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Abstract

In this thesis, a computational analysis has been performed on mixed convection

in a double lid driven cavity in the presence of porous medium. Effects of inclined

magnetic field and volumetric heat generation or absorption are also studied. The

fluid inside the cavity is a mixture of alumina-water nanofluid. The cavity con-

sists of top and bottom adiabatic walls whereas two vertical walls are kept at

different temperature Th and Tc. The left wall is hot while the right wall is cold.

The dimensionless governing equations are discretized by using Galerkin weighted

residual finite element method. In particular, the biquadratic element space is

utilized to discretize the velocity and temperature components while discontinu-

ous linear element is utilized for pressure component. Picard iteration technique

is applied to linearize the discrete non-linear algebraic system of equations and

then Gauss elimination method is adopted to solve the associated linear subprob-

lem. The computational study is illustrated and analyzed by means of isotherms,

streamlines and some useful plots.
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Chapter 1

Introduction

Lid driven cavity is a well known problem that has been investigated since last

three decades. It is a classical problem of fluid mechanics and has considerable

complexity. When temperature difference is applied to any side of cavity, mixed

convection is seemed responsible for heat transport process inside the cavity. A

mixed forced-natural convection inside the cavity under the influence of magnetic

field has a special significance because of its frequent applications in different in-

dustrial process. Problems related to lid driven cavities are mainly divided into

two categories which include cavities having one moving lid or either with double

moving lids. Chaterjee [1] has discussed about the one sided moving lid enclosure.

The motion of both vertical upward and downward lids has been considerd. Con-

siderable differences were analyzed in the flow profiles and the thermal fields for

these cases. The effect of lid movements with variations in Ra has been noticed on

drag forces. The bulk flow temperature has opposite behaviour against magnetic

field i.e., it is enhanced at low value of Ha with upward movements of lids.

Hussain et al. [2] explored the mixed convection energy inside cavity having heat

sources along with vertical walls movement. The movement of flow was enhanced

due to the buoyancy force. Nanoparticle volume fraction and Richardson numbers

play an important role in heat transfer. Entropy generation of system and kinetic

1



Introduction 2

energy of the flow has been enhanced with increasing Ri. Nusselt number is in-

fluenced by increasing in inclination angle for different heat sources. Kefayati [3]

studied the natural convection in a cavity subjected to alumina-water nanofluid

under the influence of magnetic field by using LBM. This study has concluded that

the heat flow is reduced with a rise in Hartmann number. The rise in nanoparticle

volume fractions enhanced the heat transfer and also influenced by variation in

Rayleigh number.

We find the influence of magnetic field at high level in most of the industrial

applications. Salem et al. [4] have analyzed the influence of moveable top wall’s

direction in a linearly heated cavity. The rate of heat transfer was reduced by

increasing magnetic field for parameters such that Reynolds, Grashof and Hart-

mann numbers. Modal and Sibanda [5] investigated the natural convective flow

inside an inclined enclosure under the influence of buoyancy ratio along varying

magnetic field. The horizontal lower side of the cavity has been non-uniformly

heated whereas the left up-right side was heated uniformly. The flow pattern was

influenced by buoyancy ratio and magnetic field directions. The fluid flow was

greatly influenced by the multiple eddies of counter clockwise rotation. Due to

gradient of temperature, the fluid is derived by the buoyancy forces.

In the study of two-sided wall cavities, Eelshehbey and Ahmed [6] studied the

effect of warmed vertical wall of a cavity on mixed convective flow of nanofluid

in the presence of inclined magnetic field layouts. The nanofluid model distinctly

assimilated the influence of thermophoresis and Brownian motion on fluid’s flow.

Increase in non-dimensional parameters, i.e., Richardson and Hartmann numbers

have reduced the value of Nuavg. The movement of upper horizontal lid facilitates

the fluid flow for the highest values of buoyancy ratio. Oztop and Degtekin [7]

explored the combined force-free convective flow in a moveable double lid-driven

heated square cavity by using FVM. Sheikholeslami and Chamkha [8] examined the

effects of convective thermal energy transportation and fluid flow of iron oxide-

water nanofluid in a double lid driven enclosure under the influence of variable
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magnetic field.

