identity

δ(x− x′) =
1

2π

∫ ∞
−∞

eiα(x−x′)dα,

into (2.34) yields

Φ(x, x′) =

∫ ∞
−∞

1

2π

eiα(x−x′)

α2 − k2
dα. (2.36)

The physical condition requires that the delta source response Φ(x, x′) be an outgo-

ing wave in the form of eikx that vanishes as x −→∞. If the medium is supposed

to be slightly lossy, this condition can be met, where the medium wavenumber

k = kr + iki has an infinitesimally small positive imaginary part (ki > 0). For

x− x′ > 0, let us use the residue theorem in the complex α − plane, as shown in

Fig.2.

Figure 2.2: Contour plot in α plane
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Figure 2.3: Contour plot in α plane

Using contour integration along paths Γ1 and Γ2 gives

∫
Γ1

f(α)dα +

∫
Γ2

f(α)dα = 2πiResf(α) at α = k. (2.37)

Since ∫
Γ2

f(α)dα −→ 0 and

∫
Γ1

f(α)dα = Φ(x, x′) as R −→∞

Φ(x, x′) =
i

2k
eik(x−x′). (2.38)

When x − x′ < 0, the semicircle in the lower half-plane is chosen for Γ2 so as to

make
∫
Γ2
f(α)dα −→ 0, as shown in Fig.2(b). Counter integration gives

Φ(x, x′) =
i

2k
e−ik(x−x′). (2.39)

As a result, the one-dimensional free-space Green’s function is represented as

Φ(x, x′) =
i

2k
eik|x−x

′|. (2.40)



Chapter 3

Sound Source Inclusion in

Discontinuous Waveguide

In this chapter the discussion is about the propagation of acoustic waves in discon-

tinuous waveguide. The boundaring wall conditions are assumed acoustical rigid.

The boundary value problems involve Helmholtz’s equation as governing equation

along with rigid-rigid boundary conditions. Mode-matching technique has been

used to tackle the problem. The numerical results contain the matching conditions

of pressures and velocities at the interface. The propagation of reflected and trans-

mitted energy fluxes by varying frequency. This chapter includes two problems.

First problem consists of the case when duct regions comprises compressible fluid.

While in the later case sound absorbent material is used.

3.1 Sound Source Excitation in Discontinuous Waveg-

uide:

Consider acoustic wave propagation in rectangular waveguide having regions R1

and R2 that are bounded by rigid walls at ȳ = 0̄, h̄1, h̄2, when x̄ > 0̄, x̄ < 0̄ and

at x̄ = 0̄ when h̄1 ≤ ȳ ≤ h̄2. Note that overbars here and throughout the thesis

denote the dimensional setting of coordinates. The inside of the regions R1 and

16
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R2 are filled with compressible fluid of density ρ having sound speed c. A sound

source Q̄(x̄, ȳ) in the duct R1 at point (x̄, ȳ) = (ā, b̄) is located. The geometry of

problem is shown in Fig.1.

Figure 3.1: The geometry of the semi-infinite duct

The fluid potential in ducts R1 and R2 are represented by Φ̄1 and Φ̄2, respectively.

Thus, the fluid potential Φ̄(x̄, ȳ) in the waveguide

Φ̄(x̄, ȳ) =

Φ̄1(x̄, ȳ), x̄ < 0̄, 0̄ ≤ ȳ ≤ h̄1,

Φ̄2(x̄, ȳ), x̄ > 0̄, 0̄ ≤ ȳ ≤ h̄2.

(3.1)

At (x̄, ȳ) = (ā, b̄) the fluid potential Φ̄1(x̄, ȳ) satisfy the Helmholtz’s equations

{
∂2

∂x̄2
+

∂2

∂ȳ2
+ k2

}
Φ̄1(x̄, ȳ) = Q̄(x̄, ȳ), (3.2)

but when (x̄, ȳ) 6= (ā, b̄) the fluid potential satisfies

{
∂2

∂x̄2
+

∂2

∂ȳ2
+ k2

}
Φ̄1(x̄, ȳ) = 0.

The fluid potential Φ̄2(x̄, ȳ) satisfies the Helmholtz’s equation

{
∂2

∂x̄2
+

∂2

∂ȳ2
+ k2

}
Φ̄2(x̄, ȳ) = 0̄. (3.3)
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At rigid walls the normal velocity is zero, that gives

∂Φ̄1

∂ȳ
= 0̄, ȳ = 0̄, h̄1, (3.4)

∂Φ̄2

∂ȳ
= 0̄, ȳ = 0̄, h̄2, (3.5)

∂Φ̄2

∂x̄
= 0̄, x̄ = 0̄, h̄1 ≤ x̄ ≤ h̄2. (3.6)

We make the problem dimensionless by using length scale k−1 and time scale ω−1

through the transformations

x = kx̄,

y = kȳ,

t = ωt̄,

∂

∂x̄
= k

∂

∂x
,

∂2

∂x̄2
= k2 ∂

2

∂x2
,

Φ =
k2

ω
Φ̄,

Q(x, y) =
k2

ω
Q̄(x̄, ȳ). (3.7)

Incorporating these transformations into (3.1)-(3.6) we get the dimensionless form

of boundary value problem. The fluid potential in ducts R1 and R2 are represented

by Φ1 and Φ2, respectively. Thus, the fluid potential Φ(x, y) in the waveguide

Φ(x, y) =

Φ1(x, y), x < 0, 0 ≤ y ≤ h1,

Φ2(x, y), x > 0, 0 ≤ y ≤ h2.

(3.8)

At (x, y) = (a, b) the fluid potential Φ1(x, y) satisfy the Helmholtz’s equations

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ1(x, y) = Q(x, y), (3.9)



Sound source inclusion in discontinuous waveguide 19

but when (x, y) 6= (a, b) the fluid potential satisfies

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ1(x, y) = 0.

The fluid potential Φ2(x, y) satisfies the Helmholtz’s equation

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ2(x, y) = 0. (3.10)

The rigid wall conditions satisfy the following dimensionless form of boundary

conditions
∂Φ1

∂y
= 0, y = 0, h1, x < 0, (3.11)

∂Φ2

∂y
= 0, y = 0, h2, x > 0, (3.12)

∂Φ2

∂x
= 0, x = 0, h1 ≤ x ≤ h2. (3.13)

In next section we solve the boundary conditions.

3.2 Mode-Matching Solution

The Mode-matching technique is applied to solve the boundary value problem.

First we determine the eigenfunction expansion of region R1. In this region the

fluid potential Φ1(x, y) is the sum of incident field Φi
1(x, y) and reflected field

Φr
1(x, y)

Φ1(x, y) = Φi
1(x, y) + Φr

1(x, y). (3.14)

For reflected field the governing equations are

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φr

1(x, y) = 0, (3.15)
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∂Φr
1(x, y)

∂y
= 0, at y = 0, h1. (3.16)

From superposition principle, the reflected field is the linear combination of re-

flected modes

Φr
1(x, y) =

∞∑
n=0

AnΦ1n(x, y), (3.17)

where An, n = 0, 1, 2, ... are the amplitudes of reflected modes and Φ1n(x, y), n =

0, 1, 2, ... expresses the propagation modes.

