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Abstract

The concept of best proximity point in metric space under specific contraction

mappings is demonstrated by many researchers. In the present dissertation, we

discus the notion of modified Suzuki-Edelstein proximal contraction and acquire

some best proximity points results for such contractions in the setting of b-metric

spaces. The Suzuki-Edelstein proximal contraction performed the significant role

in the extension and generalization of Banach contraction principle. As applica-

tion, we formulate the fixed point results for modified Suzuki-Edelstein proximal

contraction mappings in the setting of b-metric spaces. Our result will be valuable

in solving particular best proximity points and fixed point results in the setting of

b-metric spaces.
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Chapter 1

Introduction

1.1 Background

Mathematics is one of the important branch of scientific knowledge having many

applications in every sphere of life. Mathematics is further classified into multiple

branches. One of the most important branch of mathematics is known as func-

tional analysis. In functional analysis, fixed point theory is a valuable and dom-

inant concept. The concept of fixed point theory has lot applications in various

fields of science, such as optimisation theory, mathematical economics, variational

inequalities and approximation theory etc.

Poincare [1] was the first mathematician to serve in the area of fixed point theory

in 1886 and substantiate various fixed point results. Afterwards, the fixed point

problem was taken into consideration by Brouwer [2] and established fixed point

results for the solution of equation T (ζ) = ζ in 1912. He also established fixed

point results in various dimensions [3].

In 1922, a notable mathematician Banach [4] demonstrated a significant fixed

point result in the area of functional analysis acknowledge as Banach Contraction

principle (BCP). This result is declared to be the most fundamental consequence

in the field of fixed point theory. BCP is stated as: “A contraction mapping in a

complete metric space has a unique fixed point.” The two remarkable applications

1



Introduction 2

come from this principle. The first one is that it guarantees the existence and

uniqueness of fixed point. The second and the very emotive one is that it devolved

an approach to determine the fixed point of mapping. Due to its extensive ap-

plication potential, this celebrated principle has been generalized in various ways

over the year [5–9].

Afterwards, it was investigated by Kannan [10]. A lot of researchers in the field

of mathematics [11–14] are fascinated to Banach contraction principle due to its

generalization associated with fixed point theory in different spaces. Bakhtin [15]

commenced the analysis of a popularize metric space known as b-metric space

and accomplished the BCP [4] in b-metric space. Numerous former researchers

investigated fixed point theory in distinguish mappings like mixed single as well

as set-valued in b-metric space [16–18].

The answer of equation Tζ = ζ are the fixed points of the mappings T : X → X.

If U and V are non-empty subsets of a metric space (X, d) and T : U → V , then

for the existence of a fixed point it is necessary that T (U)∩U 6= φ. If this does not

hold, d(ζ, T ζ) > 0 for each x ∈ U that is d(ζ, T ζ) cannot be zero. In this situation

our aim is to minimize the term d(ζ, T ζ). The best approximation theory has

been devolved in this sense. Thus, In 1969, Fan [19] suggested the idea of the best

proximity point result for non-self continuous mappings. A lot of extensions of

Fan’s theorem were accustomed in publications like Reich [20], Sehgak and Singh

[21] and Prolla [22]. The existence and convergence of best proximity points is

attractive feature of optimization theory and it has pulled the consideration of lot

of mathemacians [23–30].

In 2005, Elderd et al. [31] provided the existence and convergence of the best prox-

imity points in the set of uniformly continuous Banach space. The best proximity

point theorems for respective kinds of contractions were introduced in [32–35]. In

2008, Suzuki [9] presented a new kind of mappings and provided generalization of

BCP. In 2010, Basha [36] introduced necessary and sufficient axoms to claim the

existence of a best proximity point for proximal contraction of first and second

kind (see Definition 3.2.4 and 3.2.5), which are non-self mappings and extended
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Banach contraction principle for the best proximity point results for these con-

tractions. Jleli et al.[37] established the existence of the best proximity point for

generalized α-ψ-proximal contraction in complete metric space.

Recently, Hussain et al. [38, 39] acquire the Banach contraction principle for

“Modified Suzuki α-proximal contractions in complete metric space”. In my thesis,

several artefact are reviewed which are indicated in previous debate but our main

focus is on the work of Hussain et al.[39]: “The Best Proximity Point Results for

Suzuki-Edelstein Proximal Contractions in metric space”. We present the detailed

study of result presented in [39]. This study leads to the extension of the best

proximity, fixed point results in b-metric spaces. The results are then illustrated

by suitable examples.

The rest of dissertation is orginized as below:

• Chapter 2 includes the basic concepts, definitions and examples regarding

metric space, b-metric space and fixed point.

• Chapter 3 is about the literature review and the study of best proximity point

results for modified Suzuki-Edelstein α-proximal contraction enclosed by metric

space comprehensively.

• Chapter 4 emphasizes the idea of modified Suzuki-Edelstein α-proximal con-

taction in b-metric space. Use this concept to acquire the best proximity points

for “modified Suzuki-Edelstein α-proximal contaction in b-metric spaces”.



Chapter 2

Preliminaries

In the present chapter, we discus about the fundamental definitions, results and

examples which are use in subsequent chapters. The first section of this chapter

covers some basics of metric space with few examples. The second section concerns

with the b-metric space and related examples. The third section consists of fixed

points in metric space and few significant fixed point results in metric space. The

next section contains best proximity point in the setting of metric space and some

basic definitions regarding best proximity points.

2.1 Metric Space

In mathematics, the ordinary distance or Euclidean distance is a straight line

distance between two points. However, this distance may be other than the straight

line like taxi cab distance. In literature the word “metric” is used to generalize the

notion of distance and the space equipped with metric satisfying few properties

known as metric space. The notion of metric space was initially prescribed by

Frachet [40] in 1906.

Definition 2.1.1. [41](Metric Space)

“Let X be a non-empty set. Let d : X ×X → [0,∞) be a function satisfying the

following conditions:

4



Preliminaries 5

(M1) d(x, y) ≥ 0

(M2) d(x, y) = 0 if and only if x = y.

(M3) d(x, y) = d(y, x).

(M4) d(x, y) ≤ d(x, z) + d(z, y) for al x, y, z ∈ X.

Then the mapping d is called a metric on X and the pair (X, d) is metric space.”

Example 2.1.1. Consider X = R, (the set of real numbers) and define d : X ×

X → R as;

d(ζ, µ) = |ζ − µ| for all ζ, µ ∈ X

Then d is a metric on R and (R, d) is metric space.

To show that d is metric on X, It is easy to check that condition (M1), (M2) and

(M3) hold. We just prove that (M4) holds, that is

d(ζ, ω) = d(ζ, ω),

= |ζ − ω|,

= |ζ − µ+ µ− ω|,

≤ |ζ − µ|+ |µ− ω|,

≤ d(ζ − µ) + d(µ− ω).

Hence, d is metric on X.

Example 2.1.2. Consider X = R2, define d : R2 × R2 → R by

d(ζ, µ) =
√

(ζ1 − µ1)2 + (ζ2 − µ2)2

Then d is a metric on R2 and (R2, d) is a metric space.

Definition 2.1.2. [42](Continuous mapping)

“Let (X, d) be a metric space. A mapping T : X → X is said to be continuous at

a point x0 if for each ε > 0 there exists δ > 0 such that

d(Tx, Tx0) ≤ ε whenever d(x, x0) ≤ δ.
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for all ζ ∈ X.”

Example 2.1.3. Consider X = R equipped with usual metric d as stated in

Example (2.1.1). A mapping T : X → X by

T (ζ) = ζ3 where ζ ∈ X.

Then T is a continuous mapping.

Example 2.1.4. The space C[a, b] is set of all read-valued continuous functions

defined on [a, b]. The function d : X ×X → R defined by

d(ζ, µ) = max
t∈[a,b]

|ζ(t)− µ(t)| for all ζ, µ ∈ C[a, b]

is a metric on X and (X, d) is metric space.

Definition 2.1.3. [42](Convergence of Sequence)

“A sequence {xn} from the points in a metric space (X, d) is said to be converge

to x ∈ X, if the sequence of non negative real numbers d(xn, x)→ 0 when n→∞.

In other words for every ε > 0 there exist N(ε) ∈ N so that d(xn, x) < ε, for each

n ≥ N(ε).”

Example 2.1.5. “Consider again the set R (the set of real numbers) along with

usual metric d(ζ, µ) = |ζ − µ| then the sequence ζn = 1
n

in X is a convergent

sequence.”

Definition 2.1.4. [42](Cauchy Sequence)

“A sequence {xn} in a metric space (X, d) is said to be a Cauchy sequence if for

each ε > 0 there exist N ∈ N such that

d(xn, xm) < ε

for all m,n > N.”

Definition 2.1.5. [42](Complete Metric Space)

“If every Cauchy sequence in a metric space (X, d) converges to a point x ∈ X

then X is called a complete metric space.”
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Example 2.1.6. “The closed interval [0, 1] in R is a complete metric space the

with usual metric on R.”

Definition 2.1.6. [42](Compact Metric Space)

“A metric space X is called compact if every sequence in X has a converget

subsequence.”

2.2 b-Metric Space

In current section, we present few fundamental concept, definitions and examples

to understand the idea of b-metric spaces. The notion of b-metric was initiated

by Bakhtin [43] and Czerwik [18] in 1989 which generalises the notion of metric

space.

Definition 2.2.1. [43](b-Metric Space)

“Let X be a non-empty set. A function d : X ×X → [0,∞) is called a b-metric if

it satisfies the following properties for each x, y, z ∈ X,

(b1) d(x, y) = 0 ⇔ x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, y) ≤ s[d(x, z) + d(z, y)], where s ≥ 1.

