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Abstract

The present investigation is based on a numerical study of laminar mixed convec-

tion of nanofluid flow over a porous backward facing step with varying inclination

of magnetic field and Joule heating effect. The bottom wall of the channel down-

stream of the step is maintained at isothermal heating and the other walls of the

channel are assumed to be adiabatic. Governing equations are solved by finite

element method. Velocity components and temperature are discretized by the bi-

quadratic finite element space. Pressure is discretized using linear discontinuous

finite element space. The discretized non linear equations are linearized by using

fixed point iteration scheme. Corresponding linear problem is solved by the Gaus-

sian elimination method. The effects of Reynolds number, Hartmann number,

orientation angle of the magnetic field and solid volume fraction of the nanofluid

on the fluid flow in a backward facing step geometry has been examined. Moreover,

the results are shown by isotherms and streamlines. Also, some useful MATLAB

graphs are drawn to yield results. It has been observed from the results that av-

erage heat transfer has been declined for increasing Da values. An increment in

average Nusselt number has been noticed for increases Reynolds number, ε the

porosity parameter as well as for the inclination angle γ of the magnetic field.
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Chapter 1

Introduction

The present research investigates the impact of magnetic field inclination and

porosity on the mixed convection of nanofluid flow over a backward facing step.

Because of the importance of backward and forward facing step in engineering

and industry it has drawn the attention of many researchers [1]. Early studies

on this benchmark problem were made in 1950’s. Flow separation studies were

on its peak in twentieth century and can be seen typically around the wings of

aeroplanes, pipes, turbines and air around the skyscrapers and tall buildings [2]

where they come across sudden expansions. Backward facing step is one of the

examples where such expansions are commonly seen. Further details regarding

the backward facing step are discussed as follows.

1.1 Backward Facing Step

Geometry of the backward facing step is simple yet it exhibits complex flow be-

haviour. Flow separation is not the only feature, there are many other flow be-

haviours to study for practical purposes for example eddies, wakes, vortices, reverse

flows, recirculation regions and reattachment of the flow etc. “The horizontal dis-

tance between the step and the reattachment point is defined as the reattachment

length” [3]. The work has been investigated for this benchmark problem is both

1
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on laminar and turbulent models [3, 4]. Early works have been carried out using

transformations with geometry and fundamental flow behaviour whereas advance-

ment in numerical and computational areas was touched in 1980’s [5]. The work

on 2D configurations having horizontal, vertical and inclined backward-facing step

was investigated by several researchers who reached at the conclusion that the ef-

fects of buoyancy forces on heat transfer is less in horizontal and more in vertical

and inclined cases. Moreover, in case of the 2D horizonal backward-facing step

with air circulation having uniform wall temperature revealed that Nu does not

depend upon Re and with the increasing buoyancy force, recirculation region and

Nu decreased [6]. Attributes for flow and heat transfer for backward facing step

were studied by Iwai et al. [7] at low Re to explore the aspect ratio of the channel.

Many heat exchanging device configurations, for example condensers, evaporators,

boilers and backward facing step are similar in the sense that they have immediate

expansions in their geometry. Both 2D and 3D studies have been carried out in

this geometry. In 3D heat exchanging devices where all of the surrounding walls

are heated, Nie and Armaly [8] studied 3D flow for wall temperature distributions,

Nu and other important parameters for laminar convection flow adjacent to back-

ward facing step in a rectangular duct. A helpful data for design optimization was

obtained from this study. Armaly et al. [9] inquired experimentally and theoret-

ically the flow over backward facing step using Laser Doppler measurements for

velocity reattachment length, showing extra regions of flow separation which was

not found in earlier literature.

1.2 Nanofluids

Nanoparticles hold equal importance in material science, medicine, physics and

many more which has made it a cynosure of present century. The shape, size

and surface area of naoparticles have given them a non-typical transport and heat

transfer behaviour which cannot be explained by traditional theories. When a

large particle is broken down into several particles, surface area of these particles

is enhanced many times than the large particle this is the reason due to which
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they are high in mobility and efficiency [10, 11]. It is being broadly used from

food packaging to storage capacity of microprocessors and from automobile indus-

try to air conditioning. This journey was started by Richard Feynman, a nobel

prize winner who for the very first time gave the idea of micro-machines in 1959.

Then in 1974, the term ‘Nanotechnology’ was introduced. First time the term

‘nanofluid’ was used by Choi [12] and he victoriously produced nanofluids in 1995.

Most of the research work was considered between the year 2010 and 2012 [13].

There is a wide variety of nanoparticles which are categorised according to their

shape, size, conductivity, both thermal and electrical and heat transfer abilities.

They are generally made up of metals, carbides or oxides [14]. Some are named

as nanofibers, nanowires, nanotubes, nanosheet and nanorods or droplets. The

research on enhancing thermal conductivity of fluids like water, air and oil also

known as host fluid, has been taking place for the last hundred years by adding

metallic or nonmetallic guest particles. These particles include Copper (Cu), Silver

(Ag), Alumina (Al2O3), Titanium oxide (TiO2) and Zinc Oxide (ZnO) etc, and

base fluid can be ethylene glycol, oil, engine oil and water etc. A large number of

literature is dedicated to heat transportation of nanofluids under convection [15].

Preparation methods of nanofluids are two-phase, single-phase and other novel

methods. However its sedimentation and stability are among the major issues.

First one is widely being used in industry and is economical but unstable. Yu

and Xie [16] addressed the issue of instability of nanofluids. They proposed the

techniques and implementation for the preparation of nanofluids that are stable.

1.2.1 Nanofluids in Backward Facing Step

Because of the extensive use of heat exchange devices in engineering such as nu-

clear reactors, car radiators, air heating and cooling applications, regaining of heat

loss and refrigerators, researchers have put lot of efforts to amplify rate of heat

transfer. Thermal conductivity of the fluids without nanoarticles was limited which

was improved after pouring calculated volume fractions into it [17]. Significance of
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nanofluids becomes higher when studied with backward-forward steping. Accord-

ing to Selimefendigil and Öztop [18], the problem arises when reattachment and

separation of fluid are encountered together. Numerical simulation was performed

for mixed convection nanofluid past over backward facing step with a revolving

cylinder as an obstacle. Effects of various parameters along with cylinder’s angular

velocity and volume fraction of the nanofluid were studied. Backward facing with

nanofluids for heat transfer magnification with separated flows were studied by

Abu-Nada [19]. Aside from dissimilar nanofluid volume fraction, different types of

nanoparticles were used as well. It was noticed that out of the recirculation zone,

Nu was increased on using nanoparticles with high thermal ability and vice versa

for those with low thermal ability, within the recirculation region.

1.2.2 Heat Transfer in Nanofluids

The research in convective heat transfer through nanofluids has been conducted

from the last few decades. Heat transfer trough convection directly depends upon

the boundary condition of the geometry, fluid’s thermal conductivity and it is

also explored to be increased by adding suspended particles [20]. Suggestions

for possible causes of heat transfer in nanofluids were given by Trisaksria and

Wongwises [21]. Fast heat transfer ability of nanofluids has been used in solar

collectors and solar heating of water. These devices absorb sunlight in the form

of radiations and transfer it to the fluid running through the solar panels for

water heating which can be stored for further use [22]. Impact and heat transfer

of TiO nanoparticles in water with natural convection was studied by Wen and

Ding [23]. Nanofluids were formulated by electrostatic stabilization and high shear

mixing. The adopted way for nanofluids formulation was highly stable and their

thermal trend was studied too. This review disclose that the application of the

nanofluids for heat transfer increment does not depend upon thermal conductivity

only but also upon other parameters like their size, shape and dispersion. Thermal

conductivity of nanofluids can be determined by mostly used transient hot wire
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method [24]. As nanofluids are electrically conducting too that is why an alterative

method was proposed for appropriate measurement [25].

1.3 Mixed Convection

Convection can be grouped into three types, natural or free convection, forced

convection and mixed convection. Free convection is one in which fluid motion

is due to the density differences produced by the temperature differences within

the fluid. If the fluid motion is produced with the help of “a pump, a blower

or some similar device, the process is called forced convection”. When both are

involved that is the “mixed convection” [26]. Computer advancement in memory

and speed have helped us to do numerical study with precision. With the help of

which we can add more discretization points and solve more complex problems.

Many industrial procedures and natural circumstances do involve heat transfer

either by force or free convection such as heating and cooling phenomena, elec-

trical appliances, microprocessor cooling and solar collectors [27]. Heat transfer

by mixed convection in a horizonal chamber with openings in foot and top walls

was numerically studied considering nanofluid of Al2O3-water [28]. Affects of Re

and φ on fluid flow and heat transfer were examined. It explored satisfactory in-

crease in heat transfer and temperature due to increase in φ while fluid flow and

temperature distribution showed dependency upon Re.

1.3.1 Mixed Convection in Backward Facing Step

Steady mixed convective flow over 3D steping is studied by Saldana [29]. A com-

parison between mixed and pure forced convection with differences between veloc-

ity and temperature distribution was numerically simulated. Abu-Mulaweh [30]

provided a deep scrutiny on single-phase mixed convective flow and transport of

heat within the fluid in both forward and backward steping at several unlike angles.

Many of previously estimated inter depending variable quantities were reproduced
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by making some assumption and changing important parameters. Thermal be-

havior of nanofluids’ pulsating flow with forced convection over backward facing

step with a immobile cylinder was studied by Selimefendigil and Öztop [31]. Con-

sequences of parameters like frequency, Re and φ on the flow and heat transfer

features were investigated numerically. Enhanced oscillation frequency, Re and φ

resulted in enhancement of heat transfer. Reduced order model is an attribute

grounded on database of fluids and structural models. It helps in reduction of

computational cost yet satisfactory precision. A revolving cylinder exposed to

nanofluid over BFS with mixed convection was studied [18] for reduced order

model. The impact of several parameters upon heat transfer was studied. An in-

crement in heat transfer was seen on blend of specific parameters. Forced convec-

tion features with laminar flow over 2D backward stepping with circular cylinder

was considered by Kumar and Dhiman [32].

1.4 Magnetohydrodynamics

Magnetohydrodynamics or MHD in short, also known by magnetofluid mechanics

or hydromagnetics, is a study of fluids that conduct electricity under a magnetic

field. In this way the fluid which is already electrically conducting passes through

magnetic field, induces current. This action produces forces on the fluid which has

effects back on magnetic field. Hannes Alfvén [33] in 1970, won Nobel Prize for

giving first time the idea of MHD. Examples of such fluids are plasmas, salt water,

liquid form of metals, or electrolytes. It effects flow of electrically conducting

fluid. When a conducting fluid moves through a magnetic field, it induces current,

as a result Lorentz force is produced which changes the movement of the fluid.

The important fields related to MHD are solar physics, plasma physics, cooling in

fission reaction and experiments in laboratory plasma. Physical laws of the flow

are obtained from the laws of fluid dynamics and Maxwell’s equations.