To calculate Φ1n(x, y), n = 0, 1, 2, ..., we use the separation of variables method

to write

Φ1n(x, y) = X1n(x)ψ1n(y). (3.18)

On substituting (3.18) into (3.15), we find two ordinary differential equations, that

are solved to get

X1n(x) = c1e
iηnx + c2e

−iηnx (3.19)

and

ψ1n(y) = c3 cos(λny) + c4 sin(λny), (3.20)

where

ηn =
√

1− λ2
n.

Note that X1n(x) determines the propagation of nth mode along x-direction and

ψ1n(y) determines its shape in R1. As we consider reflected wave towards x-

direction only, therefore c1 = 0. Also applying rigid boundary conditions (3.16),

it is clear that c3 = 0, for non-trivial solution λn =
nπ

h1

and

ψ1n(y) = cos

(
nπ

h1

y

)
, n = 0, 1, 2, ....

Since ψ1n(y) = cos

(
nπ

h1

y

)
, n = 0, 1, 2, ... are orthogonal functions and satisfy

the orthogonality relation

∫ h1

0

ψ1n(y)ψ1m(y)dy = δmnεm
h1

2
, (3.21)
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where δmn is kronecker delta and is defined as

δmn =

1, m = n,

0, otherwise,

εm =

2, m = 0,

1, otherwise.

The orthonormal form of these eigenfunctions is

ϕ1n(y) =

√
2

h1εm
cos(

nπ

h1

y), (3.22)

where ∫ h1

0

ϕ1n(y)ϕ1m(y)dy = δmn. (3.23)

Therefore, the reflected field (3.18) can be written as

Φr
1(x, y) =

∞∑
n=0

Anϕ1n(y)e−iηnx. (3.24)

For source Q(x, y) = −Jδ(x− a)δ(y − b), we rewrite (3.9) as

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φi

1(x, y) = −Jδ(x− a)δ(y − b), (3.25)

subject to rigid boundary conditions

∂Φi
1

∂y
= 0, at y = 0, h1, (3.26)

where J is source strength that will be defined in numerical section.

To determine the solution of (3.25)-(3.26), we use eigenfunction expansion method.

The response of sound source in semi-infinite duct can be expressed as

Φi
1(x, y) =

∞∑
n=0

an(x)ϕ1n(y), (3.27)
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where an(x);n = 0, 1, 2, ... are unknowns. To find these, we substitute (3.27) into

(3.25) to get

∞∑
n=0

{
d2an(x)

dx2
+ η2

nan(x)

}
ϕ1n(y) = −Jδ(x− a)δ(y − b). (3.28)

Multiplying (3.28) by ϕ1m(y) and integrating from 0 to h1, we obtain

∞∑
n=0

{
d2an(x)

dx2
+ η2

nan(x)

}∫ h1

0

ϕ1n(y)ϕ1m(y)dy = −Jδ(x−a)

∫ h1

0

ϕ1m(y)δ(y−b)dy.

(3.29)

On using the orthogonality relation (3.23) into (3.29), we achieve

∞∑
n=0

{
d2an(x)

dx2
+ η2

nan(x)

}
δmn = −Jδ(x− a)ϕ1m(b), (3.30)

or
d2am(x)

dx2
+ η2

mam(x) = −Jδ(x− a)ϕ1m(b). (3.31)

By using the Green’s function (2.40) for free space, we reached at

am(x) = iJ
ϕ1m(b)

2ηm
eiηm|x−a|. (3.32)

Now putting (3.32) into (3.27), we achieve

Φi
1(x, y) =

∞∑
n=0

iJ
ϕ1n(y)ϕ1n(b)

2ηn
eiηn|x−a|. (3.33)

Finally, by combining (3.24) and (3.33), the total field in region R1 is obtained as

Φ1(x, y) = iJ

∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|x−a| +

∞∑
n=0

Anϕ1n(y)e−iηnx. (3.34)

Similarly, for region R2, the eigenfunction expansion form of transmitted duct

modes is assumed as,

Φ2(x, y) =

∞∑
n=0

BnΦ2n(x, y), (3.35)
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where Bn; n = 0, 1, 2, ..., are transmitted modes amplitudes and Φ2n(x, y) con-

tains shape and direction of transmitted modes. To find Φ2n(x, y) from boundary

conditions for R2, we use method of separation of variables. For this we assume

Φ2n(x, y) = X2n(x)ψ2n(y). (3.36)

On substituting (3.36) into (3.10), we get

X2n(x) = c5e
isnx + c6e

−isnx (3.37)

and

ψ2n(y) = c7 cos(ξny) + c8 sin(ξny), (3.38)

where

sn =
√

1− ξ2
n.

From rigid boundary conditions (3.12), c8 = 0 and ξn =
nπ

h2

, n = 0, 1, 2, ....

Since ψ2n(y) = cos

(
nπ

h2

y

)
; n = 0, 1, 2, ... are orthogonal functions and satisfy

the orthogonality relation

∫ h2

0

cos(
nπ

h2

y) cos(
mπ

h2

y)dy = δnmεm
h2

2
. (3.39)

The orthonormal form of these eigenfunctions is

ϕ2n(y) =

√
2

εmh2

cos(
nπ

h2

y), (3.40)

where ∫ h2

0

ϕ2n(y)ϕ2m(y)dy = δnm. (3.41)

As transmission takes place in positive x-direction only, therefore c6 = 0 and

transmitted field in R2 can be given by

Φ2(x, y) =
∞∑
n=0

Bnϕ2n(y)eisnx. (3.42)
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At matching interface x = 0, the continuity of acoustic pressure gives

Φ1(0, y) = Φ2(0, y), 0 ≤ y ≤ h1.

On substituting (3.34) and (3.42) into above equation, we have

iJ

∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|a| +

∞∑
n=0

Anϕ1n(y) =
∞∑
n=0

Bnϕ2n(y). (3.43)

Multiplying (3.43) by ϕ1m(y) and integrating from 0 to h1,

iJ

∞∑
n=0

ϕ1n(b)

2ηn
eiηn|a|

∫ h1

0

ϕ1n(y)ϕ1m(y)dy +
∞∑
n=0

An

∫ h1

0

ϕ1n(y)ϕ1m(y)dy

=
∞∑
n=0

Bn

∫ h1

0

ϕ2n(y)ϕ1m(y)dy.

(3.44)

Substituting the orthogonality relation (3.23) into (3.44), we find

iJ
ϕ1m(b)

2ηm
eiηm|a| + Am =

∞∑
n=0

BnRnm, (3.45)

where

Rnm =

∫ h1

0

ϕ2n(y)ϕ1m(y)dy.

Now using the normal velocity condition at interface x = 0

Φ2x(0, y) =

Φ1x(0, y), 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h2.