The entropy analysis on the electrical unsteady magnetohydrodynamics (MHD)

nanofluid of heat transfer and natural convective flow over a permeable streatch-

ing sheet was revealed by Daniel et al. [9]. Sheikholeslami and Rokni [10] studied

Buongiorno model for nanofluid flow to analyze the effects of magnetic field over

a stretching plate. The velocity of nanofluid and forced convection were enhanced

with the rise in melting parameter. The Nusselt number was decayed with aug-

mented porosity and melting parameters.

Orazio et al. [11] explored the simulation for mixed convective nanofluid flow in-

side the rectangular shaped cavity by considering LBM. The heat transfer rate was

enforced at the boundaries of the cavity. The rate of heat transfer increased with

an increase in inclination angle, this impact is influenced by buoyancy forces for

higher values of Richardson number. Salimefendigil and Chamkha [12] studied the

magnetohydrodynamic (MHD) mixed convection with a triangular wave shaped

bottom wall filled with a non-Newtonian fluid under the influence of inclined mag-

netic field. The shear thinning fluid was influenced by the natural convective flow.

The rate of heat transfer reduces with an increasing values of Ri, and the augmen-

tation is more effective for shear thickening fluid. Pseudoplastic fluid has shown a

reduced average heat transfer for increasing Ha. The Nuavg enhances by increas-

ing the inclination angle of magnetic field. Karimipour et al. [13] depicts the forced

convection of nanofluid magnetohydrodynamic (MHD) and thermal convection in

a microchannel at different magnetic field angles. They analyzed slip velocity and

temperature jump in the presence of magnetic field. The fluid flow is influenced by

magnetic field. Moreover by using alumina-water nanofluid instead of silver-water

nanofluid an amplified heat transport was observed at the low values of Reynolds

numbers along the wall of microchannel.
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Internal heat parameters occur in some engineering problems. Influence of uniform

heat generation and magnetic field was numerically investigated by Selimefendigil

and Oztop [14] to inspect the nanofluid natural convection in enclosure installed

with different obstacles. The rise in the value of external Rayleigh number en-

hanced the local and averaged Nu. Local and average thermal energy transporta-

tion was reduced for rising Rayleigh number as well as magnetic field. Influence of

magnetic field alignments and internal heat parameters on thermal mixed convec-

tion inside lid driven cavity was investigated by Chamkha [15]. Inside the cavity

the flow behaviour and the heat transfer was influenced by the presence of mag-

netic field.

The concept of porous medium is utilized in different fields of engineering and

applied science. Hussain et al. [16] investigated the entropy generation on mixed

convection flow in an inclined channel with enclosure in porous medium. The

fluid movement was subjected to the buoyancy forces due to shear forces and

heated wall of cavity. They analyzed that the heat transfer was enhanced for high

Darcy number and porosity parameters. An augmentation in Nuavg is observed

for higher values of inclination angle and porosity parameter. Varol et al. [17]

studied temperature distributions in terms of heat convection for nanofluid flow

inside a diagonally distributed cavity poured with porous medium. Heat transfer

was reduced with the insertion of inclined plate in a cavity. The flow field was

symmetric inside the cavity for all parameters.

1.1 Thesis Contribution

The foremost objective of this work is to analyze the impact of oriented mag-

netic field on mixed convective nanofluid flow inside the enclosure. Alumina-water

nanofluid is filled inside the cavity system along porous medium. Volumetric heat

generation or absorption parameters are reviewed here to inspect heat absorption

and generation inside the enclosure. The dimensionless governing equations are

solved by using GFEM. The system of dimensionless equations are discretized by
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using Q2/P1
disc finite element pair. Different physical parameters are used to in-

spect flow behaviour. Results are potrayed in the form of streamline contours and

isotherms curves.

1.2 Thesis Framework

This thesis is further comprised of four chapters.

Chapter 2 provides the fundamental concepts and governing laws which are used

to analyze the modeled problems in the subsequent chapters.

Chapter 3 discusses the review study of Hussain et al. [2]. In this chapter, we

investigate the steady mixed convection nanofluid and volumetric heat generation

or absorption under the influence of inclined magnetic field. The finite element

pair Q2/P1
disc is adopted to discretize the system of non-dimensional equations,

then GFEM is utilized to solve the governing non-linear PDEs. Results are ana-

lyzed by using isotherms, streamlines and graphs.

