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Abstract

In this thesis, we discuss the central configuration in Restricted Five-Body Prob-

lem. Consider four point masses which are placed at the vertices of an isosceles

trapezoid with two pairs of equal masses, and find the equation of motion of the

fifth mass being negligible and not change the motion of four primaries. After

evaluating the equations of motion of the fifth body, calculate the positions of

equilibrium points for different intervals and check the stability of equilibrium

points finding eigenvalues analysis using mathematica. In the end, explore the

Newton basins of attractions relative to the equilibrium points as discussed above.
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Chapter 1

Introduction

The n-body problem in mechanics is the problem of determining the individual

motions of a group of celestial objects that interact gravitationally towards each

other. The purpose behind resolving these sort of problems is to know about

the motion of the moon, the sun, planets, visible stars etc. In the 17th century

mathematicians and astronomers were attracted to n-body problem. The prob-

lem statement is “What would be the orbit, if we are given n celestial objects

interacting with each other under the gravitational forces.” Isaac Newton resolved

two body-problem (2BP) through his laws of motions and the universal law of

gravity. There’s no significant way to solve the problem if n ≥ 3, but if we have a

restricted n-body problem it may provide a particular solution. Mathematicians

and astronomers have continued working on the n-body problem during the last

four centuries. First, in the 17th century, Kepler defined the elliptical trajectories

of planets around the sun in his planetary laws of motion between 1609 and 1619

Philosophiae Naturalis Principia Mathematica [1], One of the most im-

portant work in the history of science, in which Isaac Newton derived Kepler’s law

and formulated it. He gave a more general explanation of the planetary motion by

developing Newton’s Laws of motion and Newton’s Universal Law of Gravitation.

In a special case, the law for two point particles as they interact by gravitational

force with each other is,

F = G
m1m2

r3
r. (1.1)

1



Introduction 2

Where G is a universal gravitational constant and r is the distance of masses m1

and m2 from each other. Isaac Newton, after explaining Kepler’s laws, turned

his attention to comparatively more complex systems. Although, after a lot of

struggle, he was unable throughout his life to get any breakthrough in three-body

problem (3BP). Alexis Clairaut succeeded in providing an approximation for the

3BP after twenty years of Isaac Newton’s death. After some small adjustment,

his work accounted for the perigee of the moon, which was the aim of Newton.

In 1752 he received the St. Petersburg Academy Award. As Halley’s comet

travelled through the earth in 1759, the value of his approximations was apply

to demonstrate its motion. He himself take off the margin of error which he

predicted in his equations, within a month.

In addition, Leonhard Euler and Henri Poincaré works on the 3BP. The extremely

influential work of 3BP were ended the traditional work period. In the late 19th

century King Oscar II of Sweden set up an award to solve the n-body problem (A

more general type of n-body problem instead of 3 masses) Karl Weierstrass, Gsta

Mittag-Leffler and Charles Hermite suggested. The statement is as follows: [2]

“Given a system of arbitrarily many point masses that attract each other according

to Newton’s law, under the assumption that no two points ever collide, try to find

a representation of the coordinates of each point as a series in a variable that

is some known function of time and for all of whose values the series converges

uniformly”.

Several eminent mathematicians and astronomers worked on it in the 19th century,

such as Carl Gustav Jacob Jacobi, Lagrange and Euler. Until 1991, the general

solution to the problem was remained unsolved, when a Professor in the University

of Arizona, Qiudong Wang published “The global solution of n-body problem” [3].

However his work meets the requirements of King Oscars problem, Wang himself

would have described his result as a simple and useless answer while praising the

publications that Poincaré have already completed [4].
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1.1 Central Configuration

A Central Configuration(CC) is a special arrangement of point masses interacting

by Newton’s law of gravitation with the following property “the gravitational

acceleration vector produced on each mass by all others should point

toward the center of mass and proportional to the distance to the center

of mass”. CCs play an important role in the study of the Newtonian n-body

problem. For example, they lead to the only explicit solutions of the equations of

motion, they govern the behaviour of solutions near collisions, and they influence

the topology of the integral manifolds.

Approximately 67% of our galaxy stars are known to be included in the multi-

stellar system, that is why it is very important to understand the four-body prob-

lem and the Five-Body Problem. CC is useful to understand the gravitational

problems of n-body [5, 6]. There is a convex central configuration with a given or-

der of the particles for any four positive masses [7, 8]. Moreover, the exact number

of central four-body configurations is known only in the case of the four-masses [9].

Any four-body convex central configuration with perpendicular diagonals must be

a kite configuration [10]. The convex central configurations with similar opposite

masses were studied by Long and Sun [11] and proved that such CC must have a

symmetry. M Corbera et al. showed the set of central four-body trapezoid config-

urations with positive masses that form a trapezoid rhombus and isosceles in [12].

They can also be helpful in finding equations of motion and periodic solutions [13].

Kashif et al. discussed the CC of the five-body trapezoid isosceles problem where

four of the masses are located at the vertices of the trapezoid isosceles and the

fifth body will take different position on the axis of symmetry in [14].

1.1.1 Restricted Few-Body Problem

First time Euler’s solved the three-body problem for the motion of a particle that

is influenced by the gravitational field of two other point masses fixed in space.
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This problem is explicitly solvable and provides an approximate solution for mov-

ing particles in the gravitational fields. Lagrange points and their stability in a

restricted four-body problem where three bodies are finite and fourth is infinites-

imal, do not affect the movement of the three bodies moving in circles around

their center of mass fixed at the origin explained in [15]. A systematic analysis of

periodic orbits was done in the problem of the two-dimensional, elliptic, restricted

three-body [16]. The position and stability of the five points of equilibrium in

the planar, circular restricted three-body problem is investigated when a variety

of studies of drag forces act on the third body [17]. For equal masses, Yan et al.

studied the existence and linear stability of periodic orbits [18]. In the restricted

three-body problem, the presence of transversal ejection-collision orbits discussed

[19]. Conley et al. discussed new long periodic solutions in plane, of the restricted

three-body problem [20]. Simmons and Bakker gave analysis (linear stability) of

a rhomboidal 4BP and show that collisions (isolated binary) can be regularized at

origin [21]. Prokopenya discussed the stability of the equilibrium solutions in the

elliptic restricted many-body problem [22]. Planar central configurations of the

Four-Body Problem with three equal masses discussed in [23]. Santos discussed

each equilibrium solution must be defined by the primaries along a diagonal [24].

1.1.2 Newton’s Basins Of Attraction

The iterative scheme Newton – Raphson uses intrinsic properties of the dynamic

system to determine the basins of convergence associated with the Lagrange points.

A collection of literature is available that discusses the basins of convergence as-

sociated with the Lagrange points in different kinds of dynamic system such as

the restricted problem of three bodies [25, 26]. Suraj et al. recently studied the

“The analysis of restricted five-body problem within frame of variable mass” and

investigated the location, movement and stability of Lagrange point with respect

to the perturbation parameter that is influenced by the variable mass of the fifth

very small body [27]. They also used iterative Newton-Raphson bivariate scheme

to investigate the convergence basins for the points of equilibrium. The basins
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of attraction demonstrate how the system’s equilibrium points attract the initial

conditions and lie on the configuration plane as nodes, which form the convergence

domain of basins. The Newton-Raphson convergence basins, connected to the La-

grange points (which operate as attractors), were discussed in the planar circular

restricted 5-body problem [28]. Bogdan et al. discussed attraction fractal basins

associated with the damped Newton approach [29]. Suraj et al. recently studied

the concave axisymmetric configuration numerically restricted five-body problems

by using the iterative Newton-Raphson scheme to find the convergence of basins

[30].

1.2 Thesis Contribution

Assume a restricted five-body problem, in which four positive masses, two pairs of

equal masses at adjacent vertices, moving in such a way that their configuration is

always a isosceles trapezoid and the small mass m5 moving in the same plane under

the influence of gravity of four primaries, does not influence the movement of four

primaries. Calculate the positions of equilibrium points and check the stability

of equilibrium points, also find the Newton’s basins of attraction for equilibrium

points.

1.3 Dissertation Outlines

We divide this dissertation into four chapters.

Chapter 1 introduction of the problem and aim of this research is briefly dis-

cussed.
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Chapter 2 contains some basic definitions related to celestial mechanics, New-

ton’s laws of motion and Kepler’s laws of planetary motion. In the last portion of

this chapter, the two-body problem and n-body problem is briefly discussed.

In Chapter 3, the paper [31] is comprehensively reviewed.

Chapter 4 summarizes the whole study with concluding remarks.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

This chapter includes the basic definitions and basic concepts that will help us

better understanding of our objective research [32, 33].