The pair (X, db) is called a b-metric space with coefficient b.”

Example 2.2.1. [43] “Let Y = {ζ, µ, ω} and X = Y ∪ N. Define db : X ×X →

[0,∞) as

db(ζ, µ) = db(µ, ζ) = db(ζ, ω) = db(ω, ζ) = 1,

db(µ, ω) = db(ω, µ) = ξ,

db(ζ, ζ) = db(µ, µ) = db(ω, ω) = 0, db(n,m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ ,
where ξ ∈ [2,∞). Then we find that

db(ζ, µ) ≤ ξ

2
[db(ζ, ω) + db(ω, µ)] forall ζ, µ, ω ∈ X.

Hence (X, db) is b-metric space with coefficient b =
ξ

2
.”
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Note: “The class of a b-metric space is larger than the class of metric space. When

b = 1 then the concept of b-metric space coincides with concept of metric space.

Hance every metric space is a b-metric space. However, converse is not necessarily

true.”

Example 2.2.2. [43] “Consider X = R and db(ζ, µ) = (ζ − µ)2. Then db is

b-metric on R with b = 2, but (X, db) is not a metric space.”

Example 2.2.3. [43] “Consider X = `β(R) with 0 < β < 1, where

`β(R) =

{
{ζn} ⊆ R

∣∣∣∣∣
∞∑
n=1

|ζn|β <∞

}
,

a function db : X ×X → R+;

db(ζ, µ) =

(
∞∑
n=1

|ζn − µn|β
) 1

β

,

where ζ = {ζn} and µ = {µn} then db is a b-metric space having coefficient

b = 2
1
β .”

Definition 2.2.2. [44] (Convergent Sequence)

“Let (X, db) be a b-metric space. A sequence {xn} in X is said to be convergent

and converges to x, if for every ε > 0 there exist n0 ∈ N such that db(xn, x) < ε

for all n > n0 and this fact is represented bt limn→∞ xn = x of n→ x as n→∞.”

Definition 2.2.3. [44] (Cauchy Sequence)

“Let (X, d) be a b-metric space. A sequence {xn} in X is called Cauchy sequence,

if for every ε > 0 there exist n0 ∈ N such that

db(xn, xm) < ε

for all n,m > n0.”
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Definition 2.2.4. [44](Complete Space)

“The b-metric space (X, d) is said to be complete if every Cauchy sequence in X

is convergent.”

Remark 2.2.1. “A b-metric space need not be a continues function.”

The following example illustrates.

Example 2.2.4. [44] “Let X = N ∪ {∞}. A function db : X ×X → R by:

db(m,n) =



0 if m = n,

| 1
m
− 1

n
| if m,n are even or m,n = ∞,

5 if m and n are odd and m 6= n or ∞

2 otherwise

It can be checked that for all m,n, p ∈ X, we have

db(m, p) ≤
5

2
(db(m,n) + db(n, p)).

Thus (X, db) is a b-metric space with (b = 5
2
). Let xn = 2n for each n ∈ N, then

db(2n,∞) =
1

2n
→ 0 as n → ∞,

that is, xn →∞, but db(xn, 1) = 2 9 5 = db(∞, 1) as n→∞.”

2.3 Fixed Point and Contractions

A wide diversity of problems appearing in various fields of mathematics like differ-

ential equations, discrete and continuous system of dynamics can be demonstrated

as fixed point problem. Therefore fixed point theory is quite convenient in finding
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solution of problem in structural optimization in science [45]. In this portion, we

discuss the definition of fixed point as well as various types of contractions.

Definition 2.3.1. [46](Fixed Point)

“Let T : X → X be a mapping on a set X. A point x ∈ X is said to be a fixed

point of T if

Tx = x,

i.e. a point is mapped onto itself.

Geometrically,

if y = fx is a real valued function on R, then at fixed point of f , the geometry

of f coincides with bar y = x. Thus a function may or may not have fixed point.

Furthermore, fixed point may or may not be unique.

y=
x

y=f(x)

Figure 2.1: Three Fixed points

The graph mention above represents a function having three fixed points.”

The following example illustrate having no fixed point.

Example 2.3.1. “Consider X = R with the usual metric d. Suppose mapping

T : X → X by

T (x) = x+ 1 ∀ x ∈ X
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Figure 2.2: No Fixed Point

then T has no fixed point.”

Example 2.3.2. “Consider X = R along with the usual metric d. Suppose

mapping T : X → X by

T (ζ) = 2ζ + 1 ∀ ζ ∈ X

Figure 2.3: Unique Fixed Point

then T has a unique fixed point ζ = −1.”

Definition 2.3.2. [30] (Contraction)

“Let (X, d) be a metric space. A mapping T :→ X is said to be a contraction if
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there is a positive real number 0 ≤ α < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ αd(x, y).

This contraction is also known as Banach contraction.”

Example 2.3.3. Suppose that X = [0, 1] with usual metric d(ζ, µ) = |ζ − µ|.

A mapping : X → X as

T (ζ) =
1

2 + ζ

is a contraction mapping.

Proof. Suppose that a mapping T : X → X as

T (ζ) =
1

2 + ζ

d(Tζ, Tµ) ≤ d

(
1

2 + ζ
,

1

2 + µ

)
,

≤
∣∣∣∣ 1

2 + ζ
− 1

2 + µ

∣∣∣∣ ,
≤
∣∣∣∣ 2 + µ− 2− ζ
(2 + ζ)(2 + µ)

∣∣∣∣ ,
≤
∣∣∣∣ −(ζ − µ)

(2 + ζ)(2 + µ)

∣∣∣∣ ,
≤ |ζ − µ|

(2)(2)
,

≤ 1

4
d(ζ, µ),

is contraction with α =
1

4
.

Example 2.3.4. Suppose that a metric space (X, d) where X = R and d(ζ, µ) =

|ζ − µ|. Define T : X → X by

T (ζ) =
ζ

5
+ 4
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is a contraction mapping.

Proof. Suppose that a mapping T : X → X as

T (ζ) =
ζ

5
+ 4

d(Tζ, Tµ) ≤ d

(
ζ

5
+ 4,

µ

5
+ 4

)
,

≤
∣∣∣∣ζ5 + 4− (

µ

5
+ 4)

∣∣∣∣ ,
≤
∣∣∣∣ζ5 + 4− µ

5
− 4

∣∣∣∣ ,
≤
∣∣∣∣ζ5 − µ

5

∣∣∣∣ ,
≤ 1

5
|ζ − µ|,

≤ 1

5
d(ζ, µ)

is contraction with α =
1

5
.

In 1922, Banach [42] established fixed point theorem, popularly named as Banach

contraction theorem.

Theorem 2.3.1. [47]

“Let (X, d) be a complete metric space. A mapping T : X → X such that

d(Tx, Ty) < λd(x, y) for all x, y ∈ X.

Where 0 ≤ λ < 1, then T has a unique fixed point.”

In 1962, Edelstein [47] presented the following well known theorem.

Theorem 2.3.2. [47]

“Let (X, d) be a compact metric space, and let T be a mapping on X. Assume

d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y.Then T has a unique fixed point.”
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Samet et al. [48] initiated the idea of α-admissible mappings in 2012. This idea

was orilonged in various dimensions.

Definition 2.3.3. [38](α-admissible mapping)

“Let (X, d) be a metric space, T be a self mapping on X and α : X ×X → [0,∞)

be a function. The mapping T is α-admissible if

α(x, y) ≥ 1 implies that α(Tx, Ty) ≥ 1,

for all x, y ∈ X,”

Example 2.3.5. [48] Consider X = (0, 1). Define a mapping T : X → X and

also α : X ×X → [0,∞) as

Tζ = ln ζ

for all ζ ∈ X and

α(ζ, µ) =


2 if ζ ≥ µ,

0 if ζ < µ.

Then T is α-admissible.

Example 2.3.6. [48] “Consider X = [0,∞). Define a mapping T : X → X and

also α : X ×X → [0,∞) as

Tζ =
√
ζ

for all ζ ∈ X and

α(ζ, µ) =

e
ζ−µ if ζ ≥ µ,

0 if ζ < µ.

Then T is α-admissible.”

Definition 2.3.4. [38](α-admissible w.r.t. η)

“Let (X, d) be a metric space, T be a self mapping on X and α, η : X×X → [0,∞)

be two functions. Then mapping T is an α-admissible with respect to η if,

α(x, y) ≥ η(x, y) implies that α(Tx, Ty) ≥ η(Tx, Ty)
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for all x, y ∈ X.”

Remark 2.3.1. “If η(x, y) ≥ 1, then the above definition reduces to the definition

of α-admissible mapping.”

Theorem 2.3.3. [9]

“Let (X, d) be a complete metric space, and let T be a mapping on X. Define a

non-increasing function θ from [0, 1) onto (1
2
, 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2
,

1−r
r2

if
√
5−1
2
≤ r ≤ 1√

2
,

1
1+r

if 1√
2
≤ r ≤ 1

.

We assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y)

which implies that

d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

Then there exist a unique fixed point z of T . Moreover, limn→∞ T
nx = z for all

x ∈ X.”

Stimulated by previous results, Suzuki established an abstraction of Edelstein’s

fixed point result as below:

Theorem 2.3.4. [9]

“Let (X, d) be a compact metric space, and let T be a mapping on X. Assume

that
1

2
d(x, Tx) < d(x, y)

implies that

d(Tx, Ty) ≤ d(x, y) for all x ∈ X.

Then T has a unique fixed point.”



Chapter 3

Suzuki-Edlstein α-proximal

Contraction in Metric Space

In current chapter, we present few best proximity point results for Suzuki-Edlstein

α-proximal contraction in metric space. Al-Thagfi et al [49] analyse the proximity

point propositions for proximal contractions. In 2011, Basha [36] explained various

best proximity point theorems for proximal contractions. Hussain et al. [38]

acquired the best proximity point theorems for such contractions in metric space.