Magnetic field has effects on the temperature distribution and heat transfer on the

fluid flow. A numerical inspection in square 2D cavity for the effects of magnetic

field over flow and heat transfer was conducted by Bakar et al. [34]. Changes in
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Nu along with streamlines patters and isotherm were observed. The laminar flow

of a viscous incompressible fluid conducting electricity over a backward steping

was inspected numerically under the MHD theory with Re = 380 and Stuart

number N scaling 0 ≤ N ≤ 0.2 by Abbassi and Nassrallah [35]. Heat transfer

was measured against Pr equals 0.02 for liquid metal and Pr equals 7 for water.

Measuring the length of reattachment revealed that external magnetic field made

recirculation zone to decrease. From the velocity behavior it was shown that

the induced magnetic force damped the fundamental flow out of the recirculation

region and flow near boundaries moved more quickly. Moreover, magnetic field

notably increased heat transfer for elevated values of Pr. Numerical inspection

of nanofluids with laminar forced convection over a backward steping through

a channel held by Al-aswadi et al. [6] by applying FVM. Several nanoparticles

like Al2O3, CuO, diamond and SiO2 were used with φ = 5% in the base fluid.

Step height and expansion ratio were taken to be 4.8mm and 2mm respectively

with Re ranging from 50 to 175. Nanoparticles of SiO2 were reported to have

the maximum velocity as compared to other particle types, while nanoparticles

of Ag has the minimum velocity. Initially a recirculation zone was reported after

the step started and flow became fully developed afterwards. Also, reattachment

point moved opposite to upstream and away from the step point as Re is elevated.

1.5 Mixed Convection Heat Transfer of

Nanofluids in Backward Facing Step

Two dimensional laminar flow with mixed convection over a straight plane mi-

croscale backward stepig placed in channel was numerically inquired by Kherbeet

at el. [36]. Several nanoparticles types were used to conduct the experiment. The

Nu was notised to be increased with increasing values of Re and nanofluid volume

fraction which was highest with particles of Silicon dioxide (SiO2). Again Kherbeet

at el. [37] performed experiment for laminar nanofluids above microscale backward

facing step to check the consequences upon heat transfer attributes. Beside the
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step height, Re and taking some parameters in consideration, it was found that

Nu was greatest with SiO2 and with MFFS (microscale backward-facing step) as

compared to MBFS (microscale forward-facing step). Heat transfer and fluid flow

properties over a backward or forward steping trough duct with obstacles is worked

upon by fewer researchers. A square obstacle positioned before the step in pul-

sating laminar flow above a backward steping with varying Pr, Re and positions

of obstacle were numerically investigated by Selimefendigil [38]. It was reported

that obstacle position can be used as the key to handle heat transfer. Laminar

nanofluids flow over backward steping under forced convection was mathematically

inquired [39]. The foot wall of the step was elastic. Flexibility of the wall effected

the flow of the fluid and heat transfer. When Re and φ were increased, local and

averaged heat transfer elevated. At highest Re, the heat transfer was highest with

less elasticity of foot wall.

1.6 Porous Medium in Backward Facing Step

Applications of porous media spread over vast fields. It is significant for en-

ergy and transport properties. In the nature, exemplary models are underground

water flows, flow of drugs in tissues [40], oil flow in reservoirs [41] and subsoil

heat flow [42]. In industry foamy materials, detergent pellets, textiles and food

drying [42] are included. Therefore, it is crucial to understand their shrinking,

swelling, absorbing behavior and flow of fluids through them for their extensive

use in modelling scientific and engineering problems. Khanafer and Chamkha [43]

simulated a study with porous medium upon Brinkman-extended Darcy model.

They inspected that Nuavg enhances on increasing Darcy number. Hassan and Is-

mael [44] investigated in the lid driven cavity by using Maxwell Brinkman model.

They explored that augmentation of average heat transfer is achieved by reduction

in Da value.

Backward facing step or geometries with separated flow phenomena and reattach-

ment come across several industrial, engineering and electronic devices. These

include turbine blade cooling, combustion chamber cooling, sedimentation and
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bed formation in rivers and cooing in nuclear reactors, etc [29]. Another aspect is

that inducing this coupled flow phenomena helps to achieve conditions and flow

behaviour favourable for heat transfer. Researchers are continuously analyzing the

behaviour experimentally and numerically. After the literature survey, it has seem-

ingly shown that the present configuration with introduction of porous medium

and Joule’s heating has not been investigated yet. The main incentive of the

present research work is to study this important flow geometry and corresponding

controlling parameters which are significantly and directly related to the cooling

or heating in BFS.

1.7 Thesis Contribution

The objective of the present work is to review the numerical examination of mag-

netic field impact upon mixed convection nanofluids with laminar flow above back-

ward facing step(BFS) and to extend this configuration for porous medium and

Joule heating effects due to viscous dissipation. The Governing PDEs are non

dimensionalized through appropriate transformation parameters. Non dimension-

alized PDEs are solved with the help of Galerkin weighted residual method based

on finite element method. Particularly, the finite element Q2/P
disc
1 that satis-

fies the LLB-stability condition, has been used to discretize the non dimensional-

ized model. Bi-quadratic, Q2 is used for temperature and components of velocity

whereas, P disc
1 as a linear element is used for pressure components. The contri-

bution of magnetic field is added to the x and y-momentum equations. Viscous

dissipation due to magnetic field is added to the energy equation in the form of

Joule heating. Effects of governing parameters upon fluid flow and heat trans-

fer over BFS configuration were inspected numerically. Numerical work has been

presented with the help of streamlines, isotherms and MATLAB graphs.
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1.8 Thesis Attributes

This thesis is further comprised of the following four chapters:

In Chapter 2, fundamental laws along with conceptual definitions are provided.

Non dimensionalized parameters are defined in the chapter. An overview of solu-

tion methodology is also given. parameters

In Chapter 3, influence of inclined magnetic field on mixed convective nanofluid

over backward facing step has been considered. The proposed problem with as-

sociated boundary conditions is provided and dimensional form of the physical

model is non dimensionalized by introducing non dimensional parameters. The

continuous form of non dimensional equations is converted into discrete form with

Q2/P
disc
1 element. The discretized non linear algebraic equations are linearized

by the fixed point iteration and Gaussian elimination is adopted to solve the cor-

responding linear system. The convergence of the solution is achieved by taking

Euclidean norm of the residual. Produced results are interpreted numerically and

presented using streamlines and isotherms. MATLAB graphs are also produced

to show the solution results.

Chapter 4 extends the study of [1] reviewed in Chapter 3 will be extended by

introducing porosity and effects of Joule heating in the forgoing problem. Non

linear coupled PDEs are discretized with Galerkin weighted residual based FEM

discretization. Impact of parameters Re, Ha, Da, Ec, γ, φ and ε over heat trans-

fer, was studied through graphs, streamlines and isotherms.

Chapter 5 provides conclusive summary of the thesis.



Chapter 2

Fundamental Concepts and Basic

Equations of Flow

Some relevant definitions and basic concept to the fluid are described below. Di-

mensionless physical quantities and fundamental equations of flow along with the

solution methodology to be adopted, are also mentioned in this chapter.

2.1 Important Definitions

Definition 2.1.1. (Fluid)

“A substance in the liquid or gas phase is referred to as a fluid. A fluid deforms

continuously under the influence of a shear stress, no matter how small” [45]. There

are several examples of fluids from daily life usage. These are breathing, blood

flow [46], honey, the movement of people on the platform of a railway station,

air flowing across the wings of a jet, starch solution, oil and water e.t.c. Fluid

comprises of the states of matter and include gases, liquids and plasma [47].

Definition 2.1.2. (Fluid Mechanics) [48]

“The fluid mechanics is defined as the science that deals with the behavior of fluids

at rest (fluid statics) or in motion (fluid dynamics)”.

11
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Branches of Fluid Mechanics:

Definition 2.1.3. (Fluid Dynamics) [48]

“The branch that deals with bodies in motion is called Fluid Dynamics”.

Definition 2.1.4. (Fluid Statics) [48]

“The branch of mechanics that deals with bodies at rest is called statics”.

Definition 2.1.5. (Nanofluid) [49]

“Nanofluids are engineered by suspending nanoparticles with average sizes below

100 nm in traditional heat transfer fluids such as water, oil, and ethylene glycol. A

very small amount of guest nanoparticles, when dispersed uniformly and suspended

stably in host fluids, can provide dramatic improvements in the thermal properties

of host fluids”.

Definition 2.1.6. (Viscosity) [48]

“There is a property that represents the internal resistance of a fluid to motion or

the fluidity and that property is the viscosity”.

Definition 2.1.7. (Kinematic Viscosity) [48]

“The ratio of dynamic viscosity to density appears frequently. For convenience,

this ratio is given the name kinematic viscosity ν and is expressed as”

ν =
µ

ρ
(2.1)

Definition 2.1.8. (Dynamic Viscosity) [48]

“Viscosity is a property of a fluid that quantifies the ratio of shear stress to rate

of deformation (strain rate) of a fluid particle”, can be expressed by

µ =
shear stress

strain rate
, (2.2)

“The terms absolute viscosity, dynamic viscosity, and viscosity are synonymous”

Definition 2.1.9. (Strain Rate) [48]

“Strain rate can also be called deformation rate. This is the rate at which a fluid

particle deforms (i.e., changes shape) at a given position and time in a fluid flow”.
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2.2 Types of Fluids

Definition 2.2.1. (Ideal Fluid vs Real Fluid)

“Ideal fluid is fluid which has no viscosity and it is also incompressible. There is

no fluid in nature which fully behaves as ideal fluid”. It is also assumed that such

fluid “has negligible viscous effects”. Practically no ideal fluid exists. While fluids

that continuously deform under viscosity and are compressible too are known to

be real fluid”.

Definition 2.2.2. (Newtonian Fluid vs non-Newtonian Fluid) [48]

“Fluids for which the rate of deformation is linearly proportional to the shear

stress are called Newtonian fluids. In one-dimensional shear flow of Newtonian

fluids, shear stress can be expressed by the linear relationship as

Shear stress := τ = µ
du

dy
, (2.3)

where the constant of proportionality µ is called the coefficient of viscosity or the

dynamic (or absolute) viscosity of the fluid”. Examples are air, water, kerosene

and gasoline. “Fluids for which the shear stress is not linearly related to the

shear strain rate are called non-Newtonian fluids. Examples include slurries and

colloidal suspensions, polymer solutions, blood, paste, and cake batter”.

Definition 2.2.3. (Compressible vs Incompressible Flow) [48]

“Flows that involve significant changes in density. Such flows are called compress-

ible flows”. Mathematically,

ρ 6= constant

“A fluid flow where variations in density are sufficiently small to be negligible.

Flows are generally incompressible”.

ρ = constant

“Any characteristic of a system is called a property. Some familiar properties are

pressure P , temperature T , volume v, and mass m”.
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Definition 2.2.4. (Density) [48]

“Density is defined as the mass per unit volume”. That is,

Density : ρ =
m

v
(2.4)

Definition 2.2.5. (Stress) [48]

“Stress is defined as force per unit area and is determined by dividing the force

by the area upon which it acts”. It has two components, normal and tangential.