(3.46)

On invoking (3.34) and (3.42) into (3.46), we achieve

∞∑
n=0

isnϕ2n(y) =



−J
∑∞

n=0

ϕ1n(y)ϕ1n(b)eiηn|a|

2
(
−a
|a|

)

−
∑∞

n=0 Anϕ1n(y)iηn, 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h2.

(3.47)
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Multiplying by ϕ2m(y) and integrating from 0 to h2, we get

∞∑
n=0

Bnisn

∫ h2

0

ϕ2n(y)ϕ2m(y)dy = −J
∞∑
n=0

ϕ1n(b)

2
eiηn|a|(

−a
|a|

)

∫ h2

0

ϕ1n(y)ϕ2m(y)dy

−
∞∑
n=0

Aniηn

∫ h2

0

ϕ2m(y)ϕ1n(y)dy.

(3.48)

On invoking the orthogonality relation (3.41) into (3.48), we find

Bmism = −J
∞∑
n=0

ϕ1n(b)

2
eiηn|a|(

−a
|a|

)Rnm −
∞∑
n=0

AniηnRnm, (3.49)

where

Rnm =

∫ h2

0

ϕ1n(y)ϕ2m(y)dy.

By fixing m = n = 0, 1, 2, ...N , we get 2(N+1) number of equations with 2(N+1)

unknowns. These are solved simultaneously to get these unknowns.

3.3 Energy Fux

The energy flux/power in closed region can be defined as [69]

Energy flux =
1

2
<
[
i

∫
Ω

Φ(
∂Φ

∂x
)∗dΩ

]
, (3.50)

where < denotes real part and Ω is the domain of region. The transmission loss is

defined as [70]

TL = −20 log

[
Pt
Pi

]
. (3.51)
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The incident and reflected power in region R1 can be found by using (3.34) into

(3.50),

Energy flux|R1 =
1

2
<
∞∑
n=0

∞∑
m=0

[
−i|J |2ϕ1n(b)ϕ1m(b)

4ηn
ei|x−a|(ηn−η

∗
m) x− a
|x− a|

+
Jϕ1n(b)A∗mη

∗
m

2ηn
eiηn|x−a|eiη

∗
mx − iJ∗Anϕ1m(b)

2
e−iη

∗
m|x−a|e−iηnx

x− a
|x− a|

− AnA
∗
me

ix(η∗m−ηn)

]∫ h1

0

ϕ1n(y)ϕ1m(y)dy. (3.52)

On using orthogonality relation (3.23) into (3.52), we achieved

Energy flux|R1 =
1

2
<
∞∑
m=0

[
|J |2 |ϕ1m(b)|2

4ηm
ei|x−a|(ηm−η

∗
m) x− a
|x− a|

]
−

1

2
<
∞∑
m=0

[
Am|2η?me−ix(ηm−η∗m) + J

ϕ1m(b)

2ηm
eiηm|x−a|eiη

∗
mxA∗mη

∗
m+

iJ∗ϕ1m(b)Ame
−iηmxe−iη

∗
m|x−a| x− a

|x− a|

]
, (3.53)

or

Energy flux|R1 = Pi − Pr, (3.54)

where

Pi =
1

2
<
∞∑
m=0

[
|J |2 |ϕ1m(b)|2

4ηm
ei|x−a|(ηm−η

∗
m) x− a
|x− a|

]
(3.55)

and

Pr =
1

2
<
∞∑
m=0

[
Am|2η?me−ix(ηm−η∗m) + J

ϕ1m(b)

2ηm
eiηm|x−a|eiη

∗
mxA∗mη

∗
m+

iJ∗ϕ1m(b)Ame
−iηmxe−iη

∗
m|x−a| x− a

|x− a|

]
. (3.56)

Likewise, for energy flux in R2, we substitute (3.42) into (3.50) which finally yields

Energy flux|R2 =
1

2
<

(
∞∑
n=0

|Bn|2sn

)
. (3.57)

or

Energy flux|R2 = Pt. (3.58)
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From the conservation of energy law

Energy flux|R1 = Energy flux|R2 , (3.59)

which yield

Pi − Pr = Pt, (3.60)

or

Pi = Pr + Pt. (3.61)

To scale the power at unity we divide (3.61) with Pi, then

1 = Er + Et, (3.62)

where

Er =
Pr
Pi

and Et =
Pt
Pi
. (3.63)

Note that we can achieve (3.61) using (3.45) and (3.49). To get this, we rewrite

(3.45) as

Bmsm = J
∞∑
n=0

ϕ1n(b)

2i
eiηn|a|

a

|a|
Rnm −

∞∑
n=0

AnηnRnm. (3.64)

On multiplying (3.64) by
∑∞

m=0B
?
m, we get

∞∑
m=0

|Bm|2sm = J
∞∑
n=0

ϕ1n(b)

2i
eiηn|a|

a

|a|

∞∑
m=0

B?
mRnm −

∞∑
n=0

Anηn

∞∑
m=0

B?
mRnm. (3.65)

Taking conjugate of (3.45), we get

− iJ ϕ1n(b)

2η∗n
e−iη

∗
n|a| + A∗n =

∞∑
m=0

B∗mRnm. (3.66)

By substituting (3.66) into (3.65) and taking real part, we obtain

1

2
<

[
∞∑
m=0

|Bm|2sm +
∞∑
m=0

ηm|Am|2 + iJ
∞∑
n=0

A∗nη
∗
n

ϕ1n(b)

2ηn
e−iηn|a|+

iJ

∞∑
n=0

An
ϕ1n(b)

2
eiη

?
n|a|

]
=

1

2
<

[
J2

∞∑
n=0

ϕ2
1n(b)

4η?n
ei(ηn−η

?
n)|a| a

|a|

]
, (3.67)
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or

Pi = Pr + Pt. (3.68)

To scale the power at unity, we divide (3.68) with Pi, which yields 3.62,

1 = Er + Et.

Now to calculate transmission loss we use (3.55) into (3.51), we achieve

TL = −20 log

[
∞∑
n=0

4|Bn|2snηn
|J |2|ϕ1n(b)|2

]
(3.69)

3.4 Sound Source in Discontinuous Waves Involv-

ing Porous Material

The basic structure of the waveguide is same as discussed in section 1. However,

the region between h1 ≤ y ≤ h2 at x ≥ 0 contains sound absorbent material. The

physical configuration of the waveguide is shown in Fig.2.

Figure 3.2: The geometry of the semi-infinite duct

The governing differential system is made dimensionless through transformation as

explained in section 1. The non-dimensional fluid potential Φ(x, y) in waveguide
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is

Φ(x, y) =

Φ1(x, y), x < 0, 0 ≤ y ≤ h1,

Φ2(x, y), x > 0, 0 ≤ y ≤ h2.

(3.70)

The governing Helmholtz’s equation in R1 satisfies at x = a and y = b,

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φi

1(x, y) = −Jδ(x− a)δ(y − b), (3.71)

while at x 6= a and y 6= b,

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φr

1(x, y) = 0.