2.1 Basic Definitions

Definition 2.1.1.(Motion)

“Motion is the action used to change the location or position of an object with

respect to the surroundings over time.”

Definition 2.1.2. (Mechanics)

“Mechanics is a branch of physics concerned with motion or change in position of

physical objects. It is sometimes further subdivided into:

1. Kinematics, which is concerned with the geometry of the motion,

2. Dynamics, which is concerned with the physical causes of the motion,

3. Statics, which is concerned with conditions under which no motion is appar-

ent.”

Definition 2.1.3. (Scalar)

“Various quantities of physics, such as length, mass and time, requires for their

7
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specification a single real number (apart from units of measurement which are de-

cided upon in advance). Such quantities are called Scalars and the real number

is called the magnitude of the quantity.”

Definition 2.1.4. (Vector)

“Other quantities of physics, such as displacement, velocity, momentum, force etc

require for their specification a direction as well as magnitude. Such quantities

are called Vectors.”

Definition 2.1.5. (Field)

“A field is a physical quantity associated with every point of spacetime. The phys-

ical quantity may be either in vector form, scalar form or tensor form.”

Definition 2.1.6. (Scalar Field)

“If at every point in a region, a scalar function has a defined value, the region is

called a scalar field. i.e.,

f : R3 → R,

e.g. temperature and pressure fields around the earth.”

Definition 2.1.7. (Vector Field)

“If at every point in a region, a vector function has a defined value, the region is

called a vector field.

V : R3 → R3,

e.g. tangent vector around a smooth curve.”

Definition 2.1.8. (Conservative Vector Field)

“A vector field V is conservative if and only if there exists a continuously differ-

entiable scalar field f such that V = −∇f or equivalently if and only if
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∇×V = CurlV = 0.”

Definition 2.1.10. (Uniform Force Field)

“A force field which has constant magnitude and direction is called a uniform or

constant force field. If the direction of the field is taken as negative z direction

and magnitude is constant F0 > 0, then the force field is given by

F = −F0k̂.”

Definition 2.1.11. (Central Force)

“Suppose that a force acting on a particle of mass m such that

(a) it is always directed from m toward or away from a fixed point O,

(b) its magnitude depends only on the distance r from O.

then we call the force a central force or central force field with O as the center of

force. In symbols F is a central force if and only if

F = f(r)r1 = f(r)r
r
,

where r1 = r
r

is a unit vector in the direction of r. The central force is one of

attraction towards O or repulsion from O according as f(r) < 0 or f(r) > 0 respec-

tively.”

Definition 2.1.12. (Degree of Freedom)

“The number of coordinates required to specify the position of a system of one or

more particles is called number of degree of freedom of the system.

Example: A particle moving freely in space requires 3 coordinates, e.g. (x, y, z),

to specify its position. Thus the number of degree of freedom is 3.”

Definition 2.1.13. (Center of Mass)

“Let r1, r2, ..., rn be the position vector of a system of n particles of masses

m1,m2, ...mn respectively. The center of mass or centroid of the system of particles

is defined as that point having position vector
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r̂ =
m1r1 +m2r2 + ...+mnrn

m1 +m2 + ...+mn

=
1

M

n∑
ν=1

mνrν ,

where

M =
n∑
ν=1

mν ,

is the total mass of the system.”

Definition 2.1.14. (Center of Gravity)

“If a system of particles is in a uniform gravitational field, the center of mass is

sometimes called the center of gravity.”

Definition 2.1.15. (Torque)

“If a particle with a position vector r moves in a force field F, we define τ as

torque or moment of the force as

τ = r× F.

The magnitude of τ is

τ = rF sin θ.

The magnitude of torque is a measure of the turning effect produced on the particle

by the force.”

Definition 2.1.16. (Momentum)

“The linear momentum p of an object with mass m and velocity v is defined as:

p = mv.

Under certain circumstances the linear momentum of a system is conserved. The

linear momentum of a particle is related to the net force acting on that object:

F = ma = m
dv

dt
=

d

dt
(mv) =

dp

dt
.
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The rate of change of linear momentum of a particle is equal to the net force

acting on the object, and is pointed in the direction of the force. If the net force

acting on an object is zero, its linear momentum is constant (conservation of linear

momentum). The total linear momentum p of a system of particles is defined as

the vector sum of the individual linear momentum.

p =
n∑
1

pi.”

Definition 2.1.17. (Point-like Particle)

“A point-like particle is an idealization of particles mostly used in different fields of

physics. Its defining features is the lacks of spatial extension:being zero-dimensional,

it does not take up space. A point-like particle is an appropriate representation

of an object whose structure, size and shape is irrelevant in a given context. e.g.,

from far away, a finite-size mass (object) will look like a point-like particle.”

Definition 2.1.18. (Angular Momentum)

“Angular momentum for a point-like particle of mass m with linear momentum p

about a point O, defined by the equation

L = r× p,

where r is the vector from the point O to the particle. The torque about the point

O acting on the particle is equal to the rate of change of the angular momentum

about the point O of the particle i.e.,

τ =
dL

dt
.”

Definition 2.1.20. (Inertial Frame of Reference)

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,
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an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.”

Definition 2.1.22. (Equilibrium Solution)

“The Equilibrium solution can guide us through the behaviour of the equation

that represents the problem without actually solving it. These solutions can be

found only if we meet the sufficient condition of all rates equal to zero. If we have

two variables then

ẋ = ẏ = ẍ = ÿ = ... = x(n) = y(n) = 0.

These solutions may be stable or unstable. The stable solutions regarding in ce-

lestial Mechanics helps us find parking spaces where if a satellite or any object

placed, it will remain there for ever. These type of places are also found along the

Jupiter’s orbital path where bodies called trojan are present. These equilibrium

points with respect to Celestial Mechanics are also called Lagrange points named

after a French mathematician and astronomer Joseph-Louis Lagrange. He was

first to find these equilibrium points for the Sun-Earth system. He found that

three of these five points were collinear.

Procedure for Stability Analysis and Equilibrium Points:

We need to follow the following steps to check the stability of equilibrium points.

1) Determine the equilibrium points, x∗, solving Ω(x∗) = 0.

2) Construct the Jacobian matrix, J(x∗) = ∂Ω
∂x∗ .

3) Compute eigenvalues of Ω(x∗): det|Ω(x∗)− λ I| = 0.

4) Stability or instability of x∗ based on the real parts of eigenvalues.

5) Point is stable, if all eigenvalues have real parts negative.

6) Unstable, If (at least) one of the eigenvalues have a positive real part.

7) Otherwise, there is no conclusion, (i.e, require an investigation of higher order

terms).”
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Definition 2.1.23. (Basin of Attraction)

“Newton method is used to find the roots of equations but Arthur Cayley [34]

found that if the roots of a function are already known then Newton’s method can

guide to another problem that is which initial guesses iterate to which roots and

the region of these initial guesses is called basins of attraction of the roots.”

2.2 Kepler’s Laws of Planetary Motion

“Kepler’s three laws of planetary motion can be described as follows:

1. All planets are moving in an elliptical path with sun at one focus.

2. The radius vector drawn from the sun to a planet sweeps out equal areas in

equal time intervals.

3. The cube of the semi major axis of the planetary orbits are proportional

to the square of the planets periods of revolution. Mathematically, Kepler’s

third law can be written as:

T 2 =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun

and G is the universal gravitational constant.”

2.3 Newton’s Laws of Motion

“The following three laws of motion given by Newton are considered the axioms

of mechanics:

1. First law of Motion

Every particle persists in a state of rest or of uniform motion in a straight

line unless acted upon by a force.
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2. Second law of Motion

If F is the external force acting on a particle of mass m which as a reaction

is moving with velocity v, then

F =
d

dt
(mv) =

dP

dt
.

If m is independent of time this becomes

F = m
dv

dt
= ma,

where a is the acceleration of the particle.

3. Third law of Motion

For every action, there is an equal and opposite reaction.”

2.3.1 Newton’s Universal Law of Gravitation

“Every particle of matter in the universe attracts every other particle of matter

with a force which is directly proportional to the product of the masses and in-

versely proportional to the square of the distance between them. Hence, for any

two particles separated by a distance r, the magnitude of the gravitational force

F is:

F = G
m1m2

r3
r

where G is universal gravitational constant. Its numerical value in SI units is

6.67408× 10−11m3kg−1s−2.”

2.4 Two Body Problem

“The two-body problem , first studied and solved by Newton, states: Suppose

that the positions and velocities of two massive bodies moving under their mutual
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gravitational force are given at any time t, then what should their position and ve-

locities be for any other time t, if the masses are known? Example include a planet

orbiting around a star (Earth-Sun, Moon-Earth), two stars orbiting around each

other, satellite orbiting around orbit. The two-body problem is very important

because of the following facts:

1. It is the only gravitational problem in celestial mechanics, apart from rather

restricted solutions of three body problem, for which we have a complete

and general solution.