Components of Stress:

Definition 2.2.6. (Normal Stress) [48]

“The normal component of a force acting on a surface per unit area is called the

normal stress”.

Normal stress: σ = Fn/dA

Definition 2.2.7. (Shear Stress) [48]

“Tangential component of a force acting on a surface per unit area is called shear

stress”.

Shear stress: τ = Ft/dA

Definition 2.2.8. (Pressure) [48]

“In a fluid at rest, the normal stress is called pressure. A fluid at rest is at a state

of zero shear stress”.

P = F
A

Definition 2.2.9. (Magnetohydrodynamics) [50]

“Magnetohydrodynamics is the multi-disciplinary study of the flow of electrically

conducting fluids in electromagnetic fields. Examples of such fluids include plas-

mas, liquid metals and salt water”.

2.3 Types of Flow

Definition 2.3.1. (External vs Internal Flow) [48]

“The flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe is
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external flow. The flow in a pipe or duct is internal flow if the fluid is completely

bounded by solid surfaces”. For example, flow of water in a pipe is internal flow.

Definition 2.3.2. (Laminar vs Turbulent Flow) [51]

“Laminar flow is a flow which takes place in layers. There is no mixing of fluid

particles between any two adjacent layers. The flow will be laminar when velocity

of flow is low”. While a turbulent flow is one “when the velocity of flow reaches

a certain limit such that the fluid particles no longer move in layers or laminae.

Violent mixing of fluid particles takes place due to which they move in random

manner”. As a result velocity varies both in magnitude and direction from instant

to instant.

Definition 2.3.3. (Steady vs Unsteady Flow) [48]

“The term steady implies no change of properties, velocity, temperature, etc., at

a point with time. The opposite of steady is unsteady”.

Definition 2.3.4. (Uniform vs Non-Uniform Flow)

“A flow, in which the fluid particles possess equal velocities at each section of the

channel or pipe is called uniform” [52]. Mathematically,

(
∂U

∂s

)
=


∂u
∂s

∂v
∂s

∂ω
∂s

 = 0,

while a non-uniform flow is one for which this is not true [51].

(
∂U

∂s

)
=


∂u
∂s

∂v
∂s

∂ω
∂s

 6= 0

Definition 2.3.5. (Natural vs Forced Flow) [48]

“A fluid flow is said to be natural or forced, depending on how the fluid motion

is initiated. In forced flow, a fluid is forced to flow over a surface or in a pipe by

external means” for example by a pump or a fan. Whereas “in natural flows, fluid

motion is due to natural means such as the buoyancy effect”.
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2.4 Modes of Heat Transfer

“Conduction, convection and radiation are the three modes of heat transfer” [53].

Definition 2.4.1. (Conduction) [26]

“Conduction is the transfer of heat from one part of a body at a higher temperature

to another part of the same body at a lower temperature”.

Definition 2.4.2. (Convection) [26]

“Convection, relates to the transfer of heat from a bounding surface to a fluid in

motion, or to the heat transfer across a flow plane within the interior of the flowing

fluid”.

Definition 2.4.3. (Forced Convection) [26]

“If the fluid motion is induced by a pump, a blower, a fan, or some similar device,

the process is called forced convection”.

Definition 2.4.4. (Natural Convection) [26]

“If the fluid motion occurs as a result of the density difference produced by the

temperature difference, the process is called free or natural convection”.

Definition 2.4.5. (Mixed Convection) [26]

“Mixed convection occurs when both natural convection and forced convection

play significant roles in the transfer of heat. Mixed convection occurs when the

heat transfer is significantly different from that for either pure natural convection

or pure forced convection”.

Definition 2.4.6. (Radiation) [26]

“Radiation, or more correctly thermal radiation, is electromagnetic radiation emit-

ted by a body by virtue of its temperature and at the expense of its internal en-

ergy”. Examples are visible light, x rays, and radio waves. “All heated solids and

liquids, as well as some gases, emit thermal radiation. The transfer of energy by

conduction requires the presence of a material medium, while radiation does not”.
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2.5 Dimensionless Parametres

Definition 2.5.1. (Nusselt Number)(German engineer, Wilhelm (1882–1957))

[54]

“Important parameter in convective heat transfer is the heat transfer coefficient,

defined by Newton’s law of cooling. To present more generalized results, this

quantity is non dimensionalized and called the Nusselt number, defined as,

Nu = hL/k

where L is a characteristic dimension, h is heat transfer coefficient and k is the

thermal conductivity of the fluid” [54]. “It expresses the ratio of the total heat

transfer by convection in a system to the heat transfer by conduction”, i.e.

“Convection heat transfer/conduction heat transfer” [48].

Definition 2.5.2. (Reynolds Number)(British engineer, Osborne Reynolds

(1842–1912)) [54]

“The most important parameter in fluid mechanics”. It is always important in all

heat transfer modes. It can be expressed as: “Inertia/Viscosity” [55].

Defined by ”the ratio of the inertial term over the viscous force term” [47]. It tells

the flow character either laminar, turbulent or transient [54]. Mathematically,

Re = UL/ν,

Definition 2.5.3. (Richardson Number)(English mathematician, Lewis Fry

Richardson (1881-1953)) [54]

“This number expresses the potential-to-kinetic energies ratio” [54]. Also, defined

by: “Buoyancy force/Inertial force” [48].

Ri =
gβL∆Tρ2

µ2
, (2.5)

Ri =
Gr

Re2
. (2.6)

Definition 2.5.4. (Prandtl Number)

It’s importance is in Heat Convection. This can also be expressed as “dissipation/-

conduction” [48]. “This number expresses the ratio of the momentum diffusivity

(viscosity) to the thermal diffusivity. It characterizes the physical properties of a
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fluid with convective and diffusive heat transfers” [54].

Mathematically,

Pr =
ν

α
, (2.7)

where, ν is momentum or kinetic diffusivity and α is thermal diffusivity.

Pr << 1 heat transfer by conduction is dominated.

Pr = 1 heat transfer by both conduction and convection.

Pr >> 1 heat transfer by convection is dominated [54].

Definition 2.5.5. (Hartmann Number)(Danish physicist, George Poul Hart-

mann (1881-1951)) [54]

“It is an important criterion of magneto-hydrodynamics. It expresses the ratio

of the induced electrodynamic (magnetic) force to the hydrodynamic force of the

viscosity”.

Ha = B0L

√
σf
µf

where, B0 is magnetic field strength and L is characteristic length dimension.

Definition 2.5.6. (Grashof Number) [54](German engineer, Franz Grashof

(1826–1893))

“A dimensionless parameter, important in natural convection heat transfer of flu-

ids, is the Grashof number [55].

Gr =
gβρ2L3∆T

µ2
, (2.8)

where g is the acceleration of gravity, β is the thermal expansion coefficient, ρ the

density, L characteristic length, ∆T a temperature difference, and µ the viscosity”.

Definition 2.5.7. (Eckert Number) [54](American engineer, Georg Eckert

(1904-2004))

“It expresses the ratio of kinetic energy to the thermal energy change”.

Mathematically,

Ec =
U2

cp∆T
(2.9)
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Here, ∆T is “temperature difference”.

Definition 2.5.8. (Darcy Number) [54](Gaspard Darcy)

“It characterizes the permeability in porous material”.

Mathematically,

Da =
K

L2
, (2.10)

where, “K” is the “permeability of porous material”.

2.6 Fundamental Flow Equations

“The conservation relations are also called balance equations since any conserved

quantity must balance during a process” [48].

2.6.1 Continuity Equation

“Conservation of mass, often called the continuity relation, states that the fluid

mass cannot change [46]”. Mathematical form of the relation is,

∂ρ

∂t
+∇ · (ρU) = 0 (2.11)

where, ρ is the density.

For steady fluid flow, above equation becomes

∇ · (ρU) = 0 (2.12)

Furthermore, if the flow is incompressible, then

∇ ·U = 0 (2.13)
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2.6.2 Conservation of Momentum

“Newton’s second law states that the rate of change of momentum of a fluid par-

ticle equals the sum of the forces on the particle” [53]. i.e., “Rate of increase

of momentum of fluid particle = Sum of forces on fluid particle”. Momentum

conservation principle is based on the Newton’s second law which says that “The

momentum of a system remains constant when the net force acting on it is zero

and thus the momentum of such systems is conserved. This is known as the con-

servation of momentum principle” [48]. The forces acting on the fluid are divided

into two types, surface and body forces. Prior includes forces of pressure and vis-

cous force and latter are force of gravity, Centrifugal, Coriolis and electromagnetic

forces. The Momentum conservation principle is stated as:

∂ρU

∂t
= −(∇.ρU)U−∇P +∇.τ ?ij + ρg. (2.14)

After the contribution of continuity equation, above equation becomes

ρ
DU

Dt
= −∇P +∇.τ ?ij + ρg. (2.15)

This equation is Newton’s second law of motion. Momentum conservation prin-

ciple is based on Newton’s second law that states that “the rate of change of the

momentum of a body is equal to the net force acting on the body” [48]. In the

above equation, ρ is density, U is the fluid velocity, P is pressure, g is gravitational

force and τ ∗ij is viscous stress tensor given by:

τ ?ij =


τxx τyx τzx

τxy τyy τzy

τxz τyz τzz

 , (2.16)

or

τ ?ij =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 . (2.17)
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Ideal fluids for which µ = 0, the Eq. (2.15) takes the form

ρ
DU

Dt
= −∇P + ρg, (2.18)

is well known Euler’s equation of motion.

After incorporating the nine components of viscous stress tensor τ ?ij into the

Eq. (2.15), we have the famous Navier-Stokes equations for Newtonian, incom-

pressible fluids with constant density and µ, given as follows:

For this, first we write the vector form of the Eq. (2.15) in component form:

ρ
∂u

∂t
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρgx, (2.19)

ρ
∂v

∂t
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρgy, (2.20)

ρ
∂w

∂t
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρgz, (2.21)

where, U = (u, v, w) and g = (gx, gy, gz) The values of nine components are:

τ ∗ij =


2µ∂u

∂x
µ( ∂v

∂x
+ ∂u

∂y
) µ(∂w

∂x
+ ∂u

∂z
)

µ(∂u
∂y

+ ∂v
∂x

) 2µ∂v
∂y

µ(∂w
∂y

+ ∂v
∂z

)

µ(∂u
∂z

+ ∂w
∂x

) µ(∂v
∂z

+ ∂w
∂y

) 2µ∂w
∂z

 . (2.22)

After the substitution, the Eqs. (2.19) - (2.6.2) become,

ρ
∂u

∂t
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ ρgx, (2.23)

ρ
∂v

∂t
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ ρgy, (2.24)

ρ
∂w

∂t
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ ρgz. (2.25)

The vector form of Navier-Stokes equation is [26]:

ρ
DU

Dt
= −∇p+ µ∆U + ρg (2.26)
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Here, D/Dt is total derivative or substantial derivative.

2.6.3 Conservation of Energy

“One of the most fundamental laws in nature is the first law of thermodynamics,

also known as the conservation of energy principle. It states that energy can be

neither created nor destroyed during a process; it can only change forms” [48].