The rigid boundary conditions are

∂Φ1

∂y
= 0, y = 0, h1. (3.72)

Since first duct is same as in previous problem, so Φ1(x, y) will be same, i.e.

Φ1(x, y) = iJ
∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|x−a| +

∞∑
n=0

Anϕ1n(y)e−iηnx. (3.73)

The fluid potential Φ2(x, y) in region R2 satisfies

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ2(x, y) = 0, x > 0, 0 ≤ y ≤ h1, (3.74)

in air medium and satisfies

{
∂2

∂x2
+

∂2

∂y2
+ Γ 2

}
Φ2(x, y) = 0, x > 0, h1 ≤ y ≤ h2, (3.75)

in porous medium, where Γ is the non-dimensional propagation constant and is

Γ = 1 + ia1ξ
a2 + a3ξ

a4 . (3.76)
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The normalized complex density in non-dimensional form is given by

β = Γ (1 + a5ξ
a6 − ia7ξ

a8) . (3.77)

Here,

ξ =
fρ

σ
, is the non-dimensional parametric frequency in porous medium,

σ = A1ρ
A2
b , is the flow resistivity,

ρb is bulk density and f is the excitation frequency,

the constants a1, a2, ..., a8 and A1 − A2 are determined experimentally and for

different porous material their values are different.

The walls at y = 0, h2 are acoustically rigid,

∂Φ2

∂y
= 0, y = 0, h2. (3.78)

At porous lining y = h1, the velocities across the region are continuous

∂Φ2

∂y
(x, h+

1 ) =
∂Φ2

∂y
(x, h−1 ), x > 0. (3.79)

The continuity of pressures across the region is

βΦ2(x, h+
1 ) = Φ2(x, h−1 ). (3.80)

The eigenfunction expansion ansatz in region R2 is

Φ2n(x, y) =
∞∑
n=0

BnYn(y)eisnx, (3.81)

where Yn(y) the eigenfunctions that determine the shape of propagating modes,

sn be the nth mode wavenumber and Bn is the nth mode amplitude. We define

Yn(y) =

Y1n(y), x > 0, 0 ≤ y ≤ h1,

Y2n(y), x > 0, h1 ≤ y ≤ h2,

(3.82)
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and then use (3.81) into (3.72)-(3.80) to get

Y ′′1n(y)− γ2
nY1n(y) = 0, 0 ≤ y ≤ h1, (3.83)

Y ′′2n(y)− λ2
nY1n(y) = 0, h1 ≤ y ≤ h2, (3.84)

where

γn =
√
s2
n − 1 and λn =

√
s2
n − Γ 2. (3.85)

The boundary conditions are

Y ′1n(0) = 0, (3.86)

Y ′2n(0) = 0, (3.87)

Y ′1n(h1) = Y ′2n(h1), (3.88)

Y1n(h1) = βY2n(h1). (3.89)

On solving (3.83) and (3.84), we find that

Y1n(y) = c9 cosh(γny) + c10 sinh(γny), (3.90)

Y2n(y) = c11 cosh(λny) + c12 sinh(λny). (3.91)

By using (3.90) into (3.86), we find c10 = 0 then

Y1n(y) = c9 cosh(γny). (3.92)

Accordingly on using (3.91) into (3.87), we get

c12 = −c11 sinh(λnh2)

cosh(λnh2)
. (3.93)
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On using (3.93) into (3.91), we have

Y2n(y) = − c11

cosh(λnh2)
cosh [λn(y − h2)] . (3.94)

By using (3.92) and (3.94), (3.88) implies

c11 =
c9γn sinh(γnh1) cosh(λnh2)

λn sinh [λn(h2 − h1)]
. (3.95)

By using (3.95), (3.94) becomes

Y2n(y) = −c9γn sinh(γnh1) cosh [λn(y − h2)]

λn sinh [λn(h2 − h1)]
. (3.96)

Now on substituting (3.95) and (3.96) into (3.89), for non-trivial solution we get

cosh(γnh1) +
βγn sinh(γnh1) cosh [λn(h2 − h1)]

λn sinh [λn(h2 − h1)]
= 0. (3.97)

Note that we can solve (3.97) numerically for sn which yields λn and γn. The

resulting eigenfunctions satisfy the following orthogonality relation,

∫ h1

0

Y1m(y)Y1n(y)dy + β

∫ h2

h1

Y2m(y)Y2n(y)dy = δmnGm, (3.98)

where

Gm =

∫ h1

0

Y 2
1m(y)dy + β

∫ h2

h1

Y 2
2m(y)dy. (3.99)

On using (3.92) and (3.96) into (3.82), we get

Yn(y) =


cosh(γny), x > 0, 0 ≤ y ≤ h1,

−γn sinh(γnh1) cosh [λn(h2 − y)]

λn sinh [λn(h2 − h1)]
, x > 0, h1 ≤ y ≤ h2.

(3.100)

At matching interface x = 0, the continuity of acoustic pressure gives

Φ1(0, y) = Φ2(0, y), 0 ≤ y ≤ h1. (3.101)
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On using (3.73) and (3.81) into (3.101), we find

iJ

∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|−a| +

∞∑
n=0

Anϕ1n(y) =
∞∑
n=0

BnYn(y), 0 ≤ y ≤ h1. (3.102)

Multiplying with ϕ1m(y), integrating from 0 to h1, we achieve

Qi
m +

∞∑
n=0

Anδmn =
∞∑
n=0

BnRmn, (3.103)

where

Qi
m = iJ

ϕ1m(b)

2ηm
eiηm|−a|, (3.104)

and

Rmn =

∫ h1

0

Yn(y)ϕ1m(y)dy. (3.105)

On solving (3.103), we get

Am = −Qi
m +

∞∑
n=0

BnRmn. (3.106)

At matching interface x = 0 the continuity of acoustic velocity gives

Φ2x(0, y) =

Φ1x(0, y), 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h2.

(3.107)

On using (3.73) and (3.81) into (3.107), multiplying with Y2m(y), integrating over

h1 ≤ y ≤ h2,
∞∑
n=0

∫ h2

h1

Φ2x(0, y)Y2m(y)dy = 0. (3.108)

Accordingly, on substituting (3.73) and (3.81) into (3.107), multiply with Y1m(y),

integrating over 0 ≤ y ≤ h1 to get

∞∑
n=0

∫ h1

0

Φ2x(0, y)Y1m(y)dy = −
∫ h1

0

J

∞∑
n=0

ϕ1n(y)ϕ1n(b)

2
eiηn|−a|Y1m(y)dy

−
∞∑
n=0

Aniηn

∫ h1

0

ϕ1n(y)Y1m(y)dy.