2. A wide range of practical orbital motion problems can be treated as approx-

imate two-body problems.

3. The two-body solution may be used to provide approximate orbital param-

eters and predictions or serve as a starting point for the generation of ana-

lytical solutions valid to higher orders of accuracy.”

2.4.1 The Solution to the Two-Body Problem

“The governing law for the two-body is Newton’s universal gravitational law:

F = G
m1m2

r3
r, (2.1)

for two masses m1 and m2 separated by a distance of r, and G the universal

gravitational constant. The aim here is to determine the path of the particles for

any time t, if the initial positions and velocities are known. In Figure 2.1, the

force of attraction F1 is directed along r towards m, while the force F2 on M is

in opposite direction. By Newton’s third law,

F1 = −F2. (2.2)

From Figure 2.1,

F1 = G
mM

r3
r. (2.3)
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Using Newton’s second law of motion and by equation (2.1) and (2.2), the equation

of motion of the particles under their mutual gravitational attractions are given

by

mr̈1 = m
d2r1

dt2
= G

mM

r3
r, (2.4)

Figure 2.1: Center of mass of two body system

M r̈2 = M
d2r2

dt2
= −GmM

r3
r, (2.5)

where r1 and r2 be the position vectors from the reference O as shown in

Figure 2.1. Adding equation (2.4) and (2.5), we get:

mr̈1 +M r̈2 = 0, (2.6)

integrating above equations yields:

mṙ1 +M ṙ2 = c1, (2.7)

that the total linear momentum of the system i.e. mvm+MvM = c1 is a constant.

Again integrating equation (2.7) implies:

mr1 +Mr2 = c1t+ c2, (2.8)
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where c1 and c2 are constant vectors.

Using the definition of center of mass in 2BP, R is defined as:

(m+M)R = mr1 +Mr2,

MtR = mr1 +Mr2, (2.9)

where Mt = m + M. Taking the derivative of equation (2.9) and comparing with

equation (2.21), we get

MtṘ = c1 ⇒ Ṙ =
c1

Mt

= constant

show that Ṙ = vc (velocity of center of mass) is constant.

Subtracting the equations (2.4) and (2.5) gives:

r̈1 − r̈2 =
GM

r3
r +

Gm

r3
r, (2.10)

r̈1 − r̈2 = G(m+M)
r

r3

⇒ r̈ = µ
r

r3

⇒ r̈ + µ
r

r3
= 0, (2.11)

where µ = G(m+M) is defined as reduced mass and r1− r2 = −r, see Figure 2.1.

Taking the cross product of r with equation (2.11) we obtain:

r× µr̈ +
µ2

r3
r× r = 0

⇒ r× r̈ = 0, (2.12)



Preliminaries 18

integrating above equation yields:

r× ṙ = L, (2.13)

where L is a constant vector. We may write equation (2.12),

⇒ r× µr̈ = 0,

⇒ r× F = 0, (2.14)

where F = µr̈ = µa (µ is reduced mass i.e. constant).

From the definition of torque and angular momentum:

τ =
dL

dt
= r× F. (2.15)

Comparing equations (2.14) and (2.15), we get:

τ =
dL

dt
= r× F = 0,

dL

dt
= 0

⇒ L =constant,

i.e. angular momentum of the system is constant.

Radial and Transverse Components of Velocity and Acceleration:

If polar coordinates r and θ are taken in this plane as in Figure 2.2, the ve-

locity components along and perpendicular to the radius vector joining m to M

are ṙ and rθ̇, then,

ṙ =
dr

dt
= ṙi + rθ̇j, (2.16)
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where î and ĵ are unit vectors along and perpendicular to the radius vector. Hence,

by equations (2.13) and (2.16),

r× (ṙî+ rθ̇ĵ) = r2θ̇k̂ = Lk̂, (2.17)

where k̂ is a unit vector perpendicular to the plane of the orbit. We may then

write

r2θ̇ = L, (2.18)

where the constant L is seen to be twice the rate of description of area by the

radius vector. This is the mathematical form of Kepler’s second law.

Figure 2.2: Radial and transverse components of velocity and acceleration

Now taking the scalar product of ṙ with equation (2.11), we get:

ṙ.
d2r

dt2
+ µ

ṙ.r

r3
= 0,

which may be integrated to give:

1

2
ṙ.ṙ− mu

r
= C,

1

2
v2 − µ

r
= C, (2.19)

where C is a constant. This is the energy conservation form of the system. The

quantity C is not the total energy; 1
2
µ2 is related to the kinetic energy and −mu

r
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to the potential energy of the system i.e. total energy is conserved.

Recall that from celestial mechanics, components of acceleration vector along and

perpendicular to the radius vector (see Figure 2.2):

a = (r̈ − rθ̇2)̂i+
1

r

d

dt
(r2θ̇)ĵ,

using above equation in (2.11), we get

r̈ − rθ̇2 = − µ
r2
, (2.20)

1

r

d

dt
(r2θ̇) = 0. (2.21)

Integrating equation (2.21) gives the angular momentum integral:

r2θ̇ = L, (2.22)

making the usual substitution of

u =
1

r
, (2.23)

and eliminating the time between equation (2.20) and (2.22), implies:

d2u

dθ2
+ u =

µ

L2
. (2.24)

The general solution of above equation is :

u =
µ

L2
+ A cos(θ − θ0), (2.25)

where A and θ0 are two constants of integration. Substitute u = 1
r

in above

equation:

1

r
=

µ

L2
+ A cos(θ − θ0)

⇒ r =

L2

µ

1 + L2A
µ

cos(θ − θ0)
,
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is the polar form of the equation of the conic and may be written as:

r =
p

1 + e cos(θ − θ0)
,

where

p =
L2

µ
,

e =
AL2

µ
.

Eccentricity e classifies the trajectory of one celestial body around another. Thus:

(i) If 0 < e < 1 then the orbit is elliptical,

(ii) If e = 1 then the orbit is a parabolic,

(iii) If e > 1 then the orbit is a hyperbolic.

Hence the solution of the two-body problem is a conic, includes Kepler’s first law

as a special case.”

2.5 The Equations of Motion in the n-Body

Problem

“The 2BP deals much of the important work in astrodynamics, but sometimes we

need to model the real world by including other bodies. The next logical step,

then, is to drive formulas for 3BP. A further generalization of three body problem

is n-body problem. In general, solving general differential equations of motions in

n-body problem requires a fixed number of integration constants. Consider a sim-

ple gravity problem in which we have constant acceleration over time, a(t) = a0.

If we integrate this equation, we obtain the velocity, v(t) = a0t + v0. Integrating

once more provides, r(t) = r0 + v0t + 1
2
a0t

2. To complete the solution, we must

know the initial conditions. This example is a straight froward analytical solution

using the initial values, or a function of the time and constants of integration,

called integrals of the motion. Unfortunately, this isn’t always the simple case.
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When initial conditions alone don’t provide a solution, integrals of the motion

can reduce the order of differential equations, also called the degrees of freedom

of the dynamical system. Ideally, if the number of integrals equals the order of

differential equations, we can reduce it to order zero. These integrals are constant

functions of the initial conditions, as well as the position and velocity of at any

time, hence the term constants of the motion.

For the n-body problem, a system of 3n second order differential equations, we

need 6n integrals of motion for a complete solution. Conservation of linear mo-

mentum provides six, conservation of energy one, and conservation of total angular

momentum three, for a total of ten. There are no laws analogous to Kepler’s first

two laws to obtain additional constants, thus we are left with a system of order

6n− 10 for n ≥ 3.

These equations for n bodies, n ≥ 3, defy all attempts at closed-form solutions.

H. Brun, in 1887, showed that there were no other algebraic integrals. Although

Poincaré later generalized Brun’s work, we still have only the ten known integrals.

They give us insight into the motions within the three body and n-body problems.

Conservation of total linear momentum assumes no external forces are on the sys-

tem.

First, here we set up the equations of motions of n massive particles of masses

mi(i = 1, 2...n) whose radius vectors from an unaccelerated point O are ri while

their mutual radius vectors are given by rij where

rij = rj − ri (2.26)

From Newton’s laws of motion and the law of gravitation,

mir̈i = G
n∑

j=1j 6=i

mimj

r3
ij

rij, (i = 1, ...n) (2.27)

here we note that rij implies that the vector between mi and mj is directed

for mi to mj, thus

rij = −rji (2.28)
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The set of equations (2.27) are the required equation of motion for n-body problem,

G being the constant of gravitation.”