“The energy equation is derived from the first law of thermodynamics, which

states that the rate of change of energy of a fluid particle is equal to the rate of

heat addition to the fluid particle plus the rate of work done on the particle” [53].

Mathematical form is [26]:

∂

∂t
ρ(e+

1

2
U2) = −∇.ρU(e+

1

2
U2)−∇.q′′

+ρ(U.g)−∇.PU+∇.(τ ?ij.U)+q
′′′
. (2.27)

Here, E = e+ 1
2
U2. E is total energy of the fluid, e is the internal energy and 1

2
U2

is kinetic energy while potential energy is treated separately and included in work

term on R.H.S of the equation. Also, ∇.q′′
and q

′′′
are conduction due to heat

flux and source term, respectively. Utilizing continuity and momentum equation,

Eq. (2.27) becomes,

ρ
De

Dt
= −P (∇.U)−∇.q′′

+∇U : τ ?ij + Se, (2.28)

where,

Se = ρ(U.g) + q
′′′

(2.29)

∇U : τ ?ij =

(
σx
∂u

∂x
+ τ ?xy

∂u

∂y
+ τ ?xz

∂u

∂z

)
+

(
τ ?yx

∂v

∂x
+ σy

∂v

∂y
+ τ ?yz

∂v

∂z

)
(2.30)

+

(
τ ?zx

∂w

∂x
+ τ ?zy

∂w

∂y
+ σz

∂w

∂z

)
.

Here, source term is further rewritten as Se, absorbing the potential energy and

body forces in it. The Eq. (2.28) can be easily achieved by multiplying x, y and
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z momentum equations with u, v and w, respectively and adding them up. This

equation is subtracted through the Eq. (2.27) [53]. Substituting the values from

Eq. (2.22) into the Eq. (2.30), the above expression implies [26],

∇U : τ ?ij =µ

[
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
)

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2 ]
, (2.31)

∇U : τ ?ij =µΦ, (2.32)

where, Φ is “viscous dissipation”. It expresses all those impacts that are under

the “viscous stresses” [53].

Using Eq. (2.32) into Eq. (2.28) and after introducing Fourier’s law , we obtain

ρ
De

Dt
= −P (∇.U)−∇.(−κ∇T ) + µΦ + Se. (2.33)

For incompressible flow, a relation e = cvT and ∇.U = 0 can be used. Here,

cv is “specific heat at constant volume”. That gives work done under pressure

force equals zero. Therefore, the equation can be written for temperature field as

follows,

ρcv
DT

Dt
= κ∆T + µΦ + Se (2.34)

where, e = cvT is the “internal energy”.

ρcv
DT

Dt
= κ∆T, (2.35)

DT

Dt
= α∆T, (2.36)

where, α = κ
ρcv

is “thermal diffusivity”. The validity of this equation is under

steady, viscous, incompressible Newtonian fluid flow with neglected viscous effects

due to internal energy [46, 53].
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2.7 Finite Element Method

Finite element method, FEM in short, is a flexible and widespread aid to solve

PDEs and integro differential equations of the physical problems, in science and

engineering. The advancements in the method forged ahead in 1950s and this

all was possible only with the help of modern computers. It provides solutions

to structural as well as non-structural problems. The method is widely used to

approximate solutions to the problems for solid mechanics, structural mechanics,

fluid flow, heat transfer and stress analysis etc [56]. It “involves modelling the

structure using small interconnected elements called finite elements” [57]. With

the help of FEM, continuous form of the problem is transformed into discontinuous

or discrete form.

2.8 FEM Formulation

FEM can easily handle both structural and non structural grids. For the curvilin-

ear boundaries, FEM formulation is ideal. There are three major steps involved.

1. Discretize and Select the Element types

In this step the computational domain is subdivided into non-overlapping

subdomains known as, finite elements [57]. For 1D, these elements join

each other at points x1, x2, x3...., xn−1. Add x0 = a and xn = b to this

array. In general we may call them as x′is. The type of element is chosen so

that it simulates the behaviour of the physical model the most, keeping the

computational cost as low as possible.

2. Select an Approximating Function

An approximating function known as basis function or interpolation poly-

nomial ũ(x) is to be selected in this step, which represents the variation of

dependent variable u(x) over the elements.
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3. Application of Weighted Residual Method

Since any of the weighted residual method can be then applied but more

famous is Galerkin method which is applied to each element separately, sub-

jected to the given differential equation between the end nodal values ũ(xi)

and ũ(xj). Here ũ(xi)
′s are the approximations to the true solution u(xi)

′s,

of the given differential equation.

2.9 Galerkin Weighted Residual Method

We can apply weighted residual methods to the differential equation directly which

develop the finite element equations [57]. In Galerkin’s method, shape functions

are chosen as weight functions. Galerkin’s method gives discrete solution at dis-

crete number of points.

ω =
∂ũ

∂ui
= φi, (i = 1, 2, ..., n). (2.37)

The unknowns are obtained by letting the integral of weighted residual over Ω, to

be vanished. For 1D problem with domain [a, b] we have,

∫ b

a

ωiRdx = 0, (i = 1, 2, ..., n), (2.38)

The linear system of equations thus obtained is,

∫ b
a
φ14(φ1)dx . . . . . .

∫ b
a
φ14(φn)dx

...
. . .

...
...

. . .
...∫ b

a
φn4(φ1)dx . . . . . .

∫ b
a
φn4(φn)dx




u1

...

...

un

 =



∫ b
a
φ1fdx

...

...∫ b
a
φnfdx

 . (2.39)



Chapter 3

Influence of Inclination Angle of

Magnetic Field on Mixed

Convective Nanofluid over

Backward Facing Step

This chapter contains the numerical study of the mixed convection of nanofluid

flow over a backward facing step under the influence of varying magnetic field in-

clination [1]. We are interested in reinvestigating the dimensionless coupled PDEs

defining physical phenomena. By using required dimensionless parameters, the

dimensional PDEs are changed into dimensionless form. The numerical study is

being done by using FEM to discretize the continuous form of physical laws. Af-

ter obtaining a weak formulation, a set of algebraic equations are obtained for

numerical manipulation. To visualize the effects of different parameters, stream-

line, isothermal patterns and MATLAB graphs are used to illustrate it. “The

reattachment length is the distance from the step at which the flow resumes in the

positive flow direction all over the cross-section” [58].

26
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3.1 Problem Formulation

A combined convection nanofluid flow under the effect of inclined magnetic field

over BFS is considered. Angle of inclination of the magnetic field of strength B0,

is taken to be γ (0◦ ≤ γ ≤ 90◦). The inlet fluid velocity is u0. In the present geom-

etry, flow is considered to be two dimensional laminar, steady state. The channel

is open at both ends. The open channel is a backward facing step with step size H

and height of the channel is 2H. A schematic diagram of the geometry is shown

by Figure 3.1. Inlet of the channel is maintained at a uniform temperature T = Tc

and possesses a parabolic velocity profile. The length of the step in downstream

direction, starting from foot of the step to the outlet is, 36H. Except the bottom

wall of step which is maintained at T = Th, all the other walls of the channel

are set at a thermal insulation. The channel contains Cu-water nanofluid, flowing

under a magnetic field influenced by an orientation. Impact of several parameters

upon convective heat transfer is studied. The investigation is performed by setting

γ at different inclinations while Pr has been assigned a constant value of 6.2. Both

nanoparticles and base fluid are in thermal equilibrium and a no slip condition has

been assumed between them. Thermophysical properties of nanoparticles Cu and

H2O are kept constant [59].

Figure 3.1: Schematic diagram of the physical problem.
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Physical Properties H2O Cu

Cp(J kg−1K−1) 4179 383

k(W m−1k−1) 0.6 400

β(k−1) 2.1× 10−4 1.67× 10−5

σ(Ω m−1) 0.05 5.97× 107

ρ(kg m−3) 997.1 8954

Table 3.1: Thermo physical properties of H2O and Cu.

3.2 Governing Equations

According to the assumptions above, continuity, momentum and energy equations

in dimensional form, are as given below. Also, x and y components of Lorentz

force are incorporated in momentum equation.

• Continuity Equation

∂u

∂x
+
∂v

∂y
= 0, (3.1)

• x-Component of Momentum Equation

(
u
∂u

∂x
+ v

∂u

∂y

)
=− 1

ρnf

∂P

∂x
+ νnf

(
∂2u

∂x2
+
∂2u

∂y2

)
+
σnfB

2
0

ρnf
(v sin γ cos γ − u sin2 γ), (3.2)

• y-Component of Momentum equation

(
u
∂v

∂x
+ v

∂v

∂y

)
=− 1

ρnf

∂P

∂y
+ νnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+ (β)nf g (T − Tc)

+
σnfB

2
0

ρnf
(u sin γ cos γ − v cos2 γ), (3.3)



Influence of Magnetic Field on Mixed Convective Nanofluid Flow 29

• Energy Equation

u
∂T

∂x
+ v

∂T

∂y
=αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.4)

where, αnf is thermal diffusivity of nanofluids. Viscous dissipation, induced mag-

netic fields and Joule heating are neglected.

Dimensional Boundary Conditions

The associated boundary conditions are

1. The bottom wall of the step downstream:

u = 0, v = 0, T = Th

2. At the inlet of channel:

u = u0, v = 0, T = Tc

3. At the channel outlet:

∂u
∂x

= 0, v = 0, ∂T
∂x

= 0

4. On the other walls of channels:

u = 0, v = 0, ∂T
∂n

= 0,

where, n denotes the direction of the normal.

Nanofluid Properties and used Co-Relation

The other effective properties which may effect and enhance the thermal conduc-

tivity of nanofluids are [1] as follow:

• Effective Density

ρnf = (1− φ) ρf + φρp (3.5)
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• Specific Heat

(ρcρ)nf = (1− φ) (ρcρ)f + φ (ρcρ)p (3.6)

• Thermal Expansion Coefficient

(ρβ)nf = (1− φ) (ρβ)f + φ (ρβ)p (3.7)

• Electrical Conductivity

σnf = (1− φ)σf + φσp. (3.8)

Subscripts nf , f , and p stands for nanofluid, base fluid and solid particle respec-

tively.

3.3 Dimensionless Form of Governing Equations

for Steady Flow with Boundary Conditions

Following are the physical relations used to transform governing equations to the

dimensionless form [1, 60]:

X =
x

L
, Y =

y

L
, U =

u

u0

, V =
v

u0

, θ =
T − Tc
Th − Tc

, P =
p

ρnfu0
2
,

Re =
u0L

νf
, P r =

νf
αf

, Ha = B0L

√
σf
νf

, Ri =
Gr

Re2
, Gr =

gβ∆TL3

ν2
f

.