(3.109)
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Multiplying (3.108) with β and then adding the resulting to (3.109), we find

i
∞∑
n=0

sn

[∫ h1

0

Y1nY1mdy + β

∫ h2

h1

Y2mY2ndy

]
Bn = P i

m − i
∞∑
n=0

AnηnRnm. (3.110)

On using orthogonality relation (3.98), we get

i

∞∑
n=0

snBnGnδmn = P i
m − i

∞∑
n=0

AnηnRnm, (3.111)

or

Bm =
P i
m

ismGm

− 1

smGm

∞∑
n=0

AnηnRnm, (3.112)

where

P i
m = −J

∞∑
n=0

ϕ1n(b)

2
eiηn|−a|Rnm. (3.113)

By fixing m = n = 0, 1, 2, ...N , we get 2(N+1) number of equations with 2(N+1)

unknowns. These are solved simultaneously to get these unknowns.

3.5 Numerical Results

In this section the above system of infinite linear algebraic equations (3.49) is

truncated upto n = 0, 1, 2, ..., N terms and then system is solved numerically.

Note that the reduced system contains 2(N + 1) equations. By solving these

equations, we obtain the coefficients An, Bn, n = 0, 1, 2, ..., N . Once these scattered

coefficients are known the pressures and velocities can be plotted at interface.

In order to show the graphs, fixing the duct heights at h1 = 0.25m and h2 =

0.35m, the pressures and normal velocities components are plotted against non-

dimensional duct heights at interface in figures 3.3-3.8. The physical parameters,

c = 343.5m/s and ρ = 1.2043kg/m.Note that the source is placed at a = −0.2m

and b = 0.03m with strength J = 500.
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Figure 3.3: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 20 terms.
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Figure 3.4: Imaginary part of pressures Φ1(0, y) and Φ2(0, y), plotted against
y, where N = 20 terms.
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Figure 3.5: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 10 terms, h1 = 0.30, h2 = 0.40 and J = 600.
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Figure 3.6: Imaginary part of pressures Φ1(0, y) and Φ2(0, y), plotted against 
y, where N = 10 terms h1 = 0.30, h2 = 0.40 and J = 600.
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Figure 3.7: Real part of velocities Φ1x(0, y) and Φ2x(0, y), plotted against y,
where N = 20 terms.
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Figure 3.8: Imaginary part of velocities Φ1x(0, y) and Φ2x(0, y), plotted
against y, where N = 20 terms.
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Figs. 3.3 and 3.4 show the real and imaginary parts of pressures Φ1(0, y) and

Φ2(0, y) in the regions 0 ≤ y ≤ h1 and 0 ≤ y ≤ h2, respectively. The real

and imaginary parts of normal velocities Φ1x(0, y) and Φ2x(0, y) for the respective

regions are plotted in Figs. 3.7 and 3.8. It can be observed from figures that

the pressures and velocities in fluid regions agree very well. It shows that the

truncated terms of solution satisfy the matching conditions.
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Figure 3.9: The energy flux/power components against frequency in disconti-
nous waveguide with ducts hight h1 = 0.25 and h2 = 0.35 with J = 30.
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Figure 3.10: The energy flux/power components against frequency in discon-
tinous waveguide with ducts hight h1 = 0.20 and h2 = 0.30 with J = 100.
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In Figs. 3.9 and 3.10 the reflected power is shown by blue dotted curve, while

green curve represents the transmitted power. The red dotted line is the sum of

reflected and transmitted powers and which is unity.

Likewise, for porous material case the physical parameters can be chosen as

f = 100Hz, ρ = 1.2043kg/m3, ρb = 100 and coefficients for bulk acoustic proper-

ties for A glass, E glass, Basalt wool and Steel wool are shown in Table 3.1 [67].

Coefficients for the steady flow resistivity are shown in Table 3.2 [68]. For porous

material case we have displayed Figs. 3.11-3.14 to show the real and imaginary

parts of non-dimensional pressures and velocities at matching interface. Figs. 3.11

and 3.12 show the real and imaginary parts of pressures Φ1(0, y) and Φ2(0, y) in

the region 0 ≤ y ≤ h1 and 0 ≤ y ≤ h2 respectively. The real and imaginary

parts of normal velocities Φ1x(0, y) and Φ2x(0, y) for respective regions are shown

in Figs. 3.13 and 3.14. From figures we can see that the pressures and velocities in

fluid regions agree very well. It shows that the truncated terms of solution satisfy

the matching conditions.

Table 3.1: Coefficients for bulk acoustic properties [73]

A glass E glass Basalt wool Steel wool
a1 0.2251 0.2202 0.2178 0.1540
a2 -0.5827 -0.5850 -0.6051 -0.7093
a3 0.1443 0.2010 0.1281 0.1328
a4 -0.7088 -0.5829 - 0.6746 -0.5571
a5 -0.7177 -0.6687 -0.7664 -0.5557
a7 0.1457 0.1689 0.1376 0.0876
a8 -0.5951 -0.5707 -0.6276 -0.7609

Table 3.2: Coefficients for the steady flow resistivity [73]

A glass E glass Basalt wool Steel wool
A1 1.857 5.774 3.012 0.312

A2 1.687 1.792 1.761 1.615
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Figure 3.11: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 15 terms.
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Figure 3.12: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 15 terms.
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Figure 3.13: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 15 terms.
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Figure 3.14: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 15 terms.



Chapter 4

Chamber-Silencer with Porous

Lining

In this chapter, a physical problem involving porous material is solved by using

Mode-matching technique. The problem contains four regions. The central region

involves porous material. The problem is radiated with source from the inlet which

is attenuated by the chamber and passes through the outlet.

4.1 Mathematical Formulation

In this problem we have four regions R1, R2, R3 and R4. The region R1 is bounded

by rigid walls and comprises sound source at (x, y) = (a, b). The region R2 contains

sound absorbent material which is separated from air the air medium through a

porous lining at y = h3. The region R3 has rigid boundaries at y = h2 and y = h3.

The region R4 has acoustically rigid boundaries at x > L, y = 0 and y = h1.

The sound wave is incident from region R1 which transmitted in region R4, while

reflection is in regions R1, R2 and R3. The geometry of problem is shown in Fig.1.

42
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Figure 4.1: The geometry of the semi-infinite duct

The dimensionless fluid potential Φ(x, y) in the waveguide can be expressed as

Φ(x, y) =



Φ1(x, y), x < 0, 0 ≤ y ≤ h1,

Φ2(x, y), x > 0, 0 ≤ y ≤ h4,

Φ3(x, y), x < 0, h2 ≤ y ≤ h3,

Φ4(x, y), x > 0, 0 ≤ y ≤ h1.

(4.1)

The rigid boundary conditions for regions Ri, i = 1, 2, 3, 4 are given as

∂Φ1(x, y)

∂y
= 0, y = 0, h1, (4.2)

∂Φ2(x, y)

∂y
= 0, y = 0, h4, (4.3)

∂Φ3(x, y)

∂y
= 0, y = h2, h3, (4.4)

∂Φ4(x, y)

∂y
= 0, y = 0, h1. (4.5)
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4.2 Mode-Matching Solution

We apply Mode-matching technique to solve the boundary value problem. First

we determine the eigenfunction expansion of region R1. In this region the fluid

potential Φ1(x, y) is the sum of incident field Φi
1(x, y) and reflected field Φr

1(x, y)

Φ1(x, y) = Φi
1(x, y) + Φr

1(x, y). (4.6)

The governing Helmholtz’s equation for region R1 at x = a and y = b is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ1(x, y) = −Jδ(x− a)δ(y − b), (4.7)

while at x 6= a and y 6= b is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ1(x, y) = 0. (4.8)

As the conditions for region R1 are same as in previous problem, therefore Φi
1(x, y)

and Φr
1(x, y) will be same i.e.