Chapter 3

Restricted Trapezoid Five-Body

Problem

3.1 Introduction

In this review research work, set up a restricted trapezoid five-body problem

(RT5BP) [31], in which four positive masses are called primaries. The primary

masses are m1,m2,m3 and m4 respectively. There are two pairs of equal masses at

adjacent vertices, moving in such a way that their configuration is always a isosce-

les trapezoid. Assume that the mass m5 is very small moving in the same plane

of the primaries and does not influence the movement of the four primaries. First

discuss, our four objects effectively make an isosceles trapezoid and the small mass

m5 moving in the same plane under the influence of gravity of four primaries (See

Figure 3.1). Secondly, analyse the motion of mass m5 and use the contour plot

to find an equilibrium solution. Third, test the stability of equilibrium solutions.

Finally, end up with the finding the Newton’s basins of attraction for equilibrium

points.

24
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3.2 Characterization of the Trapezoid

Configuration

Suppose that n point positive masses (m1,m2, ...,mn),mi ∈ R, i = 1, ...n, and

ri ∈ R2, i = 1, ...n are n mass position vectors, and the Euclidean distance between

any two masses are rij, i, j = 1, ...n.

The classical equation of motion for n positive masses has the form

mir̈i = G

n∑
j=1j 6=i

mimj

r3
ij

rij, i = 1, ...n, (3.1)

ri is position vector of the ith body, mi is the mass of the ith body and G is the

universal constant of gravitation. The central configuration of n-body system is

obtained, if the position vector of each particle with respect to the center of mass

is a common scalar multiple of its acceleration,

i.e.,

r̈i = −λ(ri − c) i = 1, ...n,

where λ is a constant and λ 6= 0, c is the centre of mass of the system.

For four bodies, we put n = 4 in equation (3.1), we will get central configura-

tion for general four-body problem (4BP) equations are given below:

m2
r2 − r1

|r2 − r1|3
+m3

r3 − r1

|r3 − r1|3
+m4

r4 − r1

|r4 − r1|3
= −λ(r1 − c), (3.2)

m1
r1 − r2

|r1 − r2|3
+m3

r3 − r2

|r3 − r2|3
+m4

r4 − r2

|r4 − r2|3
= −λ(r2 − c), (3.3)

m1
r1 − r3

|r1 − r3|3
+m2

r2 − r3

|r2 − r3|3
+m4

r4 − r3

|r4 − r3|3
= −λ(r3 − c), (3.4)

m1
r1 − r4

|r1 − r4|3
+m2

r2 − r4

|r2 − r4|3
+m3

r3 − r4

|r3 − r4|3
= −λ(r4 − c). (3.5)
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Now consider the four positive masses, the masses are m1,m2,m3 and m4 which

m1

m4 m3

m2

m5
y

x

r4

r1 r2

r3
a

b b

1

Figure 3.1: Restricted Trapezoid Five-Body Problem

are fixed at r1 =
(−1

2
, 0
)
, r2 =

(
1
2
, 0
)
, r3 =

(
a
2
, h
)

and r4 =
(−a

2
, h
)

respectively,

where h =
√
b2 − (1−a

2
)2.

We consider r = (r1, r2, r3, r4) forms a isosceles trapezoid, and the side [r1, r2] is

parallel to the side [r3, r4]. We assume masses of isosceles trapezoid central con-

figuration as,

m1 = m2 = 1 and m3 = m4 = m.

After calculated the Euclidean distance between the masses from each other are:

r12 = 1, r14 = r23 = b, r34 = a, r13 = r24 =
√
b2 + a.

The centre of mass for four-bodies can be written as,

c =
m1r1 +m2r2 +m3r3 +m4r4

m1 +m2 +m3 +m4

,
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after using the values of r1, r2, r3, r4 and m1 = m2 = 1, m3 = m4 = m, then

equation of the centre of mass will becomes,

c =

(
0,

2mh

2 + 2m

)
.

Now using the values of Euclidean distances, position vectors, masses m1 = m2 = 1

m3 = m4 = m and centre of mass c in equations (3.2), (3.3), (3.4) and (3.5), re-

duces to the following four equations:

(1, 0) +m
(1+a

2
, h)

(a+ b)
3
2

+m
(1−a

2
, h)

b3
+ λ

(
−1

2
,
−mh
1 +m

)
= 0, (3.6)

(−1, 0) +m
(−1−a

2
, h)

(a+ b)
3
2

+m
(a−1

2
, h)

b3
+ λ

(
1

2
,
−mh
1 +m

)
= 0, (3.7)

(a−1
2
,−h)

b3
+

(a+1
2
,−h)

(a+ b)
3
2

+m
(a, 0)

a3
+ λ

(
−a
2
,

h

1 +m

)
= 0, (3.8)

(1−a
2
,−h)

b3
+

(−1−a
2
,−h)

(a+ b)
3
2

+m
(−a, 0)

a3
+ λ

(
a

2
,

h

1 +m

)
= 0. (3.9)

equations in xy coordinates are:

1 +m
(1 + a)

2 (a+ b)
3
2

+m
(1− a)

2 b3
− λ

2
= 0, (3.10)

− 1−m (1 + a)

2 (a+ b)
3
2

+m
(a− 1)

2 b3
+
λ

2
= 0, (3.11)

(a− 1)

2 b3
+

(a+ 1)

2 (a+ b)
3
2

+
m

a2
− λ a

2
= 0, (3.12)

(1− a)

2 b3
− (1 + a)

2 (a+ b)
3
2

− m

a2
+
λ a

2
= 0, (3.13)

m h

(a+ b)
3
2

+
m h

b3
− λ m h

1 +m
= 0, (3.14)

m h

(a+ b)
3
2

+
m h

b3
− λ m h

1 +m
= 0, (3.15)
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− h

b3
− h

(a+ b)
3
2

+
λ h

1 +m
= 0, (3.16)

− h

b3
− h

(a+ b)
3
2

+
λ h

1 +m
= 0. (3.17)

By simplifying and rearranging, Some of these are similar in eight equations.

Therefore, the central configuration equations are reduced to the following three

equations:

2 +m
(a+ 1)

X
+m

(1− a)

b3
− λ = 0, (3.18)

a− 1

b3
+
a+ 1

X
+

2m

a2
− λa = 0, (3.19)

1

b3
+

1

X
− λ

1 +m
= 0, (3.20)

where,

X = (a+ b)
3
2 .

Simplifying (3.20) equation, we obtain

λ =
1 +m

b3
+

1 +m

X
. (3.21)

Putting equation (3.21) in equation (3.19), we have

2 +m
(a+ 1)

X
+m

(1− a)

b3
− a

[
1 +m

b3
+

1 +m

X

]
= 0,

1

X
[a+ 1− a(1 +m)] +

1

b3
[a− 1− a(1 +m)] +

2m

a2
= 0,

1

X
(1− am) +

1

b3
(−1− am) +

2m

a2
= 0,
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m

[
2

a2
− a

X
− a

b3

]
=

1

b3
− 1

X
,

m

[
2b3X − a3b3 − a3X

a2b3X

]
=
X − b3

b3X
,

m

[
2b3X − a3b3 − a3X

a2

]
= X − b3,

m =
a2(X − b3)

2b3X − a3b3 − a3X
,

using the value of X and some simplifications and rearrangements, we obtain

m =
a2(1− b3)

b3 − a3
. (3.22)

Now plugging Eq. (3.21) and (3.22) into Eq. (3.18), we get

g(a, b) = (b3 + a)
3
2 (2b3 − a3 − 1)− b3 − a3b3 + 2a3 = 0. (3.23)

The function g(a, b) = 0 is a necessary condition for the central configurations to

exist. It is not possible to analytically solve g(a, b) = 0 for either a or b, therefore

we use interpolation using mathematica to write b = φ(x ; a), where

b(x ; a) = a3 − 2a6 + a9 + (3a2 + 6a5 + 3a8)x2 + (3a+ 6a4 + 3a7)x4 + (−12a2 − 12a5)x5+

4a3x6 + (−12a− 12a4)x7 + 12a2x8 + (−4− 4a3)x9 + 12ax10 + 4x12.
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3.2.1 Proposition

If a > 0 (a 6= 1) then for atmost one real root b of φ(x ; a), we have m > 0 and

g(a, b) = 0.