3.1 Best Proximity Point in Metric Space

Many problems can be expressed as an equation of the form Tζ = ζ, where T is

self-mapping in appropriate domains. Yet, in the case that T is non-self mapping,

the previous equation does not definitely have fixed point. In this situation, it is

worthy to govern the estimated solution ζ such that the error d(ζ, T ζ) is minimal.

This study initiated the concept of best proximity point [50].

16
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3.2 Some Basic Tools

In this section, we will introduced some major concepts and results that will be

used in the rest of the chapter. We commence by using important notations.

Let (X, d) be metric space, U and V be non-empty subsets of (X, d). Describe

d(U, V ) = inf{d(ζ, µ) : ζ ∈ U, µ ∈ V }

U0 = {ζ ∈ U : d(ζ, µ) = d(U, V )} for some µ ∈ V }

V0 = {µ ∈ V : d(ζ, µ) = d(U, V ) for some ζ ∈ U}.

Definition 3.2.1. [39](Best Proximity Point)

“Let (X, d) be a metric space, A and B be two non-empty subsets of X. An

element x ∈ A is said to be best proximity point of mapping T : A → B if

d(x, Tx) = d(A,B).”

Remark 3.2.1. “It is clear from the above definition that a counter notion of

fixed point in the context of non-self mappings is so-called best proximity point.”

Definition 3.2.2. [46](P -property)

“Let (A,B) be a pair of non-empty subsets of metric space X with A0 6= φ. Then

the pair (A,B) is said to have P -property iff
d(x1, y1) = d(A,B),

d(x2, y2) = d(A,B),

⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.”

Remark 3.2.2. “It is easy to see that, for any non-empty subset A of X, the pair

(A,A) has the P -property.”

Example 3.2.1. [46]

“Consider X = R2 with metric defined by

d((ζ1, µ1), (ζ2, µ2)) = max{|ζ1 − µ1|, |ζ2 − µ2|}
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Let U = {(ζ, 0) : −1 ≤ ζ ≤ 1} and V = {(0, µ) : −1 ≤ µ ≤ 1}. Then (U, V )

satisfy P -property.”

Definition 3.2.3. [39] (Weak P -property)

“Let (A,B) be a pair of non-empty subsets of X with A0 6= φ. Then the pair

(A,B) is said to have the weak P -property if and only if
d(x1, y1) = d(A,B),

d(x2, y2) = d(A,B),

⇒ d(x1, x2) ≤ d(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.”

Example 3.2.2. [24]

“Consider X = {(0, 1), (1, 0), (0, 3), (3, 0)}, endowed with the usual metric d. We

suppose that

U = {(0, 1), (1, 0)},

V = {(0, 3), (3, 0)}.

Then for

d((0, 1), (0, 3)) = d(U, V ),

d((1, 0), (3, 0)) = d(U, V ),

we have

d((1, 0), (1, 0)) < d(0, 3), (3, 0)).

Also U0 6= φ. Thus, the pair (U, V ) satisfies weak P -property.”

Example 3.2.3. Consider X = [0,∞)× [0,∞) with metric d defined by

d((ζ1, ζ2), (µ1, µ2)) = |ζ1 − µ1|+ |ζ2 − µ2|

Let U = {1} × [0,∞) and V = {0} × [0,∞). Then

d(U, V ) = d((1, 0), (0, 0)) = 1 and U0 = V , V0 = V
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then the pair (U, V ) has weak P -property.

Example 3.2.4. “Consider (R2, d), where d =
√

(x1 − y1)2 + (x2 − y2)2 and sub-

set

U = {(0, 0)} and V = {y, 1 +
√

1 − x2}.

It is obvious that

U0 = {(0, 0)}, V0 = {(−1, 1), (1, 1)} and d(U, V ) =
√

2,

insinuate we get,

d((0, 0), (−1, 1)) =
√

2,

and also

d((0, 0), (1, 1)) =
√

2.

Although,

d((0, 0), (0, 0)) = 0.

and

d((−1, 1), (1, 1)) = 2.

⇒ d((0, 0), (0, 0)) < d((−1, 1), (1, 1)).

We can see from above discussion that (U, V ) has weak P -property but not P -

property.”

Remark 3.2.3. [51]

“It is easy to notice that if (A,B) has the P -property, then (A,B) has the weak

P− property.”

Definition 3.2.4. [51](Proximal Contraction of first kind)

“Let (X, d) be a metric space, A and B be two non-empty subsets of X. A non-

self mapping T : A→ B is called Proximal contraction of first kind if there exists
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non-negative integer α > 1, such that
d(u, Tx) = d(A,B),

d(v, Ty) = d(A,B),

⇒ d(u, v) ≤ α d(x, y),

where u, v, x, y ∈ A.”

Example 3.2.5. Let U = [0, 1], V = [2, 3] be subsets of R aling with Euclidean

metric space. A mapping T : U → V defined by;

T (ζ) =


3− ζ if ζ is a rational,

2 + ζ otherwise,

T is Proximal contraction of first kind.

Definition 3.2.5. [51](Proximal Contraction of second kind)

“Let (X, d) be a metric space, A and B be two non-empty subsets of a X. A

non-self mapping T : U → V is called Proximal contraction of second kind if there

exists non-negative integer α > 1, such that
d(u, Tx) = d(A,B),

d(v, Ty) = d(A,B),

⇒ d(Tu, Tv) ≤ α d(Tx, Ty),

where u, v, x, y ∈ A.”

Remark 3.2.4. [51]

“Notice that unlike the other definitions, these mappings may not be even contin-

uous when we restrict to the self case.”

Definition 3.2.6. [37](α-proximal admissible mapping)

“Let (X, d) be a metric space, A and B be two nonempty subsets of X, a non-self
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mapping T : A→ B is called α-proximal admissible if

α(x1, x2) ≥ 1,

d(u1, Tx1) = d(A,B),

d(u2, Tx2) = d(A,B),

⇒ α(u1, u2) ≥ 1

for all x1, x2, u1, u2 ∈ A where α : A× A→ [0,∞).”

Remark 3.2.5. “Clearly, if A = B, T is α-proximal admissible suggests that T

is α-admissible.”

Definition 3.2.7. [37] (α-proximal admissible w.r.t. η)

“Let T : A→ B and α, η : A×A→ [0,∞) be the two functions. Then T is called

α-proximal admissible with respect to η if

α(x1, x2) ≥ η(x1, x2),

d(u1, Tx1) = d(A,B),

d(u2, Tx2) = d(A,B),

⇒ α(u1, u2) ≥ η(u1, u2)

∀ x1, x2, u1, u2 ∈ A.”

Remark 3.2.6. By adopting η(ζ, µ) = 1 for all ζ, µ ∈ U , then above definition

curtail to the idea of α-proximal admissible (definition 3.2.7).

Definition 3.2.8. [39]

“In consistence with [52], we denote Φϕ the set of functions ϕ : [0,∞) → [0,∞)

satisfying the following condition:

ϕ(t) ≤ 1

2
t ∀ t ≥ 0

We denote by Φ the set of nondecreasing functions φ : [0,∞)→ [0,∞) such that

lim
n→∞

φn(t) = 0
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for all t > 0.”

Lemma 3.2.1. [52]

“If φ ∈ Φ, then φ(t) < t for all t > 0.”

3.3 Best Proximity Point Theorems in Metric

Space

We commence this portion from hypothesis of modified Suzuki-Edelstein α-proximal

contraction.

Definition 3.3.1. [39](Modified Suzuki-Edelstein α-proximal Contraction)

“Let A and B be the two non-empty subset of a metric space (X, d), a non-self

mapping T : A→ B is said to be a modified Suzuki-Edelstein α-proximal contrac-

tion if

ϕ(d(x, Tx))− 2d(A,B) ≤ α(x, y)d(x, y) (3.1)

⇒ α(x, y)d(Tx, Ty) ≤ φ(d(x, y)) (3.2)

for all x, y ∈ A, where ϕ ∈ Φϕ, φ ∈ Φ and α : A× A→ [0,∞].”

Theorem 3.3.1. [39] Suppose that U and V are the two non-empty closed subsets

of a complete metric space (X, d) along with U0 6= φ. Let α : U ×U → [0,∞] and

φ ∈ Φ. Let T : U → V be a non-self mapping with T (U0) ⊆ V0 be continuous

modified Suzuki-Edelstein proximal and α-proximal admissible mapping with re-

spect to η(ζ, µ) = 2 and also pair (U, V ) convince the weak P -property. Moreover,

the elements ζ0 and ζ1 in U0 with d(ζ1, T ζ0) = d(U, V ) satisfies α(ζ0, ζ1) ≥ 2. Then

T has a unique best proximity point.

Proof. Let ζ0 ∈ U0, since T (U0) ⊆ V0, then there exists component ζ1 ∈ U0 such

that

d(ζ1, T ζ0) = d(U, V )
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then by assumption, α(ζ0, ζ1) ≥ 2. Since ζ1 in U0 and T (U0) ⊆ V0, then there

exists a component ζ2 in U0 such that

d(ζ2, T ζ1) = d(U, V ).

Since, T is α-proximal admissible mapping w.r.t. η(ζ, µ) = 2, and α(ζ0, ζ1) ≥ 2.