Φr
1(x, y) =

∞∑
n=0

Anϕ1n(y)e−iηnx, (4.9)

Φi
1(x, y) =

∞∑
n=0

iJ
ϕ1n(y)ϕ1n(b)

2ηn
eiηn|x−a|. (4.10)

On substituting (4.9) and (4.10) into (4.6), we achieve

Φ1(x, y) = iJ

∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|x−a| +

∞∑
n=0

Anϕ1n(y)e−iηnx. (4.11)

The governing Helmholtz’s equation for region R2, for air medium is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ2(x, y) = 0, 0 ≤ y ≤ h3, (4.12)



Chamber-silencer with porous lining 45

while for porous medium it takes form

{
∂2

∂x2
+

∂2

∂y2
+ Γ 2

}
Φ2(x, y) = 0, h3 ≤ y ≤ h4, (4.13)

where Γ is the non-dimensional propagation constant and is

Γ = 1 + ia1ξ
a2 + a3ξ

a4 . (4.14)

The normalized complex density in non-dimensional form is given by

β = Γ (1 + a5ξ
a6 − ia7ξ

a8) . (4.15)

Here,

ξ =
fρ

σ
, is the non-dimensional parametric frequency in porous medium,

σ = A1ρ
A2
b , is the flow resistivity,

ρb is bulk density and f is the excitation frequency,

the constants a1, a2, ..., a8 and A1 − A2 are determined experimentally and for

different porous material their values are different.

The fluid potential in region R2 can be expressed as eigenfunction expansion for-

mulation given by

Φ2(x, y) =
∞∑
n=0

{
Bne

isnx + Cne
−isnx

}
Yn(y), (4.16)

where

Yn(y) =


cosh(γny), 0 ≤ y ≤ h3,

−γn sinh(γnh3) cosh [λn(h4 − y)]

λn sinh [λn(h4 − h3)]
, h3 ≤ y ≤ h4.

(4.17)

The governing Helmholtz’s equation for region R3 is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ3(x, y) = 0, h2 ≤ y ≤ h3. (4.18)
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Now to solve (4.18) subject to rigid boundary condition (4.4), the eigen expansion

form of reflected duct modes is assumed as,

Φ3(x, y) =
∞∑
n=0

DnΦ3n(x, y), (4.19)

whereDn, n = 0, 1, 2, ... are the amplitudes of reflected duct modes and Φ3n(x, y), n =

0, 1, 2, ... contains shape and direction of reflected modes. To find Φ3n(x, y) from

boundary conditions for region R3, we use separation of variable method. For this

we assume

Φ3n(x, y) = X3n(x)ψ3n(y). (4.20)

On using (4.20) into (4.18), we get

X3n(x) = c13e
iνnx + c14e

−iνnx (4.21)

and

ψ3n(y) = c15 cos(τny) + c16 sin(τny), (4.22)

where

νn =
√

1− τ 2
n. (4.23)

From rigid boundary conditions (4.4), at y = h2 we obtain

dψ3n

dy
(h2) = 0. (4.24)

On using (4.22) into (4.24), we get

c16 =
sin(τnh2)

cos(τnh2)
c15,

which on invoking back into (4.22), yields

ψ3n(y) =
c15

cos(τnh2)
cos [τn(y − h2)] . (4.25)
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Now from (4.4), we can write the rigid condition at y = h3 as

dψ3n

dy
(h3) = 0. (4.26)

On using (4.25) into (4.26), we get

sin [τn(h3 − h2)] = 0, (4.27)

which yields eigenvalues τn =
nπ

h3 − h2

, n = 0, 1, 2, ... the resulting eigenfunctions

ψ3n(y) = cos [τn(y − h2)] are orthogonal and satisfy the orthogonality relation

∫ h3

h2

ψ3nψ3mdy =
h3 − h2

2
εmδmn. (4.28)

Thus, we can write the orthonormal relation

∫ h3

h2

ϕ3n(y)ϕ3m(y)dy = δmn, (4.29)

where

ϕ3m(y) =

√
2

(h3 − h2)εm
ψ3n(y).

As reflection takes place in negative x direction only, therefore c13 = 0 and reflected

field in R3 can be given by

Φ3(x, y) =
∞∑
n=0

Dnϕ3n(y)e−iνnx. (4.30)

The fluid potential Φ4(x, y) in the region R4 satisfies

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
Φ4(x, y) = 0, 0 ≤ y ≤ h1. (4.31)

The fluid potential in this region can be find by using separation of variable method

as used for Φ1(x, y), accordingly by using the separation of variable method, that

gives

Φ4(x, y) =
∞∑
n=0

Enϕ1n(y)eiηn(x−L). (4.32)
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The modal coefficients {An, Bn, Cn, Dn, En} are unknowns. To determine these

unknowns, we apply matching conditions at x = 0 and x = L, that are

Φ1(0, y) = Φ2(0, y), 0 ≤ y ≤ h1, (4.33)

Φ3(0, y) = Φ2(0, y), h2 ≤ y ≤ h3, (4.34)

Φ4(L, y) = Φ2(L, y), 0 ≤ y ≤ h1, (4.35)

Φ2x(0, y) =



Φ1x(0, y), 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h2,

Φ3x(0, y), h2 ≤ y ≤ h3,

0, h3 ≤ y ≤ h4,

(4.36)

Φ2x(L, y) =

Φ4x(L, y), 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h4.

(4.37)

By using (4.11) and (4.16) into (4.33), we find

iJ
∞∑
n=0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|−a| +

∞∑
n=0

Anϕ1n(y) =
∞∑
n=0

{Bn + Cn}Yn(y). (4.38)

Multiplying with ϕ1m(y) and integrating over 0 ≤ y ≤ h1

iJ

∞∑
n=0

∫ h1

0

ϕ1n(y)ϕ1n(b)

2ηn
eiηn|−a|ϕ1m(y)dy +

∞∑
n=0

An

∫ h1

0

ϕ1n(y)ϕ1m(y)dy

=
∞∑
n=0

{Bn + Cn}
∫ h1

0

ϕ1m(y)Yn(y)dy.