3.3 Dynamics of 5th Body

In this section we discuss the dynamic of 5th particle in the plan moving according

to the gravitational field formed by the attraction of four primaries moving in a

planar isosceles trapezoid configuration as shown in the previous section. We call

this problem to restricted trapezoidal five-body problem. Equation of motion de-

scribe the planer motion of restricted 5th particle, mass m5 written from equation

(3.1) reads in inertial frame of reference,

r̈5 = m1
r1 − r5

|r1 − r5|3
+m2

r2 − r5

|r2 − r5|3
+m3

r3 − r5

|r3 − r5|3
+m4

r4 − r5

|r4 − r5|3
. (3.24)

We now introduce a coordinate system that is rotating about the center of mass

with uniform angular speed ω. Let (x, y) be the coordinates of m5 in this new

rotating frame (non-inertial frame). We can convert equation (3.24) from fixed

inertial frame to the rotating coordinates system with the following orthogonal

system,

e1 = eiwt, e2 = ieiwt,

where ω is angular speed and ”t” represents time. The position vector of m5 in

the rotating frame is,

r5 = x(t) e1 + y(t) e2, (3.25)
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choosing ω, (without loss of generality) and taking first and second derivatives of

equation (3.25) yield,

ṙ5 = [(ẋ− y) + i(x+ ẏ)]eit,

r̈5 = [(ẍ− 2ẏ − x) + i(ÿ + 2ẋ− y)] eit.
(3.26)

Using equation (3.26) in equation (3.24), the equations of motion of m5 in rotating

frame in component form are,

ẍ− 2ẏ = x−
[(

x+ 0.5

r3
51

+
x− 0.5

r3
52

)
+m

(
x− 0.5a

r3
53

+
x+ 0.5a

r3
54

)]
, (3.27)

ÿ + 2ẋ = y −
[(

1

r3
51

+
1

r3
52

)
y +m

(
1

r3
53

+
1

r3
54

)
(y − h)

]
, (3.28)

where mutual distances are described as,

r51 =
√

(x+ 0.5)2 + y2,

r52 =
√

(x− 0.5)2 + y2,

r53 =
√

(x− 0.5a)2 + (y − h)2,

r54 =
√

(x+ 0.5a)2 + (y − h)2.

The equation of motion of m5 moving in the plane of primaries can also be written

as,

Ux =
∂U

∂x
= ẍ− 2ẏ, (3.29)

Uy =
∂U

∂y
= ÿ + 2ẋ, (3.30)

where the effective potential U(x, y) can pe expressed as,

U(x, y) =
x2 + y2

2
+

[(
1

r51

+
1

r52

)
+m

(
1

r53

+
1

r54

)]
. (3.31)
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Comparing the equations (3.27), (3.28) and (3.29), (3.30), we may write equations

of motion of m5 as,

Ux(x, y) = x−
[(

x+ 0.5

r3
51

+
x− 0.5

r3
52

)
+m

(
x− 0.5a

r3
53

+
x+ 0.5a

r3
54

)]
, (3.32)

Uy(x, y) = y −
[(

1

r3
51

+
1

r3
52

)
y +m

(
1

r3
53

+
1

r3
54

)
(y − h)

]
. (3.33)

3.4 Equilibrium Solutions

The equations (3.32) and (3.33), do not have an analytical solution of a closed

form, we can use both equations to determine the location of the equilibrium

points. These are the places in space where the infinitesimal mass m5 would have

zero velocity and acceleration,i.e., where m5 appears at rest permanently relative

to the primaries m1,m2,m3 and m4 respectively. When located at an equilibrium

point (also called libration point / Lagrange point), a body will apparently stay

there. These solutions can be found only if we meet the sufficient condition of all

rates equal to zero,

ẋ = ẏ = ẍ = ÿ = 0.

Finally the equations (3.27) and (3.28) take the form,

x−
[(

x+ 0.5

r3
51

+
x− 0.5

r3
52

)
+m

(
x− 0.5a

r3
53

+
x+ 0.5a

r3
54

)]
= 0, (3.34)

y −
[(

1

r3
51

+
1

r3
52

)
y +m

(
1

r3
53

+
1

r3
54

)
(y − h)

]
= 0. (3.35)

Equations (3.34) and (3.35) are highly non linear coupled algebraic equations. To

find the zero’s (x, y) or equilibrium points / Lagrange point, we need to solve
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these equations numerically or drawing contour plot using mathematica. The

classification of equilibrium points/ Lagrange points for RT5BP are,

3.5 When a ∈ (0 , 1)

i. When a ∈ (0.00500 , 0.13967) there exist 5 equilibrium points.

ii. When a ∈ (0.13967 , 0.15099) there exist 7 equilibrium points.

iii. When a ∈ (0.15099 , 0.18274) there exist 5 equilibrium points.

iv. When a ∈ (0.18274 , 0.43386) there exist 7 equilibrium points.

v. When a ∈ (0.43386 , 0.60867) there exist 11 equilibrium points.

vi. When a ∈ (0.60867 , 0.64166) there exist 13 equilibrium points.

vii. When a ∈ (0.64166 , 0.64220) there exist 11 equilibrium points.

viii. When a ∈ (0.64220 , 0.99999) there exist 9 equilibrium points.

In addition, these intervals can be discuss in cases compared to other similar equi-

librium points. The intersections of the non-linear equations Ux = 0, and Uy = 0

define the positions of the equilibrium points. The intersections of Ux = 0 (blue)

and Uy = 0 (orange), respectively. The red dots represent the position of the

primary masses and black dots represent the position of equilibrium points (See

figures 3.2 to 3.9 below)

3.5.1 Case 1: Five Equilibrium Points

We start our analysis with the first case for equilibrium points, where five equilib-

rium points are present in two different intervals ”i” and ”iii” respectively. I will

choose any point, because the behaviour does not change of the equilibrium point

in these intervals. So i will choose and draw contour plot one by one for these
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intervals.

3.5.1.1 Contour-Plot for a ∈ (0.00500 , 0.13967)

when a ∈ (0.00500 , 0.13967), we take a = 0.11984 to be any point in the interval,

the corresponding value of b = 0.97188, h = 0.8644 and m = 0.001377 respectively.

Contour plot for these values shows that the L1, L2 and L5 are collinear along x-

axis, while L3, L4 and L5 are collinear along y-axis.

-2 -1 0 1 2

-2

-1

0

1

2

x

y

m1 m2

m3m4

L1 L2

L3

L4

L5 Ux

Uy

Figure 3.2: Case 1: Five equilibrium points for 0.00500 < a < 0.13967;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 5)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.11984, b = 0.97188, m = 0.001377 and h = 0.8644. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.
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3.5.1.2 Contour-Plot for a ∈ (0.15099 , 0.18274)

When a ∈ (0.15099 , 0.18274), we take a = 0.16687 to be any point in the interval,

the corresponding value of b = 0.96189, h = 0.86491 and m = 0.00365 respectively.

Contour plot for these values shows that the L1, L2 and L5 are collinear along x-

axis, while L3, L4 and L5 are collinear along y-axis.

-2 -1 0 1 2
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-1

0

1
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x

y

m1 m2

m3m4

L1 L2

L3

L4

L5 Ux

Uy

Figure 3.3: Case 1: Five equilibrium points for 0.15099 < a < 0.18274;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 5)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.16687, b = 0.96189, m = 0.00365 and h = 0.86491. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.5.2 Case 2: Seven Equilibrium Points

We continue our analysis with the second case for equilibrium points, where seven

equilibrium points are present in two different intervals ”ii” and ”iv” respectively.
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I will choose any point, because the behaviour does not change of the equilibrium

point in these intervals. So i will choose and draw contour plot one by one for

these intervals.

3.5.2.1 Contour-Plot for a ∈ (0.13967 , 0.15099)

When a ∈ (0.13967 , 0.15099), we take a = 0.15001 to be any point in the interval,

the corresponding value of b = 0.9654, h = 0.87194 and m = 0.00216 respectively.

Contour plot for these values shows that the L1, L2 and L7 are collinear along

x-axis, while L3, L4 and L7 are collinear along y-axis, other points L5 and L6 are

non-collinear.
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L5 L6

L7 Ux
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Figure 3.4: Case 2: Seven equilibrium points for 0.13967 < a < 0.15099;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 7)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.15001, b = 0.9654, m = 0.00216 and h = 0.87194. The Red dots represent

the centers (mi, i = 1, 2, 3, 4) of the primaries.
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3.5.2.2 Contour-Plot for a ∈ (0.18274 , 0.43386)

When a ∈ (0.18274 , 0.43386), we take a = 0.30834 to be any point in the interval,

the corresponding value of b = 0.93569, h = 0.87406 and m = 0.02009 respectively.