After conversion, the Eqs. (3.1) - (3.4) are transformed to the following dimen-

sionless form:



Influence of Magnetic Field on Mixed Convective Nanofluid Flow 31

• Continuity Equation

∂U

∂X
+
∂V

∂Y
= 0, (3.9)

• x-Component of Momentum Equation

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+
νnf
νf

1

Re

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ), (3.10)

• y-Component of Momentum equation

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+
νnf
νf

1

Re

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re
(U sin γ cos γ − V cos2 γ)

+
ρf
ρnf

(ρβ)nf
(ρβ)f

Riθ, (3.11)

• Energy Equation

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (3.12)

Non-Dimensional Boundary Conditions

1. At the bottom wall of step:

U = 0, V = 0, θ = 1.

2. At the inlet of channel:

U = 1, V = 0, θ = 0.

3. At the channel outlet:

∂U
∂X

= 0, V = 0, ∂θ
∂X

= 0.

4. On the other walls of channels:

U = 0, V = 0, ∂θ
∂n

= 0,
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where, n denotes the direction of the normal.

3.4 Physical Parameters of Interest

Local Nu is calculated at the hot bottom wall through:

Nul = −knf
kf

(
∂θ

∂y

)
l

. (3.13)

Averaged Nu is obtained by integrating the local Nu over the heated bottom wall

along the downstream direction. It is the mean of all local Nul.

Nuavg =
1

L

∫ L

0

Nulds. (3.14)

Here L is the total length of the heated wall.

3.5 Solution Methodology

FEM is utilized to numerically solve the non linear partial coupled PDEs with

corresponding boundary conditions. The geometric domain is divided into non

overlapping finite elements. For weak formulation, the dimensional form is con-

verted into dimensionless form through proper transformations. The strong form

of the equations is converted into the weak form by multiply PDEs by test func-

tions of the same space and the equations are integrated over the entire domain.

The discrete solution is achieved by introducing the finite dimensional test space

and trial solution through Galerkin discretization scheme. The finite element pair

Q2/P
disc
1 satisfies the (LBB) condition of stability. Biquadratic Q2-element is uti-

lized for temperature and velocity components whereas, P disc
1 -element is applied

to approximate pressure. Approximations are plugged into the governing laws to

obtain residuals for the conservation equations. Also, the non linear momentum

terms are simplified by Fixed point iteration method.
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3.5.1 Weak/Variational Formulation

Weak formulation or variational formulation is a method by which strong form

of dimensional PDEs or physical laws of the problem are converted into integral

from. This is done by multiplying a test function or weights with the given PDEs

and integrate it over the entire physical domain. We start from the strong form,

which is given by:

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+

νnf
νfRe

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+

ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ), (3.15)

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+

νnf
νfRe

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+

ρf
ρnf

(ρβ)nf
(ρβ)f

Riθ

+
ρf
ρnf

σnf
σf

Ha2

Re
(U sin γ cos γ − V cos2 γ), (3.16)

∂U

∂X
+
∂V

∂Y
=0, (3.17)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (3.18)

Considering the Eqs. (3.15) - (3.18) for week formulation. Multiplying momentum

and energy equations by test function ω ∈ W and continuity equation by q ∈

Q and integrating over whole computational geometry (Ω). W and Q are test

spaces. W = [H1(Ω)]3 is the test space for the components of velocity U , V and

temperature θ whereas, Q = L2(Ω) is the test space for component of pressure.

Thus week formulation is as follows:
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Find (U ,V ,θ) ∈W and P ∈ Q such that:

− νnf
νfRe

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
ωdΩ− ρf

ρnf

σnf
σf

Ha2

Re

∫
Ω

(V sin γ cos γ − U sin2 γ)ωdΩ

+

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
ωdΩ +

∫
Ω

∂P

∂X
ωdΩ = 0 (3.19)

− νnf
νfRe

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
ωdΩ− ρf

ρnf

σnf
σf

Ha2

Re

∫
Ω

(U sin γ cos γ − V cos2 γ)ωdΩ

+

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
ωdΩ +

∫
Ω

∂P

∂Y
ωdΩ− ρf

ρnf

(ρβ)nf
(ρβ)f

Ri

∫
Ω

θωdΩ = 0 (3.20)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
qdΩ = 0, (3.21)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
ωdΩ− 1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
ωdΩ = 0,

(3.22)

for all (w, q) ∈W × Q.

Now, by using Galerkin discretization method, the infinite dimensional test and

solution spaces are approximated, i.e.,

(Uh, Vh, θh, Ph) ≈ (U, V, θ, P ) whereas, W ≈Wh and Q ≈ Qh.
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The non linear equations are,

νnf
νfRe

∫
Ω

(
∂Uh
∂X

∂ωh
∂X

+
∂Uh
∂Y

∂ωh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
ωhdΩ

− ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(Vh sin γ cos γ − Uh sin2 γ)ωhdΩ−
∫

Ω

∂ωh
∂X

PhdΩ = 0, (3.23)

νnf
νfRe

∫
Ω

(
∂Vh
∂X

∂ωh
∂X

+
∂Vh
∂Y

∂ωh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
ωhdΩ−

− ρf
ρnf

σnf
σf

Ha2

Re

∫
Ω

(Uh sin γ cos γ − Vh cos2 γ)ωhdΩ

∫
Ω

∂ωh
∂Y

PhdΩ

− ρf
ρnf

(ρβ)nf
(ρβ)f

Ri

∫
Ω

θhωhdΩ = 0, (3.24)

∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
ωhdΩ = 0, (3.25)

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
ωhdΩ

+
1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

∫
Ω

(
∂θh
∂X

∂ωh
∂X

+
∂θh
∂Y

∂ωh
∂Y

)
dΩ = 0, (3.26)

where,

Uh =
m∑
j=1

UjSj, Vh =
m∑
j=1

VjSj, θh =
m∑
j=1

θjSj,

Ph =
n∑
k=1

pkηk,

are the FEM approximated trial functions and

wh =
m∑
i=1

ωiSi, qh =
n∑
l=1

qlSl, (3.27)

are the approximated test functions.

Now, for the above four equations, substituting FEM approximations of test and

trial functions of Uh, Vh, Ph and θh, the fully discretized block matrix is,



Influence of Magnetic Field on Mixed Convective Nanofluid Flow 36


A11 b12M B1 0

b21M A22 B2 b24M

B1
T B2

T 0 0

0 0 0 A44




U

V

P

θ

 =


0

0

0

0

 , (3.28)

where,

A11 = a11L+ b11M − C(U, V ),

A22 = a22L− b22M − C(U, V ),

A44 = a44L− C(U, V ),

a11 =
νnf
νf

= a22,

b11 =
ρf
ρnf

σnf
σf

Ha2

Re
sin2 γ,

b12 = − ρf
ρnf

σnf
σf

Ha2

Re
sin γ cos γ = b21,

b22 =
ρf
ρnf

σnf
σf

Ha2

Re
cos2 γ,

b24 =
ρf
ρnf

(ρβ)nf
(ρβ)f

Ri,

a44 =
1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

.

In the matrix above, L is Laplace matrix, M is the Mass matrix and C(U, V ) is the

convective matrix. B1, B2 are pressure matrices and BT
1 , B

T
2 are their transpose.

The resulting discrete system of non linear algebraic equations is linearized using

the fixed point iteration method and the corresponding linear system is solved by

Gaussian elimination method. U and V components of velocity and temperature

θ are discretized by Q2 element having order of accuracy of 3rd degree and P disc
1

element having order of accuracy of 2nd degree in L2 norm respectively. The

convergence of the solution is assumed by taking if the relative error for each of

the variables fulfill the convergence condition:

|Γ
n+1 − Γn

Γn+1
| ≤ 10−6 (3.29)
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Here “n” is for total number of iterations and Γ for any of the dependent variables

U, V, P and θ.

3.6 Grid Independence Study

In order to obtain an optimal grid freedom with error-free outcome and minimum

computational time, the grid convergence is achieved by selecting several number

of elements, is explained by the following table. It tells average Nu computed on

bottom wall with highest values of parameters γ = 0◦, Ri = 0.1, φ = 0.04, P r =

6.5, Re = 200, Ha = 50. It is easy to see that solution is transferring successfully

from one grid level to the other and solution is converging to the exact solution

which seems to be locked at G5, as there is less variation in next two levels. The

calculated values of average Nusselt number are as shown in Table 3.2.

Grid name No. of elements Averaged Nusselt number
G1 21 3.105588
G2 84 3.600669
G3 336 3.361771
G4 1344 3.231707
G5 5376 3.208245
G6 21504 3.205314

Table 3.2: Grid independence study of present work

3.7 Code Validation

The present code is validated in anticipation of the bench mark results checked
for reattachment length for recirculation zone XR over step hight H by keeping
Re= 100 and ER = 2. Table 3.3 presenting Gr = 0, Ri = 0 and Gr = 1000, Ri
= 0.1 for forced and free convection, respectively over backward facing step with
heated bottom wall and adiabatic surrounding. Pr is kept unchanged i.e., 6.5.
This table shows that the result are in satisfactory harmony with literary results.

Ri Present
study

Ref. [2] Ref. [61] Ref. [62] Ref. [63]

0.0 4.96875 4.99 4.99 4.97 4.91
0.1 2.96875 3.05 3.05 2.97 3.10

Table 3.3: Reattachment lengths for recirculation region at Re = 100.
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3.8 Results and Discussion

In this section, numerically imitated outcomes are shown with the help of stream-

lines, isotherms and Nu, taken against Re, Ha, γ, and φ values. The channel is

filled out with water as a base fluid and copper nanoparticles. Impact of chang-

ing Re for different angles of magnetic field is depicted through streamlines and

isotherms, shown by Figures 3.2 and 3.3. Here, Ha = 25 and φ = 0.02. When

the value of Re increases at γ = 0◦, the flow separates and a recirculation sector

appears behind the step, which can be clearly seen in Figure 3.2(a) to 3.2(c). It

can be seen that the recirculation sector is occupied in a small region but as the

Re rises, the size of the recirculation region expands and velocity of fluid incre-

ments. At the low value of Re, the velocity of the fluid is low and viscous forces

dominate. On the other hand, increasing Re implies inertial forces are dominated

hence, results in augmentation of fluid velocity. As the angle of inclination of

magnetic field is increased, the recirculation region seems to be disappearing for

γ = 45◦ and γ = 90◦. Now, in case of isotherms, an abruptly changing tempera-

ture can be observed near the bottom pallet for the magnetic field angle γ = 0◦ in

Figure 3.3(a) to 3.3(c). On increasing angle of inclination of magnetic field more

closely packed isotherms near the immediate boundary of the step are observed.

This impact gets stonger with growing Reynolds number. For low Reynolds val-

ues, a thermal distribution of flow is present in the open area of the channel and

this effect gets more dim with higher Re values. It is because growing Re values

enhances the flow in the channel it is why sharp thermal difference seems closer

to the hot wall of the channel. In contrary, for low Re values, viscous forces are

there and thermal boundary layer is visible.