(4.39)

On using orthogonality relation (3.23), we get

iJ
∞∑
n=0

ϕ1n(b)

2ηn
eiηn|−a|δmn+

∞∑
n=0

Anδmn =
∞∑
n=0

{Bn + Cn}
∫ h1

0

ϕ1m(y)Yn(y)dy, (4.40)
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or

Qi
m + Am =

∞∑
n=0

{Bn + Cn}Rmn, (4.41)

where

Rmn =

∫ h1

0

ϕ1m(y)Yn(y)dy (4.42)

and

Qi
m = iJ

ϕ1m(b)

2ηm
eiηm|−a|. (4.43)

Likewise on using (4.16) and (4.30) into (4.34) gives

∞∑
n=0

Dnϕ3n(y) =
∞∑
n=0

{Bn + Cn}Yn(y). (4.44)

Multiplying with ϕ3m(y) and integrating over h2 ≤ y ≤ h3,

∞∑
n=0

Dn

∫ h3

h2

ϕ3m(y)ϕ3n(y)dy =
∞∑
n=0

{Bn + Cn}
∫ h3

h2

Yn(y)ϕ3m(y)dy. (4.45)

By using orthonormal relation (4.29), we obtain

Dm =
∞∑
n=0

{Bn + Cn}Pmn, (4.46)

where

Pmn =

∫ h3

h2

Yn(y)ϕ3m(y)dy. (4.47)

Accordingly, we substitute (4.16) and (4.32) into (4.35) to achieve

∞∑
n=0

Enϕ1n(y) =
∞∑
n=0

{
Bne

isnL + Cne
−isnL

}
Yn(y). (4.48)

On multiplying (4.48) with ϕ1m(y), integrating over 0 ≤ y ≤ h1, we get

∞∑
n=0

En

∫ h1

0

ϕ1n(y)ϕ1m(y)dy =
∞∑
n=0

{
Bne

isnL + Cne
−isnL

}∫ h1

0

ϕ1m(y)Yn(y)dy.

(4.49)
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On using orthogonality relation (3.23), we obtain

Em =
∞∑
n=0

{
Bne

isnL + Cne
−isnL

}
Rmn, (4.50)

Now to incorporate velocity conditions, we substitute (4.11), (4.16) and (4.30) into

(4.36), we find

i
∞∑
n=0

{Bn − Cn} snYn(y) =



J
∑∞

n=0

ϕ1n(y)ϕ1n(b)

2
eiηn|−a|

a

|a|
−
∑∞

n=0Anϕ1n(y)ηn,

0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h2,

−i
∑∞

n=0 Dnνnϕ3n(y), h2 ≤ y ≤ h3,

0 h3 ≤ y ≤ h4.

(4.51)

On multiplying with Y1m(y), integrating over 0 ≤ y ≤ h3

i
∞∑
n=0

{Bn − Cn} sn
∫ h3

0

Y1nY1mdy = J
∞∑
n=0

ϕ1n(b)

2
eiηn|−a|

a

|a|

∫ h1

0

ϕ1n(y)Y1m(y)dy

−i
∞∑
n=0

ηn

∫ h1

0

ϕ1n(y)Y1m(y)dy − i
∞∑
n=0

Dnνn

∫ h3

h2

ϕ3n(y)Y1m(y)dy.

(4.52)

or

i
∞∑
n=0

{Bn − Cn} sn
∫ h3

0

Y1nY1mdy = F i
m− i

∞∑
n=0

AnηnRnm− i
∞∑
n=0

DnνnPnm, (4.53)

where

F i
m = J

ϕ1m(b)

2
eiηm|−a|

a

|a|

∫ h1

0

ϕ1m(y)Y1m(y)dy. (4.54)

On multiplying (4.51) by Y2m(y), integrating over h3 ≤ y ≤ h4, we find

i
∞∑
n=0

{Bn − Cn} sn
∫ h4

h3

Y2nY2mdy = 0. (4.55)
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Now multiply (4.55) with β and add into (4.53) to obtain

i

∞∑
n=0

{Bn − Cn} sn
[∫ h3

0

Y1nY1mdy + β

∫ h4

h3

Y2nY2mdy

]
= F i

m − i
∞∑
n=0

AnηnRnm − i
∞∑
n=0

DnνnPnm.

(4.56)

On using orthogonality relation (3.98), (4.56) leads to

i

∞∑
n=0

{Bn − Cn} snδmnGn = F i
m − i

∞∑
n=0

AnηnRnm − i
∞∑
n=0

DnνnPnm (4.57)

or

Bm − Cm =
1

ismGm

[
F i
m − i

∞∑
n=0

AnηnRnm − i
∞∑
n=0

DnνnPnm

]
. (4.58)

Now on substituting (4.16) and (4.32) into (4.37), we get

∞∑
n=0

isn
(
Bne

isnL − Cne−isnL
)
Yn(y) =


∑∞

n=0Eniηnϕ1n(y), 0 ≤ y ≤ h1,

0, h1 ≤ y ≤ h4.

(4.59)

Multiplying (4.59) by Ym(y) and integrating over 0 ≤ y ≤ h4, we obtain

∞∑
n=0

isn
(
Bne

isnL − Cne−isnL
) ∫ h4

0

Yn(y)Ym(y)dy =
∞∑
n=0

Eniηn

∫ h1

0

ϕ1n(y)Ym(y)dy,

(4.60)

or

Bme
ismL − Cme−ismL =

1

smGm

∞∑
n=0

EnηnRnm. (4.61)

By fixing m = n = 0, 1, 2, ...N , we get 5(N+1) number of equations with 5(N+1)

unknowns. These are solved simultaneously to get these unknowns.
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4.3 Energy Flux

The energy flux/power in closed region can be defined as [69]

Energy flux =
1

2
<
[
i

∫
Ω

Φ(
∂Φ

∂x
)∗dΩ

]
, (4.62)

where Ω is the domain of region. The transmission loss is defined by [70]

TL = −20 log

[
Pt
Pi

]
. (4.63)

The incident and reflected power can be calculated by using (4.11) into (4.62),

Energy flux|R1 =
1

2
<
∞∑
n=0

∞∑
m=0

[
−i|J |2ϕ1n(b)ϕ1m(b)

4ηn
ei|x−a|(ηn−η

∗
m) x− a
|x− a|

+
Jϕ1n(b)A∗mη

∗
m

2ηn
eiηn|x−a|eiη

∗
mx − iJ∗Anϕ1m(b)

2
e−iη

∗
m|x−a|e−iηnx

x− a
|x− a|

− AnA
∗
me

ix(η∗m−ηn)

]∫ h1

0

ϕ1n(y)ϕ1m(y)dy. (4.64)

On using orthogonality relation (3.23) into (4.64), we achieved

Energy flux|R1 =
1

2
<
∞∑
m=0

[
|J |2 |ϕ1m(b)|2

4ηm
ei|x−a|(ηm−η

∗
m) x− a
|x− a|

]
−

1

2
<
∞∑
m=0

[
Am|2η?me−ix(ηm−η∗m) + J

ϕ1m(b)

2ηm
eiηm|x−a|eiη

∗
mxA∗mη

∗
m+

iJ∗ϕ1m(b)Ame
−iηmxe−iη

∗
m|x−a| x− a

|x− a|

]
. (4.65)

From (4.65) we can write the incident power as

Pi =
1

2
<
[
|J |2 |ϕ1m(b)|2

4ηm
ei|x−a|(ηm−η

∗
m) x− a
|x− a|

]
. (4.66)
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Likewise, the reflected power can be written from (4.65)