Contour plot for these values shows that the L3, L4 and L7 are collinear along y-

axis, while other points L1, L2, L5 and L6 are non-collinear.
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Figure 3.5: Case 2: Seven equilibrium points for 0.18274 < a < 0.43386;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 7)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.30834, b = 0.93569, m = 0.02009 and h = 0.87406. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.5.3 Case 3: Nine Equilibrium Points

The present analysis with the third case for equilibrium points, where nine equilib-

rium points are present in only one interval ”viii”. I will choose any point, because

the behaviour does not change of the equilibrium point in the interval. So i will

choose and draw contour plot for this interval.
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3.5.3.1 Contour-Plot for a ∈ (0.64220 , 0.99999)

When a ∈ (0.64220 , 0.99999), we take a = 0.80742 to be any point in the interval,

the corresponding value of b = 0.92959, h = 0.92459 and m = 0.46305 respectively.

Contour plot for these values shows that the L3, L4, L7, L8 and L9 are collinear

along y-axis, while all other points L1, L2, L5 and L6 are non-collinear.
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Figure 3.6: Case 3: Nine equilibrium points for 0.64220 < a < 0.99999;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 9)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.80742, b = 0.92959, m = 0.46305 and h = 0.92459. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.5.4 Case 4: Eleven Equilibrium Points

We further continue our analysis with the fourth case for equilibrium points, where

eleven equilibrium points are present in two different intervals ”v” and ”vii” re-

spectively. I will choose any point, because the behaviour does not change of the
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equilibrium point in these intervals. So i will choose and draw contour plot one

by one for these intervals.

3.5.4.1 Contour-Plot for a ∈ (0.43386 , 0.60867)

When a ∈ (0.43386 , 0.60867), we take a = 0.52134 to be any point in the interval,

the corresponding value of b = 0.91067, h = 0.87796 and m = 0.10946 respectively.

Contour plot for these values shows that the L3, L4 and L11 are collinear along

y-axis, while all other points L1, L2, L5, L6, L7, L8, L9 and L10 are non-collinear.
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Figure 3.7: Case 4: Eleven equilibrium points for 0.43386 < a < 0.60867;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 11)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.52134, b = 0.91067, m = 0.10946 and h = 0.87796. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.
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3.5.4.2 Contour-Plot for a ∈ (0.64166 , 0.64220)

When a ∈ (0.64166 , 0.64220), we take a = 0.64175 to be any point in the interval,

the corresponding value of b = 0.90867, h = 0.89084 and m = 0.21163 respectively.

Contour plot for these values shows that the L3, L4, L9, L10 and L11 are collinear

along y-axis, while all other points L1, L2, L5, L6, L7, and L8 are non-collinear.
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Figure 3.8: Case 4: Eleven equilibrium points for 0.64166 < a < 0.64220;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 11)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.64175, b = 0.90867, m = 0.21163 and h = 0.89084. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.5.5 Case 5: Thirteen Equilibrium Points

In the last case, we start our analysis for equilibrium points, where thirteen equilib-

rium points are present in only one interval ”vi”. I will choose any point, because

the behaviour does not change of the equilibrium point in the interval. So i will

choose and draw contour plot for this interval.
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3.5.5.1 Contour-Plot for a ∈ (0.60867 , 0.64166)

When a ∈ (0.60867 , 0.64166), we take a = 0.63333 to be any point in the interval,

the corresponding value of b = 0.90842, h = 0.88972 and m = 0.20262 respectively.

Contour plot for these values shows that the L3, L4, L11, L12 and L13 are collinear

along y-axis, while all other points L1, L2, L5, L6, L7, L8, L9 and L10 are non-

collinear.
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Figure 3.9: Case 5: Thirteen equilibrium points for 0.60867 < a < 0.64166;
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 13)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 0.63333, b = 0.90842, m = 0.20262 and h = 0.88972. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.
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3.6 Stability Analysis

This section is devoted to the mathematical analysis of the stability of equilibrium

points in RT5BP. We check whether the equilibrium points are either stable or

unstable. To check stability, we perform an individual eigenvalue analysis for each

equilibrium point.

Eigenvalues of Case-1:

Choosing a = 0.11984 from (0.00500 , 0.13967) and the corresponding value of

b = 0.97188, h = 0.8644, m = 0.001377 and L1(−1.42, 0) (see figure 3.2), we will

follow the procedure given in chapter (2) at page 12 for the stability analysis, the

Jacobian matrix form is

A =

 3.851705199625337 0.000804070790164424

0.000804070790164424 −0.42560628034999026

 .

The eigenvalues of matrix A are: (3.85171,−0.425606). Likewise, all eigenvalues of

equilibrium points Li, where i = 1, 2, 3, 4, 5 in case-1 are given below in following

Tables 3.1 and 3.2.

Equilibrium points Eigenvalues

L1(-1.42, 0) (3.85171, -0.425606)

L2(1.42, 0) (3.85171, -0.425606)

L3(0, -1.16) (2.51884, 0.473792)

L4(0, 1.16) (2.70701, 0.385649)

L5(0, 0.001) (32.9954, -14.9913)

Table 3.1: Stability Analysis for Case 1: a = 0.11984, b = 0.97188,
m = 0.001377, h = 0.8644.
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Equilibrium points Eigenvalues

L1(-1.42, 0) (3.86994, -0.428414)

L2(1.42, 0) (3.86994, -0.428414)

L3(0, -1.16) (2.53566, 0.465404)

L4(0, 1.18) (6.26458, -1.20836)

L5(0, 0.002) (32.8896, -14.7781)

Table 3.2: Stability Analysis for Case 1: a = 0.16687, b = 0.96189,
m = 0.00365, h = 0.86491.

The same approach also applies to each equilibrium point is given in the Cases 2

to 5, the eigenvalues are given below:

Eigenvalues of Case-2:

Equilibrium points Eigenvalues

L1(-1.42, 0) (3.85209, -0.425655)

L2(1.42, 0) (3.85209, -0.425655)

L3(0, -1.16) (2.51921, 0.47361)

L4(0, 1.16) (2.81473, 0.341456)

L5(-0.07, 0.82) (33.6278, -13.5616)

L6(0.07, 0.82) (33.6278, -13.5616)

L7(0, 0.001) (32.9933, -14.9869)

Table 3.3: Stability Analysis for Case 2: a = 0.15001, b = 0.9654,
m = 0.00216, h = 0.87194.
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Equilibrium points Eigenvalues

L1(-1.44, 0.03) (3.78087, -0.352358)

L2(1.44, 0.03) (3.78087, -0.352358)

L3(0, -1.16) (2.61206, 0.427586)

L4(0, 1.24) (12.2615, -3.00334)

L5(-0.142, 0.751) (212.063, -95.0214)

L6(0.142, 0.751) (212.063, -95.0214)

L7(0, 0.002) (32.4724, -13.8942)

Table 3.4: Stability Analysis for Case 2: a = 0.30834, b = 0.93569,
m = 0.02009, h = 0.87406.

Eigenvalues of Case-3:

Equilibrium points Eigenvalues

L1(-0.37, 0.54) (27.2378, -9.70538)

L2(0.37, 0.54) (27.2378, -9.70538)

L3(0, -1.23) (2.51229, 0.430088)

L4(0, 1.68) (3.6175, 0.227726)

L5(-0.46, 1.66) (4.17228, -0.340726)

L6(0.46, 1.66) (4.17228, -0.340726)

L7(0, 0.86) (26.5962, -9.01314)

L8(0, 0.57) (6.5374, 6.02044)

L9(0, 0.06) (31.1606, -12.4341)

Table 3.5: Stability Analysis for Case 3: a = 0.80742, b = 0.92959,
m = 0.46305, h = 0.92459.

Eigenvalues of Case-4:
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Equilibrium points Eigenvalues

L1(-1.44, 0.12) (3.67421, -0.306207)

L2(1.44, 0.12) (3.67421, -0.306207)

L3(0, -1.18) (2.51437, 0.460346)

L4(0, 1.4) (3.5548, 0.155627)

L5(-0.24, 0.65) (23.6733, -7.91968)

L6(0.24, 0.65) (23.6733, -7.91968)

L7(-0.87, 1.05) (3.05099, 0.372611)

L8(0.87, 1.05) (3.05099, 0.372611)

L9(-0.31, 1.38) (3.93311, -0.21745)

L10(0.31, 1.38) (3.93311, -0.21745)

L11(0, 0.02) (32.7816, -14.4952)

Table 3.6: Stability Analysis for Case 4: a = 0.52134, b = 0.91067,
m = 0.10946, h = 0.87796.