Continuing this process to get ζn+1, ζn such that for all n ∈ N,

d(ζn+1, ζn) = d(U, V ) satisfies α(ζn, ζn+1) ≥ 2 (3.3)

As ϕ ∈ Φ, by using Definition (3.2.9)

ϕ(d(ζn−1, T ζn−1) ≤
1

2
d(ζn−1, T ζn−1),

≤ 2d(ζn−1, T ζn−1),

by triangular inequality,

ϕ(d(ζn−1, T ζn−1) ≤ 2(d(ζn−1, ζn) + d(ζn, T ζn−1)),

= 2(d(ζn−1, ζn) + d(U, V )),

= 2d(ζn−1, ζn) + 2d(U, V ),

From the above inequality,

ϕ(d(ζn−1, T ζn−1)− 2d(U, V ) ≤2d(ζn−1, ζn),

≤ α(ζn−1, ζn)d(ζn−1, ζn),

Then by using the definition of modified Suzuki-Edelstein α-proximal contraction

(definition 3.3.1)

α(ζn−1, ζn)d(Tζn−1, T ζn) ≤ φ(d(ζn−1, ζn)
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Now

d(Tζn−1, T ζn) ≤ α(ζn−1, ζn)d(Tζn−1, T ζn)

this implies that

d(Tζn−1, T ζn) ≤ φ(d(ζn−1, ζn)) (3.4)

Now suppose that ζn0 = ζn0+1 for some n0 ∈ N, then we have

d(ζn0 , T ζn0) = d(ζn0+1, T ζn0) (3.5)

Using equation (3.2) in (3.4),

d(ζn0 , T ζn0) = d(U, V ) (3.6)

Thus from the (3.5), we conclude that ζn0 is the best proximity. Therefore, we

assume that ζn0 6= ζn0+1, that is d(ζn, ζn+1) > 0 ∀ n ∈ N ∪ {0}. Seeing that φ is

nondecreasing so from Inequality (3.3) and weak P -property of (U, V ),

d(ζn+1, ζn) ≤ d(Tζn, T ζn−1),

≤ φ(d(ζn, ζn−1)),

(3.7)

So

d(ζn+1, ζn) ≤ φ(d(ζn, ζn−1)),

≤ φ(d(Tζn−1, T ζn−2)),

≤ φ(φ(d(ζn−1, ζn−2))),

d(ζn+1, ζn)) ≤ φ2(d(ζn−1, ζn−2))... ≤ φn(d(ζ0, ζ1)).

Hence,

d(ζn+1, ζn) ≤ φn(d(ζ0, ζ1)) (3.8)
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Now by applying limit n→∞, the above inequality deduced to,

lim
n→∞

d(ζn+1, ζn) = 0

Now for a fixed ε > 0, there exists N ∈ N such that

d(ζn+1, ζn) < ε − φ(ε) ∀ n ≥ N.

As φ is nondecreasing, for all n ∈ N

φ(d(ζn+1, ζn)) ≤ φ(ε− φ(ε))

φ(d(ζn+1, ζn)) ≤ φ(ε). (3.9)

Then again by triangular inequality

d(ζn, ζn+2) ≤ d(ζn, ζn+1) + d(ζn+1, ζn+2),

< ε− φ(ε) + φ(d(ζn, ζn+1)),

< ε− φ(ε) + φ(ε),

≤ ε.

Continuing the process in same the mechanism, we conclude

d(ζn, ζn+j) < ε ∀ n ≥ N and j ∈ N.

Then there exist j > 0 such that ∀ m,n ∈ N, ∃ m < n. By triangular inequality

and (3.7),

db(ζm, ζn) ≤d(ζm, ζm+1) + d(ζm+1, ζm+2) + d(ζm+2, ζm+3) + ...+ d(ζn−1, ζn),

≤
n−2∑
j=m

φj(d(ζ1, ζ0)),
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db(ζm, ζn) ≤
∞∑
j=m

φj(d(ζ1, ζ0))→ 0 as n→∞.

Consequently, we have

lim
m,n→∞

db(ζm, ζn) = 0

Hence this implies that {ζn} is Cauchy in U . Since X is complete and U is closed,

therefore there exists ω ∈ U such that ζn → ω and the continuity condition of T

implies Tζn → Tω as n→∞. So, (3.2) gives us

d(U, V ) = lim
n→∞

d(ζn+1, T ζn)

⇒ d(U, V ) = d(ω, Tω)

Thus ω is best proximity point. Now for uniqueness, on contrary that µ, ω ∈ U0

be best proximity points of T with µ 6= ω,

d(µ, Tµ) = d(ω, Tω) = d(U, V ),

now by using weak P -property,

d(µ, ω) ≤ d(Tµ, Tω) (3.10)

Now,

d(µ, Tω) = 2d(U, V )− d(U, V ) (3.11)

Since we already know that Using (3.11) in (3.12),

ϕ(d(µ, Tµ)) ≤ 1

2
d(µ, Tµ),

≤ 1

2
(2d(U, V )− d(U, V )),

≤ 1

2
d(U, V ),

≤ 2d(U, V ).
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So from inequality,

ϕ(d(µ, Tµ)) − 2d(U, V ) ≤ 0 ≤ α(µ, ω)d(µ, ω) (3.12)

Hence from the concept of modified Suzuki-Edelstein α-proximal contraction,

α(µ, ω)d(Tµ, Tω) ≤ φ(d(µ, ω)) (3.13)

Since α(µ, ω) ≥ 2,

d(Tµ, Tω) ≤ φ(d(µ, ω)) (3.14)

By using (3.10),

d(µ, ω) ≤ φ(d(µ, ω)) < d(µ, ω) (3.15)

contradiction, so µ = ω. Thus T has a unique best proximity point.

The example below illustrate result (3.3.1)

Example 3.3.1. Consider X = [0,∞)× [0,∞) with metric d defined by

d((ζ1, ζ2), (µ1, µ2)) = |ζ1 − µ1|+ |ζ2 − µ2|

Consider U = {1} × [0,∞) and V = {0} × [0,∞). Then

d(U, V ) = d((1, 0), (0, 0)) = 1 and U0 = V, V0 = V

Define T : U → V by

T (1, ζ) =


(0, ζ

3
) if ζ ∈ [0, 1],

(0, ζ − 2
3
) if ζ > 1,
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α : U × U → [0,∞) by

α((ζ, µ), (s, t)) =


2 if (ζ, µ), (s, t) ∈ [0, 1]× [0, 1],

0 otherwise,

ψ : [0,∞)→ [0,∞) by ψ(t) =
999

1000
t ∀ t ≥ 0. Then

(a) The pair (U, V ) has weak P -property.

(b) T is α-proximal admissible mapping w.r.t. η

(c) T has unique best proximity point.

Proof. It is understandable from mapping that T (U0) ⊆ V0. Let (1, ζ1), (1, ζ2) ∈ U

and (0, u1), (0, u2) ∈ B, such that
d((1, ζ1), (0, ζ1)) = d(U, V ) = 1,

d((1, ζ2), (0, u2)) = d(U, V ) = 1,

So

d((1, ζ1), (1, µ2)) ≤ d((0, u1), (0, u2))

Hence, pair (U, V ) has weak P -property.

To demonstrate T is α-proximal admissible w.r.t. η,

α((1, ζ1), (1, ζ2)) ≥ 1,

d((1, u1), T (1, ζ1)) = d(U, V ) = 1,

d((1, u2), T (1, ζ2)) = d(U, V ) = 1.
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Then we have 

α((1, ζ1), (1, ζ2)) ∈ [0, 1],

d((1, u1), T (1, ζ1)) = 1,

d((1, u2), T (1, ζ2)) = 1.

Then, (ζ1, ζ2) ∈ [0, 1] × [0, 1]. We also have given that u1 = ζ1
3

and u2 = ζ2
3

, that

is (1, u1 = ζ1
3

) ∈ [0, 1]× [0, 1] and (1, u2 = ζ2
3

) ∈ [0, 1]× [0, 1] i.e. ζ1, ζ2 ∈ [0, 1].So,

α((1, u1), (1, u2) ≥ 2.

Which means that T is α-proximal admissible w.r.t. η(ζ, µ) = 2.

Now to demonstrate that T has unique best proximity point. If

(1, ζ), (1, µ) ∈ [0, 1]× [0, 1]

then α((1, ζ), (1, µ)) = 2, then by using the definition of modified Suzuki-Edelstein

α-proximal contraction, insinuate

α((1, ζ), (1, µ))d(T ((1, ζ), T (1, µ)) ≤ φ(d((1, ζ), (1, µ)))

Putting α((1, ζ), (1, µ)) = 2, we get

2d(T ((1, ζ), T (1, µ)) ≤ φ(d((1, ζ), (1, µ)))

2d(T ((0,
ζ

3
), (0,

µ

3
)) ≤ φ(d(| 1− 1 | + | ζ − µ |)

2(|0− 0|+ |ζ
3
− µ

3
|) ≤ φ(| ζ − µ |)

As ψ(t) =
999

1000
t ∀ t ≥ 0. Using this inputs in inequality, we have

2(|ζ
3
− µ

3
|) ≤ 999

1000
(| ζ − µ |)

2(
1

3
|ζ − µ|) ≤ 0.99 (| ζ − µ |)

⇒ 0.66 |ζ − µ| ≤ 0.99 (| ζ − µ |)
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Otherwise, α((1, ζ), (1, µ)) = 0. Then above definition will reduced to

ϕ(d(1, ζ), T (1, ζ))− 2d(U, V ) ≤ α((1, ζ), (1, µ))d((1, ζ), (1, µ) = 0

implies

0 = α((1, ζ), (1, µ))d(T (1, ζ), T (1, µ)) ≤ φ(d((1, ζ), (1, µ))

Hence,

ϕ(d(1, ζ), T (1, ζ)))− 2d(U, V ) ≤ α((1, ζ), (1, µ))d((1, ζ), (1, µ))

implies

α((1, ζ), (1, µ))d(T (1, ζ), T (1, µ)) ≤ φ(d((1, ζ), (1, µ)))

Thus axioms of result (3.3.1)are complacent. So, there exist best proximity point

ω = (0, 1) of T which is unique.