Chapter 4 extends the work of Hussain et al. [2] with the idea of porous medium.

The system of dimensionless equations are discretized by using biquadratic ele-

ment Q2 and P1
disc linear element and the non-dimensional PDEs are solved by

using GFEM. Isotherms, sreamlines and graphs are used to analyze the results.

Chapter 5 summarizes the overall analysis performed in the prersent work.



Chapter 2

Fundamental Concepts and

Governing Equations

In this chapter, we will discuss about fundamental laws, definitions related to fluid

dynamics and dimensionless parameters. There is also a brief discussion about the

solution methodology, i.e., GFEM.

2.1 Fundamental Concepts

Definition 2.1.1. (Fluid) [18]

“A fluid is a substance that moves and deforms continuously as long as the shear

stress applied. A solid can resist a shear stress by a static deflection but a fluid

cannot.”

Definition 2.1.2. (Fluid Mechanics) [19]

“Fluid mechanics is defined as the science that deals with the behaviour of fluids

at rest or in motion, and the interaction of fluid with solids or other fluids at the

boundaries.”

Definition 2.1.3. (Fluid Statics) [18]

“It is the branch of fluid mechanics that deals with the study of fluid at rest.”

6



Fundamental Concepts and Governing Equations 7

Definition 2.1.4. (Fluid Dynamics) [18]

“It is the branch of fluid mechanics that deals with the study of fluid in motion.”

Definition 2.1.5. (Pressure) [19]

“The amount of applied force ‘F’ per unit area ‘A’ is called pressure.” it’s unit is

Pascal. Mathematically, it can be written as

P =
F

A
. (2.1)

Definition 2.1.6. (Density) [19]

“Density is defined as mass per unit volume.” Symbolically, it is represented as

ρ =
m

V
, (2.2)

where ρ, m and V are density, mass and volume, respectively.

Definition 2.1.7. (Viscosity) [20]

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid.”

Definition 2.1.8. (Kinematic Viscosity) [21]

“The ratio of the viscosity µ and the density ρ is known as the kinematic viscosity.”

Kinematic viscosity is represented as

ν =
µ

ρ
. (2.3)

Definition 2.1.9. (Dynamic Viscosity) [19]

“It is the internal resistance between fluid layers which is the tangential force per

unit area. It is also called absolute viscosity.”Mathematically, it can be expressed

as

τ = µ

(
du

dy

)
, (2.4)

where µ is dynamic viscosity.

Definition 2.1.10. (Shear Stress) [19]

“The tangential component of a force acting on a surface per unit area is called
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shear stress.” Mathematically, it is represented by

τ =
F

A
. (2.5)

In the above expression τ , F, A are shear stress, applied force and cross-section

area of the material respectively.

Definition 2.1.11. (Nanofluid) [22]

“Nanofluids are relatively new class of fluids which consist of a base fluid with

nano-sized particles (1-100nm) suspended with in them. These particles, generally

a metal or metal oxides, increase conduction and convection processes by allowing

more heat to transfer.”

Definition 2.1.12. (Magnetohydrodynamics)

“Magnetohydrodynamics is defined as the interaction of magnetic field and elec-

trical conductance of liquids such as plasma, liquid metal and salt water etc.”

Definition 2.1.13. (Magnetic Field)

“Magnetic field is the illustration of electric charges which are in relative motion

and magnetized materials. Magnetic field is the main component of elecromagnetic

force. Magnetic fields are used throughout modern technology, particularly in

electrical engineering and electromechanics.”

Definition 2.1.14. (Porous Medium) [23]

“A material consisting of a solid matrix with an interconnected void, is known as

porous medium.” Porous medium is subdivided into two types

1. Natural porous medium (sand stone, human lungs, wood, rye bread, etc.)

2. Man-made porous medium (ceramics, cements, cheese, sponges, etc.)

Definition 2.1.15. (Porosity) [23]

“The porosity of a porous medium is defined as the fraction of the total volume

of the medium that is occupied by the void space.” It can be expressed as

ε =
Vvoid
Vsolid

,
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where Vsolid is the volume occupied by the solid particles and Vvoid is the volume

occupied by the voids.