Equilibrium points Eigenvalues

L1(-1.368, 0.475) (3.41786, -0.0577455)

L2(1.368, 0.475) (3.41786, -0.0577455)

L3(0, -1.192) (2.52367, 0.447568)

L4(0, 1.512) (3.53834, 0.195379)

L5(-0.311, 0.5902) (23.6719, -8.08655)

L6(0.311, 0.5902) (23.6719, -8.08655)

L7(-0.3798, 1.484) (4.06275, -0.292254)

L8(0.3798, 1.484) (4.06275, -0.292254)

L9(0, 0.7853) (19.4133, -3.95287)

L10(0, 0.689) (10.0442, 2.96726)

L11(0, 0.02) (32.5073, -14.0161)

Table 3.7: Stability Analysis for Case 4: a = 0.64175, b = 0.90867,
m = 0.21163, h = 0.89084.
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Eigenvalues of case-5:

Equilibrium points Eigenvalues

L1(-1.41, 0.35) (3.50858, -0.150676)

L2(1.41, 0.35) (3.50858, -0.150676)

L3(0, -1.18) (2.54957, 0.443643)

L4(0, 1.15) (3.52751, 0.203549)

L5(-0.303, 0.599) (23.4403, -7.94466)

L6(0.303, 0.599) (23.4403, -7.94466)

L7(-1.21, 0.758) (3.15824, 0.210705)

L8(1.21, 0.758) (3.15824, 0.210705)

L9(-0.365, 1.465) (4.15808, -0.324322)

L10(0.365, 1.465) (4.15808, -0.324322)

L11(0, 0.02) (32.524, -14.0656)

L12(0, 0.710) (11.2418, 1.95783)

L13(0, 0.770) (17.1172, -2.38383)

Table 3.8: Stability Analysis for Case 5: a = 0.63333, b = 0.90842,
m = 0.20262, h = 0.88972.

Therefore all points of equilibrium are unstable in xy-plane motion.

3.7 Basins of Attraction

The Newton-Raphson method is one of the most well-known numerical methods

for finding successive approximations to the roots of non-linear equations. We

evaluate basins of attraction of equilibrium points with the help of the Newton-

Raphson method. It is a good technique for finding trajectory convergence derived

from a point of equilibrium neighbourhood. We present a fixed point basin attrac-

tion, which means that the set of points converges under successive iterations of
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certain transformation towards a equilibrium point or Lagrange point. This tech-

nique is applicable through the iterative scheme to multivariate function systems

f(x) = 0 by an iterative scheme,

xn+1 = xn − J−1f(xn),

where f(xn) denotes equations, whereas J−1 is the corresponding Jacobian inverse

matrix. For each x and y coordinate, the above iterative scheme can be decom-

posed as follows:

xn+1 = xn −
(
UxUyy − UyUxy
UyyUxx − U2

xy

)
(xn,yn)

, (3.36)

yn+1 = yn +

(
UxUyx − UyUxx
UyyUxx − U2

xy

)
(xn,yn)

. (3.37)

Where xn, yn are the coordinate values of x and y at the n-th point of the iterative

process, while the subscripts denote the corresponding first and second order par-

tial derivatives of the effective potential function U(x, y). The equation of effective

potential (3.31) are:

U(x, y) =
x2 + y2

2
+

[(
1

r51

+
1

r52

)
+m

(
1

r53

+
1

r54

)]
. (3.38)

Where r51, r52, r53 and r54 are the distances of the infinitesimal body to the

primaries,

r51 =
√

(x+ 0.5)2 + y2,

r52 =
√

(x− 0.5)2 + y2,

r53 =
√

(x− 0.5a)2 + (y − h)2,

r54 =
√

(x+ 0.5a)2 + (y − h)2.

The Newton-Raphson method is based on the following philosophy: An initial

condition (x, y), which activates the code on the configuration plane. If the initial

point converges quickly to one of the points of equilibrium then this point (x, y) will
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be a member of the convergence of the root. Once the successive approximation

converges to an attractor, this process stops.

3.7.1 Case 1: Basins of Attraction for Five Equilibrium

Points

We start our analysis with the first case, where five equilibrium points are present

in two different intervals ”i” and ”iii” respectively.

3.7.1.1 Basins of Attraction for a ∈ (0.00500 , 0.13967)

3.7.1.2 Basins of Attraction for a ∈ (0.15099 , 0.18274)

3.7.2 Case 2: Basins of Attraction for Seven Equilibrium

Points

We continue our analysis with the second case, where seven equilibrium points are

present in two different intervals ”ii” and ”iv” respectively.

3.7.2.1 Basins of Attraction for a ∈ (0.13967 , 0.15099)
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Figure 3.10: Case 1: The Newton-Raphson basins of attraction,
in the xy configuration plane, where five equilibrium points are present. Here
a = 0.11984, b = 0.97188, m = 0.001377 and h = 0.8644. The black dots
indicate the position of five equilibrium points. The initial conditions that lead
to certain points of equilibrium are marked using the following colour code:
L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); non

converging points (‘White’).
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Figure 3.11: Case 1: The Newton-Raphson basins of attraction,
in the xy configuration plane, where five equilibrium points are present. Here
a = 0.16687, b = 0.96189, m = 0.00365 and h = 0.86491. The black dots
indicate the position of five equilibrium points. The initial conditions that lead
to certain points of equilibrium are marked using the following colour code L1

(‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); non
converging points (‘White’).

3.7.2.2 Basins of Attraction for a ∈ (0.18274 , 0.43386)

Figure 3.13: Case 2: The Newton-Raphson basins of attraction,
in the xy configuration plane, where seven equilibrium points are present. Here
a = 0.30834, b = 0.93569, m = 0.02009 and h = 0.87406. The black dots
indicate the position of seven equilibrium points. The initial conditions that
lead to certain points of equilibrium are marked using the following colour code:
L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Indigo’); L6 (‘Dark

orange’); L7 (‘Brown’); non converging points (‘White’).
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Figure 3.12: Case 2: The Newton-Raphson basins of attraction,
in the xy configuration plane, where seven equilibrium points are present. Here
a = 0.15001, b = 0.9654, m = 0.00216 and h = 0.87194. The black dots indicate
the position of seven equilibrium points. The initial conditions that lead to
certain points of equilibrium are marked using the following colour code: L1

(‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Indigo’); L6 (‘Brown’);
L7 (‘Dark orange’); non converging points (‘White’).

3.7.3 Case 3: Basins of Attraction for Nine Equilibrium

Points

The present analysis with the third case for equilibrium points, where nine equi-

librium points are present in only one interval ”viii”.
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Figure 3.14: Case 3: The Newton-Raphson basins of attraction,
in the xy configuration plane, where nine equilibrium points are present. Here
a = 0.80742, b = 0.92959, m = 0.46305 and h = 0.92459. The black dots
indicate the position of nine equilibrium points. The initial conditions that lead
to certain points of equilibrium are marked using the following colour code:
L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Indigo’); L6 (‘Dark
orange’); L7 (‘Brown’); L8 (‘Cyan’); L9 (‘Dark khaki’); non converging points

(‘White’).

3.7.3.1 Basins of Attraction for a ∈ (0.64220 , 0.99999)

3.7.4 Case 4: Basins of Attraction for Eleven Equilibrium

Points

We further continue our analysis with the fourth case, where eleven equilibrium

points are present in two different intervals ”v” and ”vii” respectively.
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3.7.4.1 Basins of Attraction for a ∈ (0.43386 , 0.60867)

Figure 3.15: Case 4: The Newton-Raphson basins of attraction,
in the xy configuration plane, where eleven equilibrium points are present. Here
a = 0.52134, b = 0.91067, m = 0.10946 and h = 0.87796. The black dots indi-
cate the position of eleven equilibrium points. The initial conditions that lead
to certain points of equilibrium are marked using the following colour code: L1

(‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); L6 (‘In-
digo’); L7 (‘Brown’); L8 (‘Cyan’); L9 (‘Dark khaki’); L10 (‘Pink’); L11 (‘Lime’);

non converging points (‘White’).
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3.7.4.2 Basins of Attraction for a ∈ (0.64166 , 0.64220)

Figure 3.16: Case 4: The Newton-Raphson basins of attraction,
in the xy configuration plane, where eleven equilibrium points are present. Here
a = 0.64175, b = 0.90867, m = 0.21163 and h = 0.89084. The black dots indi-
cate the position of eleven equilibrium points. The initial conditions that lead
to certain points of equilibrium are marked using the following colour code: L1

(‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); L6 (‘In-
digo’); L7 (‘Brown’); L8 (‘Cyan’); L9 (‘Dark khaki’); L10 (‘Pink’); L11 (‘Lime’);

non converging points (‘White’).