Remark 3.3.1. [39].

“The best proximity point can also be obtained if we replace the condition of

continuity of T in above theorem by the following H property:

If {ζn} is a sequence in U such that α(ζn, ζn+1) ≥ 2 and ζn → ω ∈ U as n → ∞

then α(ζn, ω) ≥ 2 ∀n ∈ N .”

Theorem 3.3.2. Consider U and V are the two non-empty closed subsets of

complete metric space (X, d), along with U0 6= φ. Let a mapping T : U → V with

T (U0) ⊆ V0 is modified Suzuki-Edelstein α-proximal admissible mapping w.r.t. to

η(ζ, µ) ≥ 2 and pair (U, V ) gratifies weak P -property and the elements ζ0 and ζ1 in

U0 with d(ζ1, T ζ0) = d(U, V ) satisfies α(ζ0, ζ1) ≥ 2. Moreover, If {ζn} is sequence

in U such that

α(ζn, ζn+1) ≥ 2, ζn → ω ∈ U as n→∞.

Then T has unique best proximity point.
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Proof. Let ζ0 and ζ1 in U0, since we have T (U0) ⊆ V0, such that

d(ζ1, T ζ0) = d(U, V ) satisfies α(ζ0, ζ1) ≥ 2.

By proceeding as previous theorem (3.3.1), we have Cauchy sequence ζn → ω as

n → ∞. Now by using the above property, we have α(ζn, ω) ≥ 2 ∀ n ∈ N. Now

following (3.6), we gain

d(ζn+2, ζn+1) ≤ φ(d(ζn+1, ζn),

< d(ζn+1, ζn),

which implies

d(ζn+2, ζn+1) < d(ζn+1, ζn) ∀ n ∈ N.

As ϕ ∈ Φ, by using Definition (3.2.9)

1

2
d(ζn, ζn+1) ≥ ϕ(d(ζn, ζn+1)),

> α(ζn, ω)d(ζn, ω),

≥ d(ζn, ω).

(3.16)

1

2
d(ζn, ζn+1) > d(ζn, ω) for some n ∈ N. (3.17)

Similarly

1

2
d(ζn+1, ζn+2) ≥ ϕ(d(ζn+1, ζn+2)),

> α(ζn+1, ω)d(ζn+1, ω),

≥ d(ζn+1, ω).

(3.18)

i.e
1

2
d(ζn+1, ζn+2) > d(ζn+1, ω) for some n ∈ N. (3.19)
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Since, by using triangular inequality

d(ζn, ζn+1) ≤ d(ζn, ω) + d(ω, ζn+1),

d(ζn, ζn+1) ≤ d(ζn, ω) + d(ζn+1, ω),

Using inequalities (3.16) and (3.18) in above inequality, we get

d(ζn, ζn+1) ≤
1

2
d(ζn, ζn+1) +

1

2
d(ζn+1, ζn+2),

<
1

2
d(ζn, ζn+1) +

1

2
d(ζn+1, ζn),

<
1

2
d(ζn, ζn+1) +

1

2
d(ζn, ζn+1),

= d(ζn, ζn+1),

(3.20)

contradiction. Thus for all n ∈ N, either

ϕ(ζn, ζn+1) ≤ α(ζn, ω) d(ζn, ω)

or

ϕ(ζn+1, ζn+2) ≤ α(ζn+1, ω) d(ζn+1, ω)

holds. Hence from the definition of modified Suzuki-Edelstein α-proximal admis-

sible mapping (see Definition 3.3.1)

d(Tζn, Tω) ≤ αζn, ω)d(Tζn, Tω),

≤ φ(d(ζn, ω)).

(3.21)

or

d(Tζn+1, Tω) ≤ α(ζn+1, ω)d(Tζn+1, Tω),

≤ φ(d(ζn+1, ω)).

(3.22)
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Now taking limit as n→∞ in inequalities (3.20) and (3.21),

lim
n→∞

d(Tζn, Tω) = 0

or

d(Tζn+1, Tω) = 0.

T ζn → Tω

or

Tζn+1 → Tω

Consequently, there exists a subsequence {ζnk} of {ζn} such that Tζnk → Tω as

xnk → z. i.e

lim
n→∞

d(ζnk+1
, T ζnk) = d(ω, Tω)

and also

d(U, V ) = lim
n→∞

d(ζnk+1
, T ζnk)

which further implies

d(U, V ) = d(ω, Tω). (3.23)

So, T has the best proximity point.

Now we have to spectacle that T has the unique best proximity point. For this, on

contrary suppose µ, ω ∈ U0 are the two best proximity points of T . Where ζ 6= µ

d(µ, Tµ) = d(ω, Tω) = d(U, V )

By using weak P -property,

d(µ, ω) ≤ d(Tµ, Tω) (3.24)

Now,

d(µ, Tµ) = 2d(U, V )− d(U, V ) (3.25)
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Since

ϕ(d(µ, Tµ)) ≤ 1

2
d(µ, Tµ)

Using (3.24) in (3.25),

ϕ(d(µ, Tµ)) ≤ 1

2
(2d(U, V )− d(U, V )),

≤ 1

2
d(U, V ),

≤ 2d(U, V ).

So from the inequality

ϕ(d(µ, Tµ))− 2d(U, V ) ≤ 0 ≤ α(µ, ω)d(µ, ω) (3.26)

Hence from the definition of modified Suzuki-Edelstein α-proximal contraction

α(µ, ω)d(Tµ, Tω) ≤ φ(d(µ, ω)) (3.27)

Since α(µ, ω) ≥ 2,

d(Tµ, Tω) ≤ φ(d(µ, ω)) (3.28)

By using (3.10)

d(µ, ω) ≤ φ(d(µ, ω)) < d(µ, ω) (3.29)

contradiction, so µ = ω. T has unique best proximity point.

Theorem 3.3.3. Consider U and V are non-empty subsets of complete metric

space (X, d) with U0 6= φ. A function δ : [0, 1) → (0, 1
2
] and for all ζ, µ ∈ U a

mapping T : U → V be such that

δ(γ)(ϕ(d(ζ, T ζ))− 2d(U, V )) ≤ d(ζ, µ) (3.30)

⇒ δ(γ)d(Tζ, Tµ) ≤ φ(d(ζ, µ)) (3.31)

where ϕ ∈ Φϕ, φ ∈ Φ and γ ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

satisfies weak P -property. Then T has unique best proximity point.
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Proof. For fixed γ ∈ [0, 1), define αγ(ζ, µ) =
1

δ(γ)
for all ζ, µ ∈ U . Since

1

δ(γ)
≥ 2

for all γ ∈ [0, 1), then αr(x, y) ≥ 2 for all ζ, µ ∈ U . Now αr(ζ, µ) is constant and

αr(x, y) ≥ 2 for all ζ, µ ∈ U . So from the above conditions it is clear that T is

αr-proximal admissible w.r.t. η(ζ, µ) = 2 and also property H holds.

Now from the definition of modified Suzuki-Edelstein α-proximal contraction,

ϕ(d(ζ, T ζ)− 2d(U, V )) ≤ αγ(ζ, µ)d(ζ, µ) (3.32)

⇒ α(ζ, µ)d(Tζ, Tµ) ≤ φ(d(ζ, µ))

then for some function δ(γ), the above inequality (3.30) become:

δ(γ)(ϕ(d(ζ, T ζ))− 2d(U, V ) ≤ d(ζ, µ)

by inequality (3.29),

δ(γ)d(Tζ, Tµ) ≤ φ(d(ζ, µ)).

Hence it is clear from the above results that all axioms of result (3.3.2) holds. So

T has best proximity point which is unique.

By using φ(t) = ξt, ξ ∈ [0, 1) in result (3.3.3), we gain corollary as follows:

Corollary 1. “Consider U and V are non-empty subsets of complete metric space

(X, d) with U0 6= φ. A function δ : [0, 1)→ (0, 1
2
] and for all ζ, µ ∈ U , a mapping

T : U → V be such that;

δ(γ)(ϕ(d(ζ, T ζ))− 2d(U, V )) ≤ d(ζ, µ) (3.33)

⇒ δ(γ)d(Tζ, Tµ) ≤ ξd(ζ, µ) (3.34)

where ϕ ∈ Φϕ, φ ∈ Φ and γ ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

satisfies weak P -property. So, T has unique best proximity point.”
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Corollary 2. Consider U and V are non-empty subsets of the complete metric

space (X, d) with U0 6= φ, a non-increasing function θ : [0, 1)→ (0, 1
2
] defined as

θ(γ) =



1 if 0 ≤ γ ≤
√
5−1
2
,

1−γ
γ2

if
√
5−1
2
≤ γ ≤ 1√

2
,

1
1+γ

if 1√
2
≤ γ ≤ 1

.

and for all ζ, µ ∈ U , a mapping T : U → V be such that

1

2
θ(γ)(ϕ(d(ζ, T ζ))− 2d(U, V )) ≤ d(ζ, µ) (3.35)

⇒ 1

2
θ(γ)d(Tζ, Tµ) ≤ ξd(ζ, µ) (3.36)

where ϕ ∈ Φϕ, φ ∈ Φ and γ ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

convince weak P -property. So, T has unique best proximity point.

Proof. By putting δ(γ) = 1
2
θ(r) in Corollary (1), we obtained the desired result.