Pr =
1

2
<
∞∑
m=0

[
Am|2η?me−ix(ηm−η∗m) + J

ϕ1m(b)

2ηm
eiηm|x−a|eiη

∗
mxA∗mη

∗
m+

iJ∗ϕ1m(b)Ame
−iηmxe−iη

∗
m|x−a| x− a

|x− a|

]
. (4.67)

Now to find transmitted power in 4th region, we substitute (4.32) into (4.62) to

get

Pt =
1

2
<

[
∞∑
n=0

|En|2ηn

]
. (4.68)

On using (4.66) and (4.68) into (4.63), we obtain

TL = −20 log

[
∞∑
n=0

4|En|2η2
n|x− a|

|J |2|ϕ1n(b)|2(x− a)ei|x−a|(ηn−η∗n)

]
. (4.69)

4.4 Numerical Results

In this section, the infinite linear algebraic equations defined in (4.41), (4.46),

(4.50), (4.57) and (4.61) are truncated upto n = 0, 1, 2, ..., N terms and then the

retained system is solved numerically. The reduced system contains 5(N+1) equa-

tions. By solving these equations, we obtain the coefficientsAn, Bn, Cn, Dn, En, n =

0, 1, 2, ..., N . Once these coefficients are known the pressures and velocities can

be plotted at interface. In order to show the graphs on fixing the duct heights

at h1 = 0.06m , h2 = 0.085m, h3 = 0.1m and h4 = 0.15m, L = 0.05m, the

pressures and normal velocities components are plotted against non-dimensional

duct heights at interface in Figs. 4.2-4.11. The physical parameters chosen are,

c = 343.5ms−1 and ρ = 1.2043kgm−1, a1 = 0.2202, a2 = −0.5850, a3 = 0.2010,

a4 = −0.5829, a5 = 0.0954, a6 = −0.6687, a7 = 0.1689, a8 = −0.5707, A1 = 5.774,

A2 = 1.792. Note that the source is placed at a = −0.2m and b = 0.03m with

strength J = 500.
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Figure 4.2: Real part of pressures Φ1(0, y) and Φ2(0, y), plotted against y,
where N = 8 terms.
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Figure 4.3: Imaginary part of pressures Φ1(0, y) and Φ2(0, y), plotted against
y, where N = 8 terms.
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Figs. 4.2 and 4.3 show the real and imaginary parts of pressures Φ1(0, y) and

Φ2(0, y) in the regions 0 ≤ y ≤ h1 . From figures we can see that pressures in

fluid regions coincide. It shows that the truncated terms of solution satisfy the

matching conditions.
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Figure 4.4: Real part of pressures Φ2(0, y) and Φ3(0, y), plotted against y,
where N = 8 terms.
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Figure 4.5: Imaginary part of pressures Φ2(0, y) and Φ3(0, y), plotted against
y, where N = 8 terms.
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Figs. 4.4 and 4.5 show the real and imaginary parts of pressures Φ2(0, y) and

Φ3(0, y) in the regions h2 ≤ y ≤ h3. Also Figs. 4.6 and 4.7 show the real and

imaginary parts of pressures Φ2(L, y) and Φ4(L, y) in the regions 0 ≤ y ≤ h1. It

can be observed from figures that the pressures in fluid regions agree very well.

That gives the truncated terms of solution satisfy the matching conditions.
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Figure 4.6: Real part of pressures Φ2(L, y) and Φ4(L, y), plotted against y,
where N = 8 terms.
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Figure 4.7: Imaginary part of pressures Φ2(L, y) and Φ4(L, y), plotted against
y, where N = 8 terms.
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Likewise, Figs. 4.8 and 4.9 show the real and imaginary parts of velocities Φ1x(0, y),

Φ2x(0, y) and Φ3x(0, y) in the regions 0 ≤ y ≤ h1, 0 ≤ y ≤ h4 and h2 ≤ y ≤ h3,

respectively. From figures we can see that the velocities in fluid regions agree very

well.
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Figure 4.8: Real part of velocities Φ1x(0, y) , Φ2x(0, y) and Φ3x(0, y), plotted
against y, where N = 8 terms.
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Figure 4.9: Imaginary part of velocities Φ1x(0, y) , Φ2x(0, y) Φ3x(0, y), plotted
against y, where N = 8 terms.
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Figs. 4.10 and 4.11 show the real and imaginary parts of velocities Φ2x(L, y)

and Φ4x(L, y) in the interval 0 ≤ y ≤ h1. It can be observed from figures that

the velocities coincide. It shows that the truncated terms of solution satisfy the

matching conditions.
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Figure 4.10: Real part of Velocities Φ2x(L, y) and Φ4x(L, y), plotted against
y, where N = 8 terms.
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Figure 4.11: Imaginary part of velocities Φ2x(L, y) and Φ4x(L, y), plotted
against y, where N = 8 terms.



Chamber-silencer with porous lining 59

Now we will show the graphs of transmission loss with the physical parameters

are taken as h1 = 0.06, h2 = 0.085, h3 = 0.1, h4 = 0.13 and L = 0.03.
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Figure 4.12: Transmission loss against frequency for rigid walls with porous
medium.

From Fig. 4.12 it can be seen that by increasing the length L of the Chamber the

transmission loss is increased.
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Figure 4.13: Transmission loss against frequency for rigid walls with porous
medium with L = 0.1.
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Figure 4.14: Transmission loss against frequency for rigid walls with porous
medium with L = 0.05, h1 = 0.05, h2 = 0.1, h3 = 0.15 and h4 = 0.5.
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From Fig. 4.14 it can be observed that by increasing the length of porous medium

the transmission loss is increased.



Chapter 5

Conclusion

The Chapter wise summary and conclusion of the present study are enclosed in

this Chapter. Chapter 1 depicts background and literature survey relevant to the

current study along with thesis structure. In Chapter 2 useful definitions and

some derivations are included. Chapter 3 consists of two problems with numerical

results. In first problem we have discussed two regions with step discontinuity

along with a source in the first region. Mode-matching technique is used to solve

the governing system. The matching conditions of pressures and velocities are

satisfied. The incidence, reflection and transmission of energy is shown graphi-

cally. The sum of reflected and transmitted power is equal to incident power and

which have been shown graphically. The second non-dimensional problem consists

of a porous region. The second problem is also solved with Mode-matching tech-

nique and the matching conditions confirms the accuracy of truncated solution. In

chapter 4 we have discussed a problem with four regions. In the first region sound

source is located. The second region can be regarded as expansion chamber having

porous medium. The transmission takes place in the 4th region while reflection

is in other regions. Numerical results have been discussed and matching condi-

tions of pressures and velocities agree very well, which means that the truncated

solution satisfy. The incident, reflected and transmitted powers for corresponding

regions have been discussed. The attenuation of source radiation with expansion

chamber having porous medium is investigated. It is seen that dimensions of the

61
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chamber effect the attenuation of source radiation. The transmission is increased

by increasing the length of duct.
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