2.2 Classification of Fluid

Definition 2.2.1. (Ideal Fluid) [20]

“A fluid which is incompressible and has no viscosity, is known as an ideal fluid”.

Definition 2.2.2. (Real Fluid) [20]

“A fluid, which possesses viscosity is known as real fluid. All the fluid in actual

practice, are real fluids.”

Definition 2.2.3. (Newtonian Fluid) [20]

“A real fluid, in which the shear stress is directly proportional to the rate of

shear strain (or velocity gradient), is known as a Newtonian fluid”. Most known

Newtonian fluids are air, water, gasoline and oil etc.

Definition 2.2.4. (Non-Newtonian Fluid) [19]

“Fluids for which the shear stress is not linearly proportional to the shear strain

rate are called non-Newtonian fluids”. Most known non-Newtonian fluids are

colloidal suspensions and slurries, polymer solutions, blood and paste etc.

2.3 Types of Flow

Definition 2.3.1. (Turbulent Flow) [24]

“Increase in speed may lead to instability that eventualy produces a more random

type of flow, such flow is called turbulent flow.”

Definition 2.3.2. (Laminar Flow) [19]

“Laminar fluid characterised by smooth streamlines and highly ordered motion.”

Definition 2.3.3. (Steady Flow) [19]

“The term steady implies no change of properties, velocity, temperature, etc., at a
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point with time. Many devices such as turbines, compressors, boilers, condensers,

and heat exchangers operate for long period of time under the same conditions,

and they are classified as steady flow devices.”

Definition 2.3.4. (Unsteady Flow) [19]

“In fluid mechanics, unsteady is the most general term that applies to any flow

that is not steady, but transient. The term periodic refers to the kind of unsteady

flow in which the flow oscillates about a steady mean.”

Definition 2.3.5. (Compressible Flow)

“The fluid in which the material density varies during fluid flow is said to be

compressible flow.” Compressible fluid flow is used in high speed jet engines,

aircraft, rocket motors also in high speed usage in a planetary atmosphere etc.

Definition 2.3.6. (Incompressible Flow) [19]

“The flow is said to be incompressible if the density remains constant throughout.”

Definition 2.3.7. (Uniform Flow)

“A flow is said to be uniform, when the velocity does not change in direction nor

in magnitude at any point in a flowing fluid, for a given time.”

Definition 2.3.8. (Non-Uniform Flow) [19]

“If the flow velocity varies with distance in the flow direction, then the flow is

called non-uniform or varied flow.”

Definition 2.3.9. (External Flow) [19]

“The flow of unbounded fluid over a surface such as a wire, a plate or a pipe is

external flow. ”

Definition 2.3.10. (Internal Flow) [19]

“The flow in a pipe or duct is internal flow if the fluid is completely bounded by

a solid surfaces. Water flow in a pipe, for example, is internal flow.”
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2.4 Heat Transfer Mechanisms

Definition 2.4.1. (Conduction) [21]

“The transfer of heat from one part of a body at higher temperature to another

part of the same body at lower temperature is called conduction. The conduction

process takes place at molecular level and involves the transfer of energy from the

more energetic molecules to those with a lower energy level.” It is represented by

q∗ = −kA
(
dT

dx

)
. (2.6)

In the above relation, k is the thermal conductivity.

Definition 2.4.2. (Convection) [21]

“Convection is the mode of heat transfer that relates to the transfer of heat from

a bounding surface (container) to a fluid in motion. It is simply the flow of heat

through fluids either liquids or gases.”Mathematical expression for convection is

q∗ = hA (Tw − T∞) , (2.7)

where q∗, h, Tw and T∞ are heat transfer rate, heat transfer coefficient, surface

temperature and temperature away from the surface, respectively.

Definition 2.4.3. (Forced Convection) [21]

“It is the type of convection in which some external source is used to induce a

force on the fluid’s system for the transportation of heat. External source may be

a pump, fan, or some similar device.”

Definition 2.4.4. (Natural Convection) [21]

“The heat transfer between a surface and fluid moving over it with the fluid motion

caused entirely by the buoyancy forces that arises due to density changes that

result from the temperature variations in the flow.”