Corollary 3. “Consider U and V are non-empty subsets of complete metric space

(X, d) along with U0 6= φ. A non-increasing function δ : [0, 1)→ (1
2
, 1] defined as

δ(γ) =
1

2(1 + γ)
(3.37)

and for all ζ, µ ∈ U , a mapping T : U → V be such that;

δ(γ)(ϕ(d(ζ, T ζ))− 2d(U, V ) ≤ d(ζ, µ)) (3.38)

⇒ δ(γ)d(Tζ, Tµ) ≤ ξd(ζ, µ) (3.39)

where ϕ ∈ Φϕ, φ ∈ Φ and γ ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

convince weak P -property. Then T has unique best proximity point.”

Proof. By taking δ(γ) = 1
2(1+ρ)

in above result, we get our desired result.
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Corollary 4. “Consider U and V two non-empty subsets of complete metric space

(X, d) where U0 6= φ and for all ζ, µ ∈ U , a mapping T : U → V be such that;

1

2
(ϕ(d(ζ, T ζ))− 2d(U, V ) ≤ d(ζ, µ)) (3.40)

⇒ 1

2
γd(Tζ, Tµ) ≤ ξd(ζ, µ) (3.41)

where ϕ ∈ Φϕ, φ ∈ Φ and γ ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

convince weak P -property. Then T has unique best proximity point.”

Proof. By putting δ(γ) = 1
2

in above Corollary, we will get our desired result.

3.4 Applications

As an application of our important best proximity point theorems, deduce the new

fixed point problems for Suzuki-Edelstain contraction in the structure of metric

space. We convert best proximity points into fixed point by taking U = V = X.

Let see few results as examples:

Theorem 3.4.1. “Consider (X, d) be complete metric space. A self-mapping

T : X → X be continuous α-admissible mapping w.r.t. n(ζ, µ) = 2, where ϕ ∈ Φϕ

and also φ ∈ Φ such that

(ϕ(d(ζ, T ζ)) ≤ α(ζ, µ)d(ζ, µ)) (3.42)

⇒ α(ζ, µ)d(Tζ, Tµ) ≤ φ(d(ζ, µ)) (3.43)

for all ζ, µ ∈ X. Moreover, there exists element ζ0 ∈ X such that α(ζ0, T ζ0) ≥ 2.

Then T has fixed point which is unique.”

Proof. If we take U = V = X in Theorem (3.3.1) and (3.3.2), we obtained the

desired results.

The bellow example is taken from [51] to validate the above theorem.
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Example 3.4.1. Consider X = [0,∞)× [0,∞) with metric described on X as

d(ζ, µ) = |ζ − µ|.

Consider T : X → X by

T (ζ) =


ζ
2
− ζ2

4
if ζ ∈ [0, 1],

ln ζ + 1
2

if ζ ∈ (1,∞),

and α : X2 → R+ by

α(ζ, µ) =

 1 if (ζ, µ) ∈ [0, 1],

0 otherwise,

Consider ψ(t) =
1

2
t ∀ t ≥ 0 and ζ ≤ µ. Then T has fixed point.

Proof. Consider ζ, µ ∈ X. First suppose α(ζ, µ) ≥ 1, then ζ, µ ∈ [0, 1]. On the

other hand, if for all ζ, µ ∈ [0, 1] then Tζ ≤ 1
2
. Hance α(Tζ, Tµ) ≥ 1 which gives

T is α-admissible. Clearly α(0, T0) ≥ 1 and 0 ≤ T0.

Now ζ ≥ µ and ζ, µ ∈ [0, 1). Then

α(ζ, µ) d(Tζ, Tµ) =
ζ − µ

2
− (

ζ2 − µ2

4
),

α(ζ, µ) d(Tζ, Tµ) ≤ ζ − µ
2
⇒ φ(d(ζ, µ))

Now assume that α(ζ, µ) = 0

0 = α(ζ, µ) d(Tζ, Tµ) ≤ φ(d(ζ, µ)).

From this result it is clear that all axioms of result (3.4.1) are fulfill. So, T has

fixed point.

Theorem 3.4.2. Consider (X, d) be complete metric space. A self-mapping T :

X → X be continuous α-admissible w.r.t. n(ζ, µ) = 2, where ϕ ∈ Φϕ and also
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φ ∈ Φ such that

(ϕ(d(ζ, T ζ)) ≤ α(ζ, µ)d(ζ, µ)) (3.44)

⇒ α(ζ, µ)d(Tζ, Tµ) ≤ φd(ζ, µ) (3.45)

for all ζ, µ ∈ X. Moreover, select an element ζ0 ∈ X such that α(ζ0, Tx0 ≥ 2 and

either T is constant or the property H given as a remark (3.3.1) satisfies. Then T

has the unique fixed point.

Adopting φ(t) = ξt in result (3.4.1) and (3.4.2) where 0 ≤ ξ < 1, we get result as

below:

Theorem 3.4.3. Consider (X, d) be complete metric space. A self-mapping T :

X → X is continuous α-admissible w.r.t. n(ζ, µ) = 2, where ϕ ∈ Φϕ and also

φ ∈ Φ, such that

(ϕ(d(ζ, T ζ)) ≤ α(ζ, µ)d(ζ, µ)) (3.46)

⇒ α(ζ, µ)d(Tζ, Tµ) ≤ ξd(ζ, µ) (3.47)

for all ζ, µ ∈ X. Moreover, select an element ζ0 ∈ X such that α(ζ0, Tx0) ≥ 2 and

either T is constant or the property H given as a remark (3.3.1) satisfies. Then T

has the unique fixed point.



Chapter 4

Suzuki-Edlstein α-proximal

Contraction in b-Metric Space

In current chapter, we extend the theory of Suzuki-Edlstein α-proximal contraction

in b-metric space and also established few best proximity point theorems for such

contraction in b-metric spaces.

4.1 Best Proximity Point in b-Metric Space

Let (X, dρ) is b-metric space with coefficient ρ ≥ 1, U and V be non-empty subsets

of (X, dρ). Define

dρ(U, V ) = inf{dρ(ζ, µ) : ζ ∈ U, µ ∈ V }

U0 = {ζ ∈ U : dρ(ζ, µ) = dρ(U, V ) for some µ ∈ V }

V0 = {µ ∈ V : dρ(ζ, µ) = dρ(U, V ) for some ζ ∈ U}.

Definition 4.1.1. (Best Proximity Point)

Let (X, dρ) be b-metric space along with parameter ρ ≥ 1. Suppose that U and

V be non-empty subsets of (X, dρ). A component ζ ∈ U is called best proximity

40
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point of T : U → V if

dρ(ζ, T ζ) = dρ(U, V ).

Definition 4.1.2. (Weak P -property)

“Let (U, V ) be pair of non-empty subsets of b-metric space (X, dρ) with U0 6= φ.

The pair (U, V ) satisfies weak P -property iff
dρ(ζ1, µ1) = dρ(U, V ),

dρ(ζ2, µ2) = dρ(U, V ),

⇒ dρ(ζ1, ζ2) ≤ dρ(µ1, µ2),

where ζ1, ζ2 ∈ U and µ1, µ2 ∈ U .”

Definition 4.1.3. (α-proximal admissible mapping)

“Let (X, dρ) be a b-metric space with coefficient ρ ≥ 1, U and V be two non-empty

subsets of X, a mapping T : U → V is called as α-proximal admissible if

α(ζ1, ζ2) ≥ 1,

dρ(u1, T ζ1) = dρ(U, V ),

dρ(u2, T ζ2) = dρ(U, V ),

⇒ α(u1, u2) ≥ 1

for all ζ1, ζ2, u1, u2 ∈ U where α : U × U → [0,∞).”

4.2 Best Proximity Point Theorems in b-Metric

Space

Definition 4.2.1. (Modified Suzuki-Edlstein α-proximal contraction in b-

metric space)

Let U and V be two non-empty closed subsets of complete b-metric space (X, dρ)



Suzuki-Edlstein α-proximal Contraction in b-Metric Space 42

with coefficient ρ ≥ 1, a mapping T : U → V is said to be modified Suzuki-

Edelstein α-proximal contraction in b-metric space if

ϕ(dρ(ζ, T ζ))− 2 ρ dρ(U, V ) ≤ ρ α(ζ, µ)dρ(ζ, µ) (4.1)

⇒ α(ζ, µ)dρ(Tζ, Tµ) ≤ φ(dρ(ζ, µ)) (4.2)

for all ζ, µ ∈ U , where ϕ ∈ Φϕ, φ ∈ Φ and α : U × U → [0,∞].

Theorem 4.2.1. Suppose that (X, dρ) be a complete b-metric space having coef-

ficient ρ ≥ 1. Suppose that U and V be non-empty closed subsets of (X, dρ) where

U0 in non-empty. Let α : U ×U → [0,∞] and φ ∈ Φ. Let T : U → V is a non-self

mapping fulfilling the following axioms:

(i) T is α-proximal admissible w.r.t. η(ζ, µ) = 2,

(ii) T is continuous modified Suzuki-Edelstein α-proximal admissible,

(iii) T (U0) ⊆ V0 and (U, V ) satisfies weak P -property,

(iv) ζ0 and ζ1 in U with dρ(ζ1, T ζ0) = dρ(U, V ) satisfies α(ζ0, ζ1) ≥ 2.

Then T has unique best proximity point.

Proof. Consider ζ0 ∈ U0. As T (U0) ⊆ V0, then there exists element ζ1 ∈ U0 such

that

dρ(ζ1, T ζ0) = dρ(U, V ) satisfies α(ζ0, ζ1) ≥ 2.