Impact of varying parameters Re, Ha and φ is also depicted graphically. Figure 3.4

shows the average heat transfer against different Re within the fluid with regard

to γ. Averaged heat transfer has increased with increasing Re and this effect

gets stronger with increasing γ values. Increment in averaged heat the transfer is

strongly observed for Re = 200 as compared to Re = 20 for γ = 0◦, 45◦ and 90◦,
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respectively. Average Nusselt number is maximum for highest values of Re and γ

i.e., at Re = 200 and γ = 90◦. Figure 3.5 shows Nuavg against Ha for changing

γ values. For γ = 0◦, averaged Nu decreases when Ha increases due to the down

fall of the convection. Lorentz forces has caused fluid flow to suppress leading

less heat to transfer. Contrary to it, for γ = 90◦, averaged Nu enhances with

augmentation of Ha as per flow recirculation behind the step suppresses. The

effect is more prominent for high values of Ha. At γ = 45◦, maximum of mean or

averaged Nu is obtained, for optimum value of Ha = 30. It has been noted that

for γ = 45◦ and 90◦, maximum of averaged Nu is obtained at Ha = 30 and Ha

= 50, respectively in comparison with Ha = 0. Averaged heat transfer against φ

is plotted in Figure 3.6 for different values of γ. It has been realized that Nuavg

linearly increases with φ. For φ = 0.04, increment in Nuavg is maximum for all

magnetic field orientations, i.e., γ = 0◦, 45◦ and 90◦ instead of φ = 0.0 and 0.02. It

is because, increasing number of nanoparticles will consequently raise the thermal

conductivity of the fluid.



Influence of Magnetic Field on Mixed Convective Nanofluid Flow 40

γ = 0◦, Re = 20
(a)

γ = 0◦, Re = 80
(b)

γ = 0◦, Re = 200
(c)

γ = 45◦, Re = 20
(d)

γ = 45◦, Re = 80
(e)

γ = 45◦, Re = 200
(f)

γ = 90◦, Re = 20
(g)

γ = 90◦, Re = 80
(h)

γ = 90◦, Re = 200
(i)

Figure 3.2: Streamlines (a) for different Re at Ha = 20, Ri = 0.1 and φ = 0.02
for various γ.
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γ = 0◦, Re = 20
(a)

γ = 0◦, Re = 80
(b)

γ = 0◦, Re = 200
(c)

γ = 45◦, Re = 20
(d)

γ = 45◦, Re = 80
(e)

γ = 45◦, Re = 200
(f)

γ = 90◦, Re = 20
(g)

γ = 90◦, Re = 80
(h)

γ = 90◦, Re = 200
(i)

Figure 3.3: Isotherms (b) for different Re at Ha = 20, Ri = 0.1 and φ = 0.02
for various γ.
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Figure 3.4: Nuavg for different γ as function of Re

.

Figure 3.5: Nuavg for different γ as function of Ha

.
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Figure 3.6: Nuavg for different γ as function of φ

.



Chapter 4

MHD Mixed Convection

Nanofluid Flow with Joule

Heating Effect over Porous

Backward Facing Step

Porous media is receiving considerable importance in engineering both in chemi-

cal and mechanical [64]. Heat transfer in porous medium with combined convec-

tion flow in channels and cavities, is one of important application in engineering.

Among many other applications fibrous insulation [41], food storage [64] and ther-

mal insulation in buildings [64] are also involved.

The transport principle and flow through porous media have been studied at a

wider scale. On performing experiments at industrial and laboratory level these

medium are exposed to several processes for example heat transfer, absorption and

electrical charges etc. Mathematical modelling of such problems require under-

standing the behaviour of these media. Because of that scientists and researchers

are paying critical attention in this regard.

A lot of research has been carried out on porous media specially with turbulent

model over BFS but laminar flow with this configuration has been given less at-

tention. This chapter is based on the study of introducing the porosity in laminar

44
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forced convection flow regime and Joule heating effects in the research priorly con-

ducted by Selimefendigil and Öztop [31].

To solve the governing equations by FEM, weak formulation is required. For

this purpose, the non linear dimensional form of equations is transformed into

dimensionless form. Strong form of equations is multiplied with the suitable test

functions and integrated over whole domain. Approximated solution is achieved

through Galerkin discretization method. Thermal behaviour and flow pattern are

studied under Joule heating effect and porous medium.

4.1 Physical Model

The present configuration is two dimensional backward facing step having mixed

convection MHD nanofluids, with porous medium completely intact inside the

entire channel. The physical configuration is reconstructed by considering the

fluid to be viscous, incompressible and Newtonian whereas, flow is taken to be

laminar and steady state. The hot plate is of the length 10H and entire length

of the channel is 13H. Velocity of the flow at the inlet of channel is u0 and is

maintained at a uniform temperature T = Tc. Except the bottom wall of step

having the temperature T = Th, all the other walls of the channel are adiabatic.

The channel contains Cu-water nanofluid, flowing under an oriented magnetic field.

The angle of inclination is γ. A schematic diagram is shown in Figure 4.1. Darcy-

Brinkman-Forchheimer model has been utilized to model momentum equation

for the proposed problem. Particles of porous medium are isotropic solid and Cu-

water nanofluid is considered to be homogeneous mixture. Both nanoparticles and

base fluid are in thermal equilibrium and a no slip condition has been assumed

between them. Effects of thermal radiation, internal heat generation and viscous

dissipation are ignored. Boussinesq approximation is applied to overcome the

density variations within fluid. Thermophysical properties of nanoparticles Cu

and H2O are kept constant [59].
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Figure 4.1: Schematic diagram of the physical model.

4.2 Dimensional Governing Equations

When a fluid that is electrically conducting, passes through a magnetic field, a

current is induced. This induced current generates an action force on the fluid.

As a consequence, a reaction force is produced, called the Lorentz force. The

electromagnetic force or Lorentz force possessed by the fluid is F = σ(U×B)×B

[65], where, σ is electrical conductivity of the fluid, U is the velocity of fluid

and B is the uniform magnetic field, comprised of the components (Bx,By), i.e.,

Bx = B0 cos γ and By = B0 sin γ [66] along x and y axes, respectively. Here, B0 is

the magnitude of magnetic field. Since, the fluid is electrically conducting because

of magmatic field effects. So, the last terms in Eq. (4.2) and Eq. (4.3) symbolize

Lorentz force. This force produces dissipated energy in terms of viscous dissipation

and Joule heating. In Eq. (4.4), the last term portrays the Joule heating effect,

where viscous dissipation is neglected.
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Under the preceding assumptions, the governing equations of the physical model

are given by:

• Continuity Equation

∂u

∂x
+
∂v

∂y
= 0, (4.1)

• x-Component of Momentum Equation

1

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
= − 1

ρnf

∂P

∂x
+
νnf
ε

(
∂2u

∂x2
+
∂2u

∂y2

)
− µnf
Kρnf

u

− 1.75
√

150Kε
3
2

(√
u2 + v2

)
u+

σnfB
2
0

ρnf
(v sin γ cos γ − u sin2 γ), (4.2)

• y-Component of Momentum Equation

1

ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
= − 1

ρnf

∂P

∂y
+
νnf
ε

(
∂2v

∂x2
+
∂2v

∂y2

)
− µnf
Kρnf

v

+ (β)nf g (T − Tc)−
1.75

√
150Kε

3
2

(√
u2 + v2

)
v

+
σnfB

2
0

ρnf
(u sin γ cos γ − v cos2 γ), (4.3)

• Energy Equation

u
∂T

∂x
+ v

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+
σnfB

2
0

(ρcp)nf
(u sin γ − v cos γ)2. (4.4)

Dimensional Boundary Conditions

The dimensional form of the boundary conditions of the problem are:

1. On the bottom wall of the step downstream:

u = 0, v = 0, T = Th

2. At the inlet of channel:

u = u0, v = 0, T = Tc

3. At the channel outlet:

∂u
∂x

= 0, v = 0, ∂T
∂x

= 0
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4. On the other walls of channels:

u = 0, v = 0, ∂T
∂n

= 0

where, n denotes the direction of the normal.

4.3 Dimensionless Governing Equations with

Boundary Conditions

Following are the transformation parameters for the physical laws to convert them

into the dimensionless form [1, 60, 67]:

X =
x

L
, Y =

y

L
, U =

u

u0

, V =
v

u0

, θ =
T − Tc
Th − Tc

, P =
p

ρnfu0
2
,

Re =
u0L

νf
, Da =

K

L2
, P r =

νf
αf

, Ri =
Gr

Re2
, Gr =

gβ∆TL3

ν2
f

,

Ec =
u2

0

(cp)f (Th − Tc)
, Ha = B0L

√
σf
νf

.

After conversion, the Eqs. (4.1) - (4.4) are transformed to the following dimen-

sionless form:

• Continuity Equation

∂U

∂X
+
∂V

∂Y
=0, (4.5)

• x-Component of Momentum Equation

1

ε2

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+
νnf
νf

1

εRe

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− µnf
ρnfνf

1

ReDa
U − 1.75

√
150Daε

3
2

√
U2 + V 2U

+
ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ), (4.6)
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• y-Component of Momentum Equation

1

ε2

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+
νnf
νf

1

εRe

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− µnf
ρnfνf

1

ReDa
V − 1.75

√
150Daε

3
2

√
U2 + V 2V

+
ρf
ρnf

σnf
σf

Ha2

Re
(U sin γ cos γ − V cos2 γ)

+
ρf
ρnf

(ρβ)nf
(ρβ)f

Riθ, (4.7)

• Energy Equation

U
∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+
σnf
σf

(ρcp)f
(ρcp)nf

Ha2

Re
Ec(U sin γ − V cos γ)2. (4.8)

Non-Dimensional Boundary Conditions

Following are the corresponding non-dimensional boundary conditions given by:

1. At the bottom wall of step:

U = 0, V = 0, θ = 1

2. At the inlet of channel:

U = 1, V = 0, θ = 0

3. At the channel outlet:

∂U
∂X

= 0, V = 0, ∂θ
∂X

= 0

4. On the other walls of channels:

U = 0, V = 0, ∂θ
∂n

= 0

where, n denotes the direction of the normal.
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4.4 Physical Parameters of Interest

Local Nu is given as:

Nul = −knf
kf

(
∂θ

∂y

)
l

.

Averaged Nu is obtained by integrating the local Nul over the entire heated wall:

Nuavg =
1

L

∫ L

0

Nulds,

where L is the length of hot wall.

4.5 Solution Methodology

Non linear dimensionless form of the governing PDEs (4.5) - (4.8) of the physical

problem are solved using finite element method. First, weak formulation of the

equations ia achieved by multiplying them with suitable test functions and inte-

grating them over the whole domain. Solution and test spaces are approximated

by using Galerkin discretization. These approximations of test and trial functions

are substituted into the discretized non linear weak form in order to get fully

discretized algebraic equations. The solution steps are explained as follows:
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4.5.1 Strong Form

The strong form of governing equations can be rewritten as follows:

∆1

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+ a11

(
∂2U

∂X2
+
∂2U

∂Y 2

)
−∆2U −∆3U

+ ∆4(V sin γ cos γ − U sin2 γ), (4.9)

∆1

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+ a22

(
∂2V

∂X2
+
∂2V

∂Y 2

)
−∆2V −∆3V

+ ∆4(U sin γ cos γ − V cos2 γ) + b24θ, (4.10)

∂U

∂X
+
∂V

∂Y
=0, (4.11)

U
∂θ

∂X
+ V

∂θ

∂Y
=a44

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+ ∆5(U sin γ − V cos γ)2, (4.12)

where,

∆1 =
1

ε2
,

∆2 =
µnf
ρnfνf

1

ReDa
,

∆3 =
1.75

√
150Daε

3
2

√
U2 + V 2,

∆4 =
ρf
ρnf

σnf
σf

Ha2

Re
,

∆5 =
σnf
σf

(ρcp)f
(ρcp)nf

Ha2

Re
Ec,

a11 =
νnf
νf

1

Re
= a22,

a44 =
1

RePr

κnf
κf

(ρcp)f
(ρcp)nf

,

b24 =
ρf
ρnf

(ρβ)nf
(ρβ)f

Ri.
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4.5.2 Weak Form

In order to obtain weak formulation multiplying the momentum and energy equa-

tions by test function ω ∈ W and continuity equation by q ∈ Q and integrating

over whole computational domain (Ω). Integration by parts is done by applying

Green’s Identity. W and Q are infinite dimensional test spaces where, ω and q

are respective test functions of corresponding test spaces. W = [H1(Ω)]3 is the

test space for the velocity U , V and for temperature θ and Q = L2(Ω) is the test

space for the of pressure. Thus weak formulation is as follows:

Find (U ,V ,θ) ∈W and P ∈ Q such that:

∆1

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
ωdΩ +

∫
Ω

∂P

∂X
ωdΩ− a11

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
ωdΩ

+ ∆2

∫
Ω

UωdΩ + ∆3

∫
Ω

UωdΩ−∆4

∫
Ω

(V sin γ cos γ − U sin2 γ)ωdΩ = 0, (4.13)

∆1

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
ωdΩ +

∫
Ω

∂P

∂Y
ωdΩ− a22

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
ωdΩ

+ ∆2

∫
Ω

V ωdΩ + ∆3

∫
Ω

V ωdΩ−∆4

∫
Ω

(U sin γ cos γ − V cos2 γ)ωdΩ

− b24

∫
Ω

θωdΩ = 0, (4.14)

∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
qdΩ = 0, (4.15)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
ωdΩ + a44

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
ωdΩ

+ ∆5

∫
Ω

(U sin γ − V cos γ)2ωdΩ = 0 (4.16)

for all w ∈W and q ∈ Q.

being the Galerkin method, test and trial spaces are chosen as same. By us-

ing Galerkin discretization, the infinite dimensional test and solution spaces are

approximated i.e., (Uh, Vh, θh, Ph) ≈ (U, V, θ, P ), whereas, W ≈Wh and Q ≈ Qh.
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At discrete level, the weak form of the equations is as under:

Find (Uh,Vh,θh) ∈W and Ph ∈ Q such that:

a11

∫
Ω

(
∂Uh
∂X

∂ωh
∂X

+
∂Uh
∂Y

∂ωh
∂Y

)
dΩ−

∫
Ω

∂ωh
∂X

PhdΩ

+ ∆1

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
ωhdΩ + ∆2

∫
Ω

UhωhdΩ + ∆3

∫
Ω

UhωhdΩ

−∆4

∫
Ω

(Vh sin γ cos γ − Uh sin2 γ)ωhdΩ = 0, (4.17)

a22

∫
Ω

(
∂Vh
∂X

∂ωh
∂X

+
∂Vh
∂Y

∂ωh
∂Y

)
dΩ−

∫
Ω

∂ωh
∂Y

PhdΩ

+ ∆1

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
ωhdΩ + ∆2

∫
Ω

VhωhdΩ + ∆3

∫
Ω

VhωhdΩ

−∆4

∫
Ω

(Uh sin γ cos γ − Vh cos2 γ)ωhdΩ− b24

∫
Ω

θhωhdΩ = 0, (4.18)

∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qhdΩ = 0, (4.19)

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
ωhdΩ + a44

∫
Ω

(
∂θh
∂X

∂ωh
∂X

+
∂θh
∂Y

∂ωh
∂Y

)
dΩ

+ ∆5

∫
Ω

(Uh sin γ − Vh cos γ)2ωdΩ (4.20)

for all wh ∈Wh and qh ∈ Qh.

Now the FEM approximated trial functions are

Uh =
m∑
j=1

UjSj, Vh =
m∑
j=1

VjSj, θh =
m∑
j=1

θjSj,

Ph =
n∑
k=1

pkηk,

and the FEM approximated test functions are

wh =
m∑
i=1

ωiSi, qh =
n∑
l=1

qlηl.

Next, substituting the FEM approximations of test and trial functions of Uh, Vh,

Ph and θh into Eqs. (4.17) - (4.20), the fully discretized system of non linear
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algebraic equations given by the following block matrix:
A11 b12M B1 0

b21M A22 B2 b24

B1
T B2

T 0 0

b41 b42 0 A44




U

V

P

θ

 =


0

0

0

0

 , (4.21)

A11 = a11L+ ∆1C(U, V ) + b11M

A22 = a22L+ ∆1C(U, V ) + b22M

A44 = a44L+ C(U, V )

b11 = ∆2 + ∆3 −∆4 sin2 γ

b22 = ∆2 + ∆3 −∆4 cos2 γ

b12 = −∆4 sin γ cos γ = b21

(4.22)

Here, in the block matrix, L, M and C(U, V ) represent Laplace, mass and con-

vective matrices respectively. B1 and B2 are the pressure matrices and BT
1 , BT

2

are their respective transpose. Alos, b41 and b42 are corresponding co-efficients

of the block matrix. The discrete system thus obtained of non linear algebraic

equations is linearized by the fixed point iterations and the Gussian elimination

method ia applied to solve the linear system. Velocity components and temper-

ature are discretized with the biquadratic Q2-element and pressure is discretized

using discontinuous linear P disc
1 -element. The biquadratic Q2-element is of third

order accuracy whereas linear P disc
1 -element has an accuracy of second order. The

convergence of the solution is assumed as discussed in earlier in Chapter 3.

|Γ
n+1 − Γn

Γn+1
| ≤ 10−6. (4.23)

“n” represents total number of iterations and Γ represents the dependent variables

U, V, P and θ.
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4.6 Results and Discussion

Impact of Joule heating on mixed convection in a porous channel has been inter-

preted numerically in this chapter. The channel is filled with Cu-water nanoflu-

ids. Governing parameters are assigned the values ranging, (0 ≤ Ha ≤ 100),

(0.2 ≤ ε ≤ 1), (10−4 ≤ Da ≤ 10−1), (10−6 ≤ Ec ≤ 10−2), (0.00 ≤ φ ≤ 0.04) and

(0◦ ≤ γ ≤ 90◦), other than these are mentioned. Fixed value of 6.2 has been as-

signed to Pr. Influence of these active parameters has also been conferred through

streamlines, isotherms and Matlab graphs for Nuavg.

Impact of altering Ha for inclinations γ = 0◦ to 90◦ is characterized by the Fig-

ures 4.2 and 4.3, depicting streamlines and isotherms, respectively. Rest of the

quantities were secured to be fixed, φ = 0.04, γ = 0◦, ε = 1 and Ri = 1. The

Hartmann number Ha represents the magnetic field strength, put on externally.

Initially, in the absence of magnetic field, only natural and forced convection are

contributing. Because of which buoyancy and shear forces, both are influencing

the flow. Fluid’s flow descends down, following the path along the downstream

near the hot plate. In addition, flow recirculation occurs behind the step. As the

Ha value rises from 25 to 100, the Lorentz force comes into action, as a result

the flow is suppressed and streamlines have become flattened, toped up over one

another. The phenomena is more pronounced with growing Ha and recirculation

behind the step expands. Motion of the fluid under weak shear forces has become

weaken due to this force and results in the reduction of fluid velocity. Hence,

the reduction in heat transfer is obtained with augmentation in Ha. Isotherms

sketches are demonstrated in Figure 4.3. Thermal boundary layer is strictly con-

fined to the hot plate, can be visualised clearly. The flow is almost similar for all

Ha values as isotherm contours are approximately the same. At the reattachment

point, sharp thermal differences can be seen. Besides, isotherms are assembled

near the hot wall with increasing Ha values. This indicates a decrease in heat

transfer.
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Influence of Ec on streamlines and isotherms are displayed in Figures 4.4 and 4.5,

respectively. Since, heat is produced due to viscous dissipation. This causes tem-

perature to rise and ultimately increases fluid velocity. Flow circulation arises in

rear of the step and temperature near hot plate raises. Further, streamlines have

gone parallel. Positive Ec indicates heating of the fluid i.e., heat from the heating

walls into the fluid. Raising Ec, thermal energy is utilized to increase the kinetic

energy of the nanoparticles, leaving less heat to transfer. Accordingly, thermal

energy dissipates causing thermal heating losses and make it possible to reduce

heat transfer. It is because of that reason the temperature field in Figure 4.5, a

steep temperature gradient is observable near the hot bottom wall of the channel

and a less variation is witnessed for the upper adiabatic plate.

Porosity parameter impacts are illustrated in Figures 4.6 and 4.7, respectively.

A noteworthy change is observed in both thermal and flow patterns when the ε

runs from 0.2 to 0.8. As porosity and permeability are linearly related, therefore

they are proportional to each other. At first, at ε = 0.2, the recirculation sector

is noticeable. This sector, located before reattachment point, decreases for the

values from 0.4 to 0.6 and is replaced by the coarse distribution of stream patterns

near the step. This indicates that the flow penetrates more quickly in the porous

walls of the channel. At ε = 0.8 at the inlet of the channel and near the step,

streamlines are more crowded, specifying convincing inlet velocity and the flow.

For isotherms in Figure 4.7, the flow stratifies thermally and coarser clustering

of temperature distribution is seen near the lower hot wall, depicting that the

elevated temperature zone is near the heating plate. This fact has become more

compact and narrow at the reattachment point in the downstream direction of the

flow, for the larger porosity parameter value.

Effect of Da for streamlines and isotherms is unfolded in Figures 4.8 and 4.9,

respectively. For Da = 10−4, a recirculation area is observable behind the step.

It may be noticed that recirculation region is small for this low Da value. This

behaviour continues to augment with increasing values of Da. As this value reaches
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to its highest value Da = 10−1, fluid recirculation reaches to its maximum value.

Obviously, high Da, implies high permeability, allowing fluid to move more quickly

through pores of porous material and less resistance is offered to the flowing fluid

through porous medium. Consequently, results in enhancement in the velocity of

the fluid. The thermal pattern for varying Da is observable in Figure 4.9. Thermal

distribution seems to confined in the nigh of the step and the bottom wall of the

channel by the lengthways direction. Thermal boundary layer is thin for almost

all Da values.

The Figures 4.10 to 4.14 present graphically the repercussions of these parameters

upon average heat transfer.

Impact of Ha upon average heat transfer of the fluid has been displayed in Fig-

ure 4.10. It has been observed that in the beginning, average Nusselt declines

gently with exalting Ha at γ = 0◦. A different trend has been found for γ = 45◦

and 90◦. In both the cases, Nuavg rises and is emphasised. This implication is more

intense for γ = 90◦ as compared to γ = 45◦. At γ = 0◦, initially Ha is less strong

allowing Nuavg to decline gradually. Latterly, due to strong magnetic field, in the

view of Lorentz forces the flow dampens and there is less heat to flow. Further,

Richardson number is taken to be fixed at unity, therefore combined convection

is there. At γ = 0◦, applied magnetic field offers retardation to the transfer of

heat and the flow. Buoyancy forces are ceased and shear forces have dominated.

That tells heat transfer takes place through conduction. Consequently, averaged

Nusselt has been declined. But as soon as γ is elevated, i.e., for 45◦ and 90◦, con-

vection gets excited. The fact is that at high γ value, flow of the fluid gets strong

inside the channel. Due to this thermal differences within the fluid enhances and

temperature distributes inside the channel. As a result Nuavg is enhanced.

Figure 4.11 determines the influence of Ha upon Naavg for varying φ. It reflects

that the heat transfer declines for all values of φ, as long as Ha is increased. This is

because Ha has the tendency of reducing buoyant forces in cavities and channels.

Since, heat transfer augments with exalting nanoparticles volume concentration

because of their thermal conductivity which decays when exposed to magnetic
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field. For lower values of Ha = 0 to 25, this effect seems to be less and gets

stronger for higher values of Ha = 25 to 100. Delineating that with every pour of

nanoparticles volume fraction at Ha = 25, heat transport of the particles lessens

by the virtue of Lorentz force. This fact is similar for whole volume fractions of

nanoparticles.

In Figure 4.12, a standard behaviour of Nuavg against Ec is observable. The

Nuavg decreases linearly with increasing values of Ec. With every increased φ, an

augmentation in Nuavg is observed which drops linearly with exalting Ec. It is

because of frictional forces present between the nanoparticles, thermal energy has

dissipated that leaves less heat to transfer. Average Nusselt is apex for φ = 0.04

as compared to φ = 0 and 0.02.

Nuavg has been shown in Figure 4.13 under the implication of ε with diversifying φ

values. It is obvious that by rising porosity means rising permeability that allows

more fluid to flow. This leads to the fact that for more fluid penetration and more

thermal conductivity is submitted in the fluid. Indeed offers high convection. In

the same way, as the ε keeps on exalting from 0.2 to 1.0, averaged Nu keeps on

raising. This behaviour is likely, as well as pronounced for entire levels of volume

concentration φ. Supreme value for Nuavg is found to be at ε = 1.0 for φ = 0.04.

Figure 4.14 explains consequences of Da upon heat transfer. Average Nusselt

number has declined with exalting Darcy number. In the beginning, declination

of Nuavg is faster for every volume fraction. The trend become less intense and

linear afterwards for increasing Da. The behaviour is similar for all cases of φ

for Da = 10−2. At the start, low permeability provides more hindrance to the

flow penetration and convection sinks more quickly which became less intense for

higher Da values.
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Ha = 0
(a)

Ha = 25
(b)

Ha = 50
(c)

Ha = 75
(d)

Ha = 100
(e)

Figure 4.2: Streamlines for different Ha at γ = 0◦ and φ = 0.04 .
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Ha = 0
(a)

Ha = 25
(b)

Ha = 50
(c)

Ha = 75
(d)

Ha = 100
(e)

Figure 4.3: Isotherms for different Ha at γ = 0◦ and φ = 0.04.
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Ec = 10−6

(a)

Ec = 10−5

(b)

Ec = 10−4

(c)

Ec = 10−3

(d)

Ec = 10−2

(e)

Figure 4.4: Streamlines for different Ec at Ha = 100, γ = 0◦ and ε = 1.
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Ec = 10−6

(a)

Ec = 10−5

(b)

Ec = 10−4

(c)

Ec = 10−3

(d)

Ec = 10−2

(e)

Figure 4.5: Isotherms for different Ec at Ha = 100, γ = 0◦ and ε = 1.
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ε = 0.2
(a)

ε = 0.4
(b)

ε = 0.6
(c)

ε = 0.8
(d)

ε = 1.0
(e)

Figure 4.6: Streamlines for different ε at Ec = 10−6, Da = 10−3, φ = 0.04 and
γ = 0◦
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ε = 0.2
(a)

ε = 0.4
(b)

ε = 0.6
(c)

ε = 0.8
(d)

ε = 1.0
(e)

Figure 4.7: Isotherms for different ε at Ec = 10−6, Da = 10−3, φ = 0.04 and
γ = 0◦.
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Da = 10−4

(a)

Da = 10−3

(b)

Da = 10−2

(c)

Da = 10−1

(d)

Figure 4.8: Streamlines for different Da at Ec = 10−6, ε = 1, φ = 0.04, and
γ = 0◦.

Da = 10−4

(a)

Da = 10−3

(b)

Da = 10−2

(c)

Da = 10−1

(d)

Figure 4.9: Isotherms for different Da at Ec = 10−6, ε = 1, φ = 0.04 and
γ = 0◦.
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Figure 4.10: Variation of Nuavg with increasing γ as a function of Ha.
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Figure 4.11: Variation of Nuavg with increasing φ as a function of Ha.
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Figure 4.12: Variation of Nuavg with increasing φ as a function of Ec.

Figure 4.13: Variation of Nuavg with φ as a function of ε.
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Figure 4.14: Variation of upon Nuavg with φ as a function of Da.



Chapter 5

Closing Remarks

Present work is based on the investigation of a BFS channel filled with Cu-water

nanofluid. Latterly, introduced with porous media and Joule heating effects under

combined convection were reviewed. Horizontal wall of BFS is heated. Rest of

the plates are thermally insulated. Transfer of heat by convection under later

assumption were meditated. Governing equations of momentum and energy were

furnished with the suitable terms and parameters, inducted with BDF model.

Heat flow and thermal contouring were reviewed under the controlling parameters.

Conclusive statements are created in the following manner.

The present body of research is made on the scholarly work of Selimefendigil and

Öztop [1], extended by considering the porous medium and Joule heating effect

in the present configuration. For this, state equations are modeled under DBF

model for porous medium. Some important findings from the research conducted

are as under:

• Thermal heat transfer is firmly depending on γ. For the amplifying γ with

altering Ha, supremum heat transfer is accomplished at γ = 90◦ for Ha =

100. Evidently, by increasing magnetic field inclination, a better convective

heat transfer can be accomplished.

69
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• Surely, magnetic field affected heat convection due to induced Lorentz forces

for entire values of φ. Furthermore, after a certainHa = 25 value as magnetic

field strengthens, Nuavg decays more quick.

• It is visible that Nusselt averaged is a lowering function of Ec in favour of

φ. Increases Ec causing fluid to lose thermal energy resulting in reduction

of Nuavg.

• Nuavg has dropped by rising Da values that proffer more declaration to

fluid for higher Da values. Clearly, less permeability offers more hindrance,

average Nusselt number decreases more quickly and more permeability gives

less hindrance that is the reason after certain Da, average Nusselt number

decreases less quickly.

• Seemingly, nanoparticle volume fraction has an impact on Nuavg for greater

porosity. As φ = 0.04 has heightened the heat transfer rate by the reason of

less recirculation and more fluid absorption.
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transfer and entropy generation of nanofluid flow in an open cavity,” Journal

of Magnetism and Magnetic Materials, vol. 374, pp. 214–224, 2015.

[61] B. S. Alshuraiaan, “Mixed convection flow and heat transfer over different

geometries of backward-facing step,” Journel of Engineering Research, vol. 1,

pp. 211–233, 2013.

[62] Q. H. S. Acharya, G. Dixit, “Laminar mixed convection in a vertical channel

with a backstep: a benchmark study,” ASME HTD, vol. 258, pp. 11–20, 1993.

[63] T. C. J. Lin, B. Armaly, “Mixed convection in buoyancy-assisted verti-

cal backward-facing step flows,” International Journal Heat Mass Transfer,

vol. 33, pp. 2121–2132, 1990.

[64] D. S. Cimpean and I. Pop, “Fully developed mixed convection flow of a

nanofluid through an inclined channel filled with a porous medium,” Interna-

tional Journal of Heat and Mass Transfer, vol. 55, no. 4, pp. 907–914, 2012.

[65] M. Sheikholeslami, M. G. Bandpy, R. Ellahi, and A. Zeeshan, “Simulation of

mhd cuo-water nanofluid flow and convective heat transfer considering lorentz

forces,” Journal of Magnetism and Magnetic Materials, vol. 369, pp. 69–80,

2014.

[66] M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, “Forced convection heat

transfer in a semi annulus under the influence of a variable magnetic field,”

International Journal of heat and Mass Transfer, vol. 92, pp. 339–348, 2016.



Bibliography 78

[67] K. Mehmood, S. Hussain, and A. Sagheer, “Entropy generation analysis of

mixed convective flow in an inclined channel with cavity with al2o3-water

nanofluid in porous medium,” International Communications in Heat and

Mass Transfer, vol. 89, pp. 198–210, 2017.


	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Backward Facing Step
	1.2 Nanofluids
	1.2.1 Nanofluids in Backward Facing Step
	1.2.2 Heat Transfer in Nanofluids

	1.3 Mixed Convection
	1.3.1 Mixed Convection in Backward Facing Step

	1.4 Magnetohydrodynamics
	1.5 Mixed Convection Heat Transfer of  Nanofluids in Backward Facing Step
	1.6 Porous Medium in Backward Facing Step
	1.7 Thesis Contribution
	1.8 Thesis Attributes

	2 Fundamental Concepts and Basic Equations of Flow
	2.1 Important Definitions
	2.2 Types of Fluids
	2.3 Types of Flow
	2.4 Modes of Heat Transfer
	2.5 Dimensionless Parametres
	2.6 Fundamental Flow Equations
	2.6.1 Continuity Equation
	2.6.2 Conservation of Momentum
	2.6.3 Conservation of Energy

	2.7 Finite Element Method
	2.8 FEM Formulation
	2.9 Galerkin Weighted Residual Method

	3 Influence of Inclination Angle of Magnetic Field on Mixed Convective Nanofluid over Backward Facing Step
	3.1 Problem Formulation
	3.2 Governing Equations
	3.3 Dimensionless Form of Governing Equations for Steady Flow with Boundary Conditions
	3.4 Physical Parameters of Interest
	3.5 Solution Methodology
	3.5.1 Weak/Variational Formulation

	3.6 Grid Independence Study
	3.7 Code Validation
	3.8 Results and Discussion

	4 MHD Mixed Convection Nanofluid Flow with Joule Heating Effect over Porous Backward Facing Step
	4.1 Physical Model
	4.2 Dimensional Governing Equations
	4.3 Dimensionless Governing Equations with  Boundary Conditions
	4.4 Physical Parameters of Interest
	4.5 Solution Methodology
	4.5.1 Strong Form
	4.5.2 Weak Form

	4.6 Results and Discussion

	5 Closing Remarks
	Bibliography