Definition 2.4.5. (Mixed Convection) [21]

“Mixed convection occurs when both natural convection and forced convection

play significant roles in the transfer of heat.”
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Definition 2.4.6. (Thermal Conductivity) [18]

“The thermal conductivity is defined as a fluid property that varies with tempera-

ture and pressure in much the same way as viscosity. It is denoted by k. Fourier’s

law of conduction is related to the transfer of heat per unit area q′′, and the vector

gradient of temperature ∇T .”

q′′ = −k∇T,

where k, q′′ and ∇T are thermal conductivity, heat transfer and temperature

gradient, repectively.

Definition 2.4.7. (Thermal Diffusivity) [21]

“Thermal diffusivity is defined as the ratio of thermal conductivity k, the density

ρ, and the specific heat cp at constant pressure. Heat transfer will occur whenever

there exists a temperature difference in a medium.” It can be represented by

α =
k

ρcp
.

2.5 Non-dimensional Numbers

Definition 2.5.1. (Prandtl Number) [25]

“This number expresses the ratio of the momentum diffusivity (viscosity) to the

thermal diffusivity. It characterizes the physical properties of a fluid with convec-

tive and diffusive heat transfers.”Mathematically, it is expressed by

Pr =
viscous diffusion rate

thermal diffusion rate
=
ν

α
=
cpµ

k
,

where ν and α are kinematic viscosity and thermal diffusivity, respectively.

Definition 2.5.2. (Grashof Number) [25]

“It expresses buoyancy to viscous forces ratio and its action on a fluid. It char-

acterizes the free convection of fluid due to the density difference caused by the
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temperature gradient in the fluid.” It’s mathematical form is

Gr =
gβ∆TL3

ν2
.

In above equation, β and ν are the coefficient of volumetric thermal expansion

and viscosity.

Definition 2.5.3. (Reynolds number) [25]

“It is formulated as the ratio of the fluid inertia force to that of molecular friction

(viscosity)”.

Re =
u0L

ν
,

where L and u0 are length scales of the flow and characteristic velocity and ν is

the dynamic viscosity.

Definition 2.5.4. (Richardson Number) [25]

“This number expresses the ratio of the potential energy to the kinetic energy.”

Ri =
gh

w2
=

Gr

Re2
.

Re and Gr are the Reynolds number and Grashof number, respectively.

Definition 2.5.5. (Hartmann Number) [25]

“It is a ratio of electromagnetic force to viscous force (molecular friction force).”

Ha = B0L

√
σf
µf
,

where B0, L, σf and µf are magnetic induction, characteristic length, electrical

conductance and dynamic viscosity, respectively.

Definition 2.5.6. (Nusselt Number) [25]

“It expresses the ratio of total heat transfer in a system to the heat transfer by

the conduction.”

NuL =
convective heat transfer

conductive heat transfer
=
hL

k
.
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h is convective heat transfer coefficient of fluid, k is thermal conductivity, L is

characteristic length.

Definition 2.5.7. (Darcy Number) [25]

“It characterizes the permeability in porous material and in microchannels.”It’s

mathematical form is

Da =
K

L2
,

where porous layer permeability is K and L is the thickness of porous layer.

2.6 Governing Equations

2.6.1 Continuity Equation

“The continuity equation describes the rate of change of density at a fixed point

in the fluid.”For a volume element fixed in space [21]

∂ρ

∂t
+∇ · (ρ V) = 0, (2.8)

where, the velocity is represented by V.

For steady case, equation of continuity becomes

∇ · (ρV) = 0. (2.9)

For incompressible fluid the equation of continuity is

∇ ·V = 0. (2.10)

2.6.2 Law of Conservation of Momentum

The momentum equation for a stationary volume element is as follow [21]

∂ρV

∂t
+ (∇ · ρV) V = −∇p+∇ ·T + ρg. (2.11)
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By using continuity equation, equation (2.11) is given as

ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p+∇ ·T + ρg. (2.12)

In above equation, ρ is the density, p is the pressure, and g denotes the gravita-

tional force.

For Navier Stokes equaion

T = −pI + µτ ′, (2.13)

τ ′ is the stress tensor

τ ′ = gradV + (gradV)∗ , (2.14)

where ‘∗’ is the transpose, the velocity field is V.