Since ζ1 ∈ U0 and T (U0) ⊆ V0, then there exists a component ζ2 ∈ U0 such that

dρ(ζ2, T ζ1) = dρ(U, V )

Since, T is α-proximal admissible w.r.t. η(ζ, µ) = 2, then α(ζ0, ζ1) ≥ 2. Continuing

this to get ζn+1, ζn such that for all n ∈ N.

dρ(ζn+1, ζn) = dρ(U, V ) satisfies α(ζn, ζn+1) ≥ 2
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As φ ∈ Φ, by using Definition (3.2.9),

ϕ(db(ζn−1, T ζn−1) ≤
1

2ρ
db(ζn−1, T ζn−1),

≤2ρ db(ζn−1, T ζn−1),

by using the triangular inequality of b-metric space,

ϕ(dρ(ζn−1, T ζn−1) ≤2[ρ(dρ(ζn−1, ζn) + dρ(ζn, T ζn−1))],

=2 [ρ (dρ(ζn−1, ζn) + dρ(U, V ))],

=2ρdρ(ζn−1, ζn) + 2ρdρ(U, V ),

From the above inequality,

ϕ(dρ(ζn−1, T ζn−1)− 2ρdρ(U, V ) ≤2ρdρ(ζn−1, ζn),

≤ρα(ζn−1, ζn)dρ(ζn−1, ζn),

then by the definition of modified Suzuki-Edelstein α-proximal contraction in b-

metric space

ρα(ζn−1, ζn)dρ(Tζn−1, T ζn) ≤ ρφ(dρ(ζn−1, ζn)

α(ζn−1, ζn)dρ(Tζn−1, T ζn) ≤ φ(dρ(ζn−1, ζn)

Now

db(Tζn−1, T ζn) ≤ α(ζn−1, ζn)db(Tζn−1, T ζn)

this implies that

dρ(Tζn−1, T ζn) ≤ ρ φ(dρ(ζn−1, ζn)) (4.3)

Now suppose that ζn = ζn0+1 for some n0 ∈ N, then we must have

dρ(ζn0 , T ζn0) = dρ(ζn0+1, T ζn0) (4.4)
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Using equation (4.2) in (4.4),

dρ(ζn0 , T ζn0) = dρ(U, V ) (4.5)

Thus from (4.5), we conclude that ζn0 is the best proximity.Therefore, we assume

that ζn0 6= ζn+1, that is d(ζn, ζn+1) > 0 for all n ∈ N ∪ {0}. Since by (3.3) φ is

nondecreasing and weak P -property of (U, V ),

dρ(ζn+1, ζn) ≤ρdρ(Tζn, T ζn−1),

≤ρφ(dρ(ζn, ζn−1)),

So

dρ(ζn+1, ζn) ≤ρφ(dρ(ζn, ζn−1)),

≤ρ φ(dρ(Tζn−1, T ζn−2)),

≤ρ φ(φ(dρ(ζn−1, ζn−2))),

dρ(ζn+1, ζn)) ≤ρ2φ2(dρ(ζn−1, ζn−2))... ≤ ρnφn(dρ(ζ0, ζ1)).

Hence,

dρ(ζn+1, ζn) ≤ ρn φn(dρ(ζ0, ζ1)) (4.6)

by using limit as n→∞ and also continuity condition of dρ,

lim
n→∞

dρ(ζn+1, ζn) = 0

Now for fixed ε > 0 ∃ N ∈ N such that

dρ(ζn+1, ζn) <
ε

ρ
− φ(ε),

≤ ε

ρ
,

≤ ε,
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∀ n ≥ N . As φ is nondecreasing,

φ(dρ(ζn+1, ζn)) ≤ φ(ε) ∀ n ≥ N (4.7)

Then again by triangular inequality

dρ(ζn, ζn+2) ≤ ρ[dρ(ζn, ζn+1) + dρ(ζn+1, ζn+2)],

< ρ[
ε

ρ
− φ(ε) + φ(ε)],

≤ ρ[
ε

ρ
],

< ε.

Continuing the process in this scheme, we conclude

dρ(ζn, ζn+j) < ε ∀ n ≥ N and j ∈ N.

Then there exist j > 0 such that ∀ m,n ∈ N, there exist m < n. Ensuing

triangular inequality and (4.7),

dρ(ζm, ζn) ≤ ρdρ(ζm, ζm+1) + ρ2dρ(ζm+1, ζm+2) + ...+ ρn−m−1dρ(ζn−1, ζn),

≤
n−2∑
j=m

ρj−m+1 φj (dρ(ζ1, ζ0)),

≤
∞∑
j=m

ρj φj (dρ(ζ1, ζ0)) → 0 as n→ ∞.

Consequently, we have

lim
m,n→∞

dρ(ζm, ζn) = 0

Hence this impels that {ζn} is Cauchy sequence in U . X is complete and U is

closed, therefore there exists ω ∈ U such that ζn → ω, by continuity of T implies
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Tζn → Tω as n→∞. So inequality (4.2) gives

dρ(U, V ) = lim
n→∞

dρ(ζn+1, T ζn) = dρ(ω, Tω).

Thus ω is best proximity point. Now, for uniqueness, assume that on contrary

that µ, ω ∈ U0 are best proximity points of T having µ 6= ω,

dρ(µ, Tµ) = dρ(ω, Tω) = dρ(U, V ).

Now by using weak P -property,

dρ(µ, ω) ≤ dρ(Tµ, Tω) (4.8)

Now,

dρ(µ, Tµ) = 2 ρdρ(U, V )− ρdρ(U, V ) (4.9)

Since

ϕ(dρ(µ, Tµ)) ≤ 1

2ρ
dρ(µ, Tµ)

Using (4.9) in (4.10),

ϕ(dρ(µ, Tµ)) ≤ 1

2ρ
dρ(µ, Tµ),

≤ 1

2ρ
(2ρdρ(U, V )− ρ dρ(U, V )),

≤ 1

2ρ
ρ dρ(U, V ),

≤ 1

2
dρ(U, V ),

≤ 2dρ(U, V ).

So from the inequality,

ϕ(dρ(µ, Tµ))− 2dρ(U, V ) ≤ 0 ≤ ρα(µ, ω)dρ(µ, ω) (4.10)
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Hence from the definition of modified Suzuki-Edelstein α-proximal contraction in

b-metric space,

ρ α(µ, ω)dρ(Tµ, Tω) ≤ ρφ(dρ(µ, ω)) (4.11)

Since α(µ, ω) ≥ 2, from the above inequality,

ρ dρ(Tµ, Tω) ≤ ρφ(dρ(µ, ω)) (4.12)

dρ(Tµ, Tω) ≤ φ(dρ(µ, ω)) (4.13)

By using (4.10),

dρ(µ, ω) ≤ φ(dρ(µ, ω)) < dρ(µ, ω) (4.14)

is contradiction, so µ = ω.

Hence T has unique best proximity point.

Example 4.2.1. Suppose thatX = {(0, 2), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 6), (5, 6)}

be the complete b-metric space (X, dρ) with the co-efficient ρ = 2, Define

dρ(ζ, µ) = max{|ζ1 − µ1|2, |ζ2 − µ2|2} for all ζ, µ ∈ X.

Let

U = {(0, 2), (2, 2), (2, 3)}

V = {(1, 2), (1, 3), (3, 3)}

be the two non-empty subsets of X. Now,

dρ(U, V ) = inf{dρ(ζ, µ) : ζ ∈ U, µ ∈ V },

= inf{dρ((0, 2), (1, 2)), dρ((0, 2), (1, 3)), dρ((0, 2), (3, 3)), dρ((2, 2), (1, 2)),

+ dρ((2, 2), (1, 3)), dρ((2, 2), (3, 3)), dρ((2, 3), (1, 2)), dρ((2, 3), (1, 3)),

+ dρ((2, 3), (3, 3))},
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dρ(U, V ) = inf{max(|0− 1|2, |2− 2|2),max(|0− 1|2, |2− 3|2),max(|0− 3|2, |2− 3|2),

+ max(|2− 1|2, |2− 2|2),max(|2− 1|2, |2− 3|2),max(|2− 3|2, |2− 3|2),

+ max(|2− 1|2, |3− 2|2),max(|2− 1|2, |3− 3|2),max(|2− 3|2, |3− 3|2)},

dρ(U, V ) = inf{max(1, 0), max(1, 1), max(9, 1), max(1, 0), max(1, 1),max(1, 1),

+ max(1, 1),max(1, 1),max(1, 1),max(1, 0),max(1, 0)}

dρ(U, V ) = inf{1, 1, 9, 1, 1, 1, 1, 1, 1},

= 1,

Hence

⇒ dρ(U, V ) = 1

and also

U0 = {(0, 2), (2, 2), (2, 3)} = U and

V0 = {(1, 2), (1, 3), (3, 3)} = V.

For all ζ1, ζ2 ∈ U0 ⊆ Uand µ1, µ2 ∈ V0 ⊆ V . Moreover, pair (U, V ) fulfils weak

P -property, as (X, dρ) is b-metric space with ρ = 2. Now, define T : U → V , as

T (ζ) =


{(1, 2)} if ζ ∈ {0, 2},

{(1, 3), (3, 3)} if ζ ∈ {(2, 2), (2, 3)}.

α : U × U → X by

α((ζ, µ), (s, t)) =


2 if (ζ, µ), (s, t) ∈ {(1, 2), (1, 3), (3, 3)},

0 otherwise,
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Clearly T (U0) ⊆ V0. Now, to prove that T satisfy the Modified Suzuki-Edlstein α-

proximal contraction in b-metric space. The following portion of modified Suzuki-

Edelstein α-proximal contraction holds for all ζ, µ ∈ U0, that is

ϕ(dρ(ζ, T ζ))− 2 ρ dρ(U, V ) ≤ ρ α(ζ, µ)dρ(ζ, µ) (4.15)

Now, we must prove that second part of modified Suzuki-Edelstein α-proximal

contraction valids for all ζ, µ ∈ U0, that is

⇒ α(ζ, µ)dρ(Tζ, Tµ) ≤ φ(dρ(ζ, µ)). (4.16)

Now, Suppose if ζ ∈ (0, 2) and µ ∈ {(2, t), t ∈ {2, 3}}, where ζ 6= µ. Then we have

dρ(ζ, µ) = 4, dρ(Tζ, Tµ) = 4

Further, if ζ ∈ {(2, t), t ∈ {2, 3}} and ζ ∈ {(0, 2), (2, 2), (2, 3)}, then

dρ(ζ, µ) = 1, dρ(Tζ, Tµ) = 0.