3.7.5 Case 5: Basins of Attraction for Thirteen Equilib-

rium Points

In the last case, we start our analysis, where thirteen equilibrium points are present

in only one interval ”vi”.
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3.7.5.1 Basins of Attraction for a ∈ (0.60867 , 0.64166)

Figure 3.17: Case 5: The Newton-Raphson basins of attraction,
in the xy configuration plane, where thirteen equilibrium points are present.
Here a = 0.63333, b = 0.90842, m = 0.20262 and h = 0.88972. The black
dots indicate the position of thirteen equilibrium points. The initial conditions
that lead to certain points of equilibrium are marked using the following colour
code: L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’);
L6 (‘Indigo’); L7 (‘Brown’); L8 (‘Cyan’); L9 (‘Dark khaki’); L10 (‘Pink’); L11

(‘Lime’); L12 (‘Gold’); L13 (‘Tan’); non converging points (‘White’).

3.8 When a > 1

3.8.1 Case 6: Seven Equilibrium Points for a > 1

We continue our analysis with the first case for equilibrium points, when a > 1.

Where seven equilibrium points are present, so i will choose different values greater

than 1 and draw contour plot.
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3.8.1.1 Contour-Plot for a = 1.53421

We take a = 1.53421 to be any point when a > 1, the corresponding value of

b = 1.39472, h = 1.36889 and m = 4.4887 respectively. Contour plot for this value

shows that the L3, L4 and L7 are collinear along y-axis, while L1, L2, L5 and L6

are non-collinear.
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Figure 3.18: Case 6: Seven equilibrium points.
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 7)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 1.53421, b = 1.39472, m = 4.4887 and h = 1.36889. The Red dots represent

the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.8.1.2 Contour-Plot for a = 1.75343

We take a = 1.75343 to be any point when a > 1, the corresponding value of

b = 1.59296, h = 1.54777 and m = 6.93437 respectively. Contour plot for this
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value shows that the L3, L4 and L7 are collinear along y-axis, while L1, L2, L5

and L6 are non-collinear.
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Figure 3.19: Case 6: Seven equilibrium points.
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 7)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 1.75343, b = 1.59296, m = 6.93437 and h = 1.54777. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.8.1.3 Contour-Plot for a = 2.03512

We take a = 2.03512 to be any point when a > 1, the corresponding value of

b = 1.85765, h = 1.78408 and m = 11.1018 respectively. Contour plot for this

value shows that the L3, L4 and L7 are collinear along y-axis, while L1, L2, L5

and L6 are non-collinear.
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Figure 3.20: Case 6: Seven equilibrium points.
Positions (Black dots) and equilibrium points numbering (Li, i = 1, ..., 7)
through the intersections of Ux = 0 (blue) and Uy = 0 (orange), when
a = 2.03512, b = 1.85765, m = 11.1018 and h = 1.78408. The Red dots

represent the centers (mi, i = 1, 2, 3, 4) of the primaries.

3.9 Stability Analysis

The mathematical analysis of the stability of equilibrium points in RT5BP, when

a > 1. We check whether the equilibrium points are either stable or unstable.

To check stability, similarly we perform an individual eigenvalue analysis for each

equilibrium point.

Eigenvalues of Case-6:

Choosing a = 1.53421, and the corresponding value of b = 1.39472, m = 4.4887,

h = 1.36889 and L1(−0.4674, 0.4199) (see figure 3.18), we will follow the procedure

given in chapter (2) at page 12 for the stability analysis. The eigenvalues of L1

are: (35.0891,−13.1076). Likewise, all eigenvalues of equilibrium points Li, where

i = 1, ...7, in case-1 are given below in following tables 3.9, 3.10 and 3.11.
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Equilibrium points Eigenvalues

L1(-0.4674,0.4199) (35.0891, -13.1076)

L2(0.4674,0.4199) (35.0891, -13.1076)

L3(0, -1.601) (2.2856, 0.441247)

L4(0, 2.913) (3.61119, 0.217801)

L5(-0.8413 , 2.859) (4.16967, -0.318566)

L6(0.8413 , 2.859) (4.16967, -0.318566)

L7(0, 1.399) (40.1896, -17.7378)

Table 3.9: Stability Analysis for Case 6: a = 1.53421 b = 1.39472,
m = 4.4887, h = 1.36889.

Equilibrium points Eigenvalues

L1(-0.4644,0.4226) (33.4405, -12.1516)

L2(0.4644,0.4226) (33.4405, -12.1516)

L3(0, -1.732) (2.24195, 0.453873)

L4(0, 3.338) (3.58638, 0.216561)

L5(-0.9578 , 3.273) (4.12706, -0.297477)

L6(-0.9578 , 3.273) (4.12706, -0.297477)

L7(0, 1.609) (41.257, -18.4078)

Table 3.10: Stability Analysis for Case 6: a = 1.75343, b = 1.59296,
m = 6.93437, h = 1.54777.
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Equilibrium points Eigenvalues

L1(-0.4717,0.4017) (36.8383, -13.9599)

L2(0.4717,0.4017) (36.8383, -13.9599)

L3(0, -1.928) (2.15548, 0.487005)

L4(0, 3.87) (3.5936, 0.216146)

L5(-1.112 , 3.787) (4.16428, -0.310835)

L6(1.112 , 3.787) (4.16428, -0.310835)

L7(0, 1.851) (42.3793, -19.1577)

Table 3.11: Stability Analysis for Case 6: a = 2.03512, b = 1.85765,
m = 11.1018, h = 1.78408.

Therefore all equilibrium points, when a > 1 are unstable in xy-plane motion.

3.9.1 Case 6: Basins of Attraction for Seven Equilibrium

Points

We continue our analysis with the six case when a > 1, where seven equilibrium

points are present.



Restricted Trapezoid Five-Body Problem 61

3.9.1.1 Basins of Attraction for a = 1.53421

Figure 3.21: Case 6: The Newton-Raphson basins of attraction,
in the xy configuration plane, where seven equilibrium points are present. Here
a = 1.53421, b = 1.39472, m = 4.4887 and h = 1.36889. The black dots
indicate the position of seven equilibrium points. The initial conditions that
lead to certain points of equilibrium are marked using the following colour code:
L1 (‘Red’); L2 (‘Green’); L3 (‘Dark orange’); L4 (‘Indigo’); L5 (‘Brown’); L6

(‘Blue’); L7 (‘Magenta’); non converging points (‘White’).
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3.9.1.2 Basins of Attraction for a = 1.75343

Figure 3.22: Case 6: The Newton-Raphson basins of attraction,
in the xy configuration plane, where seven equilibrium points are present. Here
a = 1.75343, b = 1.59296, m = 6.93437 and h = 1.54777. The black dots
indicate the position of seven equilibrium points. The initial conditions that
lead to certain points of equilibrium are marked using the following colour code:
L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); L6

(‘Indigo’); L7 (‘Brown’); non converging points (‘White’).
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3.9.1.3 Basins of Attraction for a = 2.03512

Figure 3.23: Case 6: The Newton-Raphson basins of attraction,
in the xy configuration plane, where seven equilibrium points are present. Here
a = 2.03512, b = 1.85765, m = 11.1018 and h = 1.78408. The black dots
indicate the position of seven equilibrium points. The initial conditions that
lead to certain points of equilibrium are marked using the following colour code:
L1 (‘Green’); L2 (‘Red’); L3 (‘Blue’); L4 (‘Magenta’); L5 (‘Dark orange’); L6

(‘Indigo’); L7 (‘Brown’); non converging points (‘White’).



Chapter 4

Conclusions

In the present work, we studied the motion of an infinitesimal mass m5 in the xy-

plane under influence of the gravitational force of four primaries m1, m2, m3 and

m4 respectively. There are two pairs of masses which are at the adjacent vertices

of an isosceles trapezoid moving in such a way that their central configuration is

always an isosceles trapezoid. After finding the equation of motion of m5 of being

negligible mass and not influence the motion of four primaries, we calculated the

position of the equilibrium points for different intervals, and examined the stability

of equilibrium points for finding eigenvalues using Mathematica. We investigated

different intervals and found different equilibrium points in these intervals. There

are five cases for a ∈ (0 , 1) and one case for a > 1. It is seen that the involved

parameters in the equation of motions of m5 influenced the positions of the equi-

librium points. The numerical investigation of these values revealed that all the

equilibrium points lying in the xy-plane are unstable.

Another aspect of the present work is to study the multivariate version of the

Newton-Raphson iterative method to study the basins of convergence to the lib-

eration points of the dynamical system. The Newton-Raphson basin of attraction

are plotted in the xy-plane. It is found that the shape, nature of the basin of at-

traction and the number of equilibrium points /liberation points varies drastically

with the change in the position of the primaries. These attracting domains play

an important role, since they explain how the system’s liberation points attract
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each point of the configuration plane, which act as attractors in a way.
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