The matrix form stress tensor τ ′ is expressed as

τ ′ =


σxx τ ′yx τ ′zx

τ ′xy σyy τ ′zy

τ ′xz τ ′yz σzz

 . (2.15)

The diagonal elements of Cauchy stress tensor σyy, σxx, and σzz are called normal

stresses, and the rest are shear stresses.

We have velocity component V = [u(x, y, 0), v(x, y, 0), 0] for 2D flow and thus

gradV =


∂u
∂x

∂v
∂x

0

∂u
∂y

∂v
∂y

0

0 0 0

 . (2.16)

(gradV)∗ =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 . (2.17)
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Subsituting Eqs. (2.16) and (2.17) in Eq. (2.13) it is found that

Txx =− p+ 2µ
∂u

∂x
(2.18)

Txy =µ

(
∂v

∂x
+
∂u

∂y

)
. (2.19)

Using Eqs. (2.18) and (2.19) in Eq. (2.12) to obtain 2D Navier stokes equations

for u-component

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ρ g x. (2.20)

Similarly, for v-component, we obtain

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ ρgy. (2.21)

2.6.3 Energy Equation

The energy equation in terms of first law of thermodynamics is expressed as [21]

ρ
DÛ

Dt
= −∇ · q′′ − p (∇ ·V) +∇V : τ + q′′′, (2.22)

where heat flux is q′′, the internal heat generation is Û , τ is the viscous force,

∇V : τ is a dissipation term and q′′′ is the rate of heat generation per unit volume.

For a Newtonian fluid,

∇V : τ = µΦ, (2.23)

where Φ is the dissipation function.

By using Eq. (2.23) in Eq. (2.22), we get

ρ
DÛ

Dt
= −∇ · q′′ − p (∇ ·V) + µΦ + q′′′, (2.24)
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where the rate of work done on fluid by pressure forces, i.e., p (∇ ·V) = 0 due to

contribution of continuity equation, so

ρ
∂Û

∂t
+ ρV ·

(
∇Û

)
= −∇ · q′′ − p (∇ ·V) + µΦ + q′′′. (2.25)

Using definition of enthalpy into Eq. (2.25), it can be rearranged as

Û = h− p

ρ
,

ρ
∂
(
h− p

ρ

)
∂t

+ ρV ·
(
∇
(
h− p

ρ

))
=−∇ · q′′ − p (∇ ·V) + µΦ + q′′′, (2.26)

ρ
∂h

∂t
− ∂p

∂t
+ ρV · (∇h)−V · (∇p) =−∇ · q′′ − p (∇ ·V)

+ µΦ + q′′′. (2.27)

After applying the Fourier’s law (2.4), we get

ρ
∂h

∂t
− ∂p

∂t
+ ρV · (∇h)−V · (∇p) =−∇ · (−k∇T )− p (∇ ·V)

+ µΦ + q′′′, (2.28)

ρ
∂h

∂t
+ ρV · (∇h) =

∂p

∂t
+ V · (∇p) +∇ · (k∇T )

− p (∇ ·V) + µΦ + q′′′. (2.29)

By using the physical relationship of enthalpy i.e., dh = CpdT , then Eq. (2.29)

becomes

ρCp
∂T

∂t
+ ρCpV · (∇T ) =

∂p

∂t
+ V · (∇p) +∇ · (k∇T )− p (∇ ·V)

+ µΦ + q′′′, (2.30)

ρCp
DT

Dt
=
Dp

Dt
+∇ · (k∇T )− p (∇ ·V) + µΦ + q′′′. (2.31)
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For an incompressible, viscous and steady fluid, the energy equation becomes

ρCp
DT

Dt
= k

(
∇2T

)
+ µΦ + q′′′. (2.32)

2.7 Fundamentals of FEM

The FEM is a numerical technique which is applicable to all types of non-linear

and linear partial differential equations. The whole domain is divided into small

subdomains, usually triangular and quadrilateral in 2D. The solution on these

subdomains is approximated using local nodal values. The approximate solution is

obtained by using the Galerkin residual method. The partial differential equations

are solved simulatneously, by matrix inversion or iteration method.

2.7.1 Galerkin Finite Element Method

The Galerkin weighted residual method is the class of methods for converting

the continuous problems to discrete problems. Principally, it is equivalent to

the method of variation of parameters to a function space, by transforming the

equations to the weak formulations. It contains the following steps:

1. Discretize the whole computational domain Ω[c, d] of physical problem into

number of small non-overlapping subintervals, i.e., x0 = c, x1, x2, . . . , xN =

d, where xi is called a nodal points or nodes and ei = (xi, xi+1) is an ele-

ment. The mesh size for each domain is hi such that hi = xi+1 − xi, for

i = 1, 2, . . . , N − 1.

2. To obtain the variational form of the given strong form, first multiply the

differential equation by weight function or test function w ε W , where W

is a test space. The test functions must satisfy the homogeneous Dirichlet

boundary condition for Dirichlet boundary data. Then integrate by parts

over the whole doamin.
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3. Natural and essential boundary conditions are imposed on the boundary

integrals and to the trial spaces, respectively.

4. Finite dimensional test space Wh and trial space Uh are utilized to approxi-

mate the infinite dimensional spaces where Uh (finite dimensional space) ⊂

U (solution space) and Wh ⊂ W (test space).

5. Galerkin discretization is applied to approximate finite dimensional trial so-

lution and trial test spaces. Choose the approximate solution function uh

as uh ε Uh such that a (uh, wh) = b (wh), for all wh ε W . Here a (uh, wh) is

known as the bilinear form while b(wh) notifies the linear form.

6. Represent the approximate solution over an element with finite dimensional

trial solution space Uh by setting the linear combination of φj’s with the

nodal unknowns uj’s such that

uej =
∑

uejφ
e
j j = 1, 2, . . . , N. (2.33)

Similarly, for finite dimensional trial test space Wh

wej =
∑

weiφ
e
i i = 1, 2, . . . , N (2.34)

7. Substituting approximate solution and test functions from Eqs. (2.33) and

(2.34) into the variational formulation of the problem yields a linear elemen-

tal system of algebraic equations as given below

a
(∑

uejφ
e
j, φ

e
i

)
= b (φei) j, i = 1, 2, . . . , N (2.35)

∑
a
(
φej, φ

e
i

)
uej = b (φei) j, i = 1, 2, . . . , N (2.36)

where uej are the solution values at the respective nodal points of element

e.

8. The above formulation will generate an algebraic linear system of equations,

which contains equal number of equations as the number of elemental nodes
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and will be written in the compact form as

[Ae]{U e} = {Be}. (2.37)

9. To obtain following global system of equations, combine all local elemental

system as in Eq. (2.37). The global system approximates the solution over

the whole computational domain Ω = [c, d].

[A]{U} = {B}. (2.38)

10. Finally, the approximate solution is obtained by solving the linear algebraic

system of equation (2.38).



Chapter 3

Influence of Inclined Magnetic

Field on Mixed Convective

Nanofluid Flow

Influence of magnetic field on mixed convection is numerically investigated in

this chapter. In order to solve the governing equations, we transform the system

of dimensional equations into the dimensionless equations along with appropri-

ate boundary conditions. To obtain the approximate solution of these equations

GFEM is used. The results are presented in the form of graphs, isotherms and

streamlines. In this chapter, the review of Hussain et al. [2] is provided.

3.1 Physical Model

Consider a laminar and steady nanofluid flow in a cavity with physical descriptions

presented in Figure 3.1. It consists of double lid-driven cavity having horizontal

upper and lower (adiabatic) sides with velocity u0. The vertical walls of the cavity

have different temperatures whereas right wall is maintained at temperature Tc

and left one is at temperature Th. Nanofluid is incompressible and Newtonian.

Influence of radiations and slipping forces between any two phases are ignored.

21
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Inclined magnetic field with an angle γ is applied. The heat dissipations due

to magnetic and stresses are ignored. In buoyancy force, Boussinesq approxima-

tion approach is utilized to grasp density variation of nanofluid flow. Thermal

properties of nanoparticles and base fluid are presented in Table 3.1. The effects

of temperature on thermo-physical properties of nanoparticle and base fluid are

ignored.

Figure 3.1: Configuration of phenomenal model.

Table 3.1: Thermo-physical properties of water and alumina. [16]

Physical Properties Water Alumina

ρ(Kg m−3) 997 · 1 3970

cp(JKg−1K−1) 4179 765

k (Wm−1K−1) 0 · 613 40

β(K−1) 21× 10−5 0 · 85× 10−5

σ(Ω m)−1 0 · 05 1× 10−10

dp(nm) − 47
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3.2 Dimensional Governing Equations

The governing equations of two-dimensional steady system with continuity, mo-

mentum and energy equations for an incompressible flow are given below [15, 26,

27]

• Continuity Equation:

∂u

∂x
+
∂v

∂y
=0, (3.1)

• x-Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
=− 1

ρnf

∂p

∂x
+
µnf
ρnf

(
∂2u

∂x2
+
∂2u

∂y2

)
+
σnfB

2
0

ρnf
(v sin γ cos γ − u sin2 γ), (3.2)

• y-Momentum Equation:

u
∂v

∂x
+ v

∂v

∂y
=− 1

ρnf

∂p

∂y
+
µnf
ρnf

(
∂2v

∂x2
+
∂2v

∂y2

)
+

(ρβ)nf
ρnf

g(T − Tc)

+
σnfB

2
0

ρnf
(u sin γ cos γ − v cos2 γ), (3.3)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
=αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Q0

(ρCp)nf
(T − Tc). (3.4)

The boundary conditions at different walls of the cavity corresponding to above

dimensional equations from Eqs. (3.1) to (3.4) are written below:

• Upper horizontal side:

u = u0, v = 0,
∂T

∂y
= 0.
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• Lower horizontal side:

u = −u0, v = 0,
∂T

∂y
= 0.

• Vertical left side:

u = 0, v = 0, T = Th.

• Vertical right side:

u = 0, v = 0, T = Tc.

3.3 Physical Properties of Nanofluid

The relations for heat capacitance of nanofluid, electrical conductivity, thermal

conductivity and effective density are given below [16, 26, 28]:

• Effective Density:

ρnf = φρs + (1− φ)ρf . (3.5)

• Effective Thermal Diffusivity:

αnf =
knf

(ρCp)nf
.

• Effective Electrical Conductivity:

σnf = σf

[
1 +

3(σ − 1)φ

(σ + 2)− (σ − 1)φ

]
, σ =

σs
σf
.

• Effective Specific Heat:

(ρCp)nf = φ(ρCp)s + (1− φ)(ρCp)f .

• Effective Coefficient of Thermal Expansion:

(ρβ)nf = φ(ρβ)s + (1− φ)(ρβ)f . (3.6)
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Thermal conductivity of nanofluids is influenced by Bownian motion. A rule for

effective thermal conductivity has been proposed by Koo and Kleinstreuer which

is as follow [16, 29]

keff = kBrownian + kstatic, (3.7)

kstatic = kf

1 +
3
(
kp
kf
− 1
)
φ(

kp
kf

+ 2
)
−
(
kp
kf
− 1
)
φ

 . (3.8)

In the above equations, the thermal conductivity of solid particles, static and pure

fluid are kp , kstatic and kf respectively. It is based on Maxwell classical correlation.

Koo-Kleinstreuer-Li proposed thermal conductivity in because of Brownian motion

is given below

kBrownian = 5× 104ρf (Cp)fφ

√
KbT

ρpdp
f ′(Tref , φ, dp), (3.9)

where the value of f ′ is obtained from the following relation

f ′(Tref , φ, dp) =
[
c1 + c2 ln(dp) + c3 ln(φ)c4 ln(φ) ln(dp) + c5 ln(dp)

2
]

ln(Tref )

+
[
c6 + c7 ln(dp) + c8 ln(φ) + c9 ln(dp) ln(φ) + c10 ln(dp)

2
]
,

(3.10)

with the cefficients ci(i = 1, 2, . . . , 10) as organized in Table 3.3. Moreover, Koo-

Kleinstreuer introduced the effective viscosity model as follow

µeff = µstatic + µBrownian = µstatic +
kBrownian

kf
× µf
Prf

. (3.11)

Brinkman proposed a model for nanofluids viscosity as given by

µstatic = µnf = µf/(1− φ)2.5. (3.12)

Interfacial thermal resistance, i.e Rf = 4 × 10−8Km2/W and kp in Eq. (3.8) is

replaced by kp,eff , which is obtained from the following relation

Rf +
dp
kp

=
dp

kp,eff
. (3.13)
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Table 3.2: The coefficients values of nanofluid.

Coefficients