So, the inequality (4.16) holds for all ζ 6= µ ∈ U0. By considering ρ ≥ 2, α(ζ, µ) = 1

foe all ζ, µ ∈ U and ψ(t) =
999

1000
t ∀ t ≥ 0, ∀ u, v ∈ U , which represents that T

is modified Suzuki-Edelstein α-proximal contraction condition in b-metric space.

Further, all the axioms of above Theorem holds. Therefore T has best proximity

point.

These results can also be established by replacing the axiom of continuity of T in

above result by the H property:

H: “If {ζn} is a sequence in U such that α(ζn, ζn+1) ≥ 2 and ζn → ω ∈ U as

n→∞ then α(ζn, ω) ≥ 2 ∀ n ∈ N .”

Theorem 4.2.2. Let (X, dρ) be a complete b-metric space along with coefficient

ρ ≥ 1. Suppose that U and V be the non-empty closed subsets of (X, dρ) with

U0 6= φ. Let α : U ×U → [0,∞] and φ ∈ Φ. Let T : U → V is a non-self mapping

satisfying following axioms:
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(i) T is modified Suzuki-Edelstein α-proximal admissible w.r.t. η(ζ, µ) = 2,

(ii) T (U0) ⊆ V0, (U, V ) satisfies weak P -property,

(iii) ζ0, ζ1 in U with dρ(ζ1, T ζ0) = dρ(U, V ) satisfies α(ζ0, ζ1) ≥ 2,

(iv) Moreover, If {ζn} is a sequence in U such that α(ζn, ζn+1) ≥ 2 ζn → ω ∈ U

as n→∞..

Then T has best proximity point which is unique.

Proof. Consider sequence ζn. Suppose ζ0 , ζ1 ∈ U0, since T (U0) ⊆ V0, such that

dρ(ζ1, T ζ0) = dρ(U, V ) satisfies α(ζ0, ζ1) ≥ 2.

By progressing the substantiation of result (4.2.1), we have Cauchy sequence ζn →

ω as n→∞. Now by using the above property, α(ζn, ω) ≥ 2 for all n ∈ N. While,

from the succeeding inequality (4.6),

dρ(ζn+2, ζn+1) ≤ φ(dρ(ζn+1, ζn),

< dρ(ζn+1, ζn),

implies

dρ(ζn+2, ζn+1) < dρ(ζn+1, ζn) ∀ n ∈ N.

Also

1

2ρ
dρ(ζn, ζn+1) ≥ ϕ(dρ(ζn, ζn+1)),

> α(ζn, ω)dρ(ζn, ω),

≥ dρ(ζn, ω).

(4.17)

that is
1

2ρ
dρ(ζn, ζn+1) > dρ(ζn, ω) for some n ∈ N. (4.18)
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Similarly

1

2ρ
dρ(ζn+1, ζn+2) ≥ ϕ(dρ(ζn+1, ζn+2)),

> α(ζn+1, ω) dρ(ζn+1, ω),

≥ dρ(ζn+1, ω).

(4.19)

that is
1

2ρ
dρ(ζn+1, ζn+2) > dρ(ζn+1, ω) for some n ∈ N. (4.20)

Triangular inequality of b-metric space,

dρ(ζn, ζn+1) ≤ ρ[dρ(ζn, ω) + dρ(ω, ζn+1)],

Using inequalities (4.18) and (4.20) in above inequality,

dρ(ζn, ζn+1) ≤ ρ[
1

2ρ
dρ(ζn, ζn+1) +

1

2ρ
dρ(ζn+1, ζn+2)],

< ρ[
1

ρ
(
1

2
dρ(ζn, ζn+1) +

1

2
dρ(ζn, ζn+1))],

<
1

2
dρ(ζn, ζn+1) +

1

2
dρ(ζn, ζn+1),

dρ(ζn, ζn+1) ≤ dρ(ζn, ζn+1).

contradiction. Thus ∀ n ∈ N, either

ϕ(ζn, ζn+1) ≤ α(ζn, ω)dρ(ζn, ω)

or

ϕ(ζn+1, ζn+2) ≤ α(ζn+1, ω)dρ(ζn+1, ω) holds.
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Hence from the concept of modified Suzuki-Edelstein α-proximal admissible map-

ping,

dρ(Tζn, Tω) ≤α(ζn, ω)dρ(Tζn, Tω),

≤φ(dρ(ζn, ω)).

(4.21)

or

dρ(Tζn+1, Tω) ≤ α(ζn+1, ω)dρ(Tζn+1, Tω),

≤ φ(dρ(ζn+1, ω)).

(4.22)

Now applying limit as n→∞ in inequalities (4.21) and (4.22),

lim
n→∞

dρ(Tζn, Tω) = 0

or

dρ(Tζn+1, Tω) = 0

implies

Tζn → Tω

or

Tζn+1 → Tω

Consequently, there exists subsequence {ζnk} of {ζn} such that Tζnk → Tω as

ζnk → ω.

lim
n→∞

dρ(ζnk+1
, T ζnk) = dρ(ω, Tω)

and

dρ(U, V ) = lim
n→∞

dρ(ζnk+1
, T ζnk)

Consequently implies that

dρ(U, V ) = dρ(ω, Tω). (4.23)
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This shows that T has best proximity point.

For the uniqueness, assume on contrary µ, ω ∈ U0 are best proximity points, where

ζ 6= µ

dρ(µ, Tµ) = dρ(ω, Tω) = dρ(U, V ).

Now weak P -property,

dρ(µ, ω) ≤ dρ(Tµ, Tω) (4.24)

Now,

dρ(µ, Tµ) = 2ρdρ(U, V )− ρdρ(U, V ) (4.25)

Since

ϕ(dρ(µ, Tµ)) ≤ 1

2ρ
dρ(µ, Tµ)

Using (4.11) in (4.12),

ϕ(dρ(µ, Tµ)) ≤ 1

2ρ
dρ(µ, Tµ),

≤ 1

2ρ
(2ρdρ(U, V )− ρdρ(U, V )),

≤ 1

2ρ
ρdρ(U, V ),

≤ 1

2
dρ(U, V ),

≤ 2dρ(U, V ).

So from the inequality,

ϕ(dρ(µ, Tµ))− 2dρ(U, V ) ≤ 0 ≤ ρα(µ, ω)dρ(µ, ω) (4.26)

Hence from the concept of modified Suzuki-Edelstein α-proximal contraction in

b-metric space,

ρ α(µ, ω)dρ(Tµ, Tω) ≤ ρφ(dρ(µ, ω))

Since α(µ, ω) ≥ 2,

ρ dρ(Tµ, Tω) ≤ ρφ(dρ(µ, ω))
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dρ(Tµ, Tω) ≤ φ(dρ(µ, ω)) (4.27)

By using (4.26),

dρ(µ, ω) ≤ φ(dρ(µ, ω)) < dρ(µ, ω)

contradiction, so µ = ω.

T has a best proximity point which is unique.

Corollary 5. Consider U and V are non-empty subsets of the complete b-metric

space (X, dρ) where ρ ≥ 1 with U0 6= φ. A function δ : [0, 1) → (0, 1
2
] and for all

ζ, µ ∈ U , a mapping T : U → V be such that;

δ(r)(ϕ(dρ(ζ, T ζ))− 2ρdρ(U, V )) ≤ ρd(ζ, µ) (4.28)

⇒ δ(r)dρ(Tζ, Tµ) ≤ ξdρ(ζ, µ) (4.29)

where ϕ ∈ Φϕ, φ ∈ Φ and r ∈ [0, 1). Moreover, T (U0) ⊆ V0 and pair (U, V )

satisfies weak P -property. So, T has best proximity point that is unique.

Theorem 4.2.3. Consider (X, dρ) be the b-complete metric space along with

parameter ρ ≥ 1. A mapping T : X → X be continuous α-admissible w.r.t.

n(ζ, µ) = 2, where ϕ ∈ Φϕ and also φ ∈ Φ such that;

ϕ(dρ(ζ, T ζ)) ≤ ρ α(ζ, µ) dρ(ζ, µ)) (4.30)

⇒ α(ζ, µ) dρ(Tζ, Tµ) ≤ φ(dρ(ζ, µ)) (4.31)

for all ζ, µ ∈ X. Moreover, there exists element ζ0 ∈ X such that α(ζ0, T ζ0) ≥ 2.

Then T has unique fixed point.

Proof. By selecting U = V = X in results (4.2.1) and (4.2.2), we obtained the

desired results.



Chapter 5

Conclusion

The work of Hussain et al on “Best proximity point results for Suzuki-Edlstein

α-proximal contraction” is investigated in this thesis and also the brief description

of their work and achievement.

The aim of this research was to discus the results established by Hussain et al [39]

in b-metric space. For this, the definition of modified Suzuki-Edlstein α-proximal

contraction is formulated in the setting of b-metric space.

As application, the fixed point theorems for then established for modified Suzuki-

Edelstein proximal contraction in the setting of b-metric space.

These results might be valuable in solving particular best proximity points in

addition to fixed point theory in perception of b-metric spaces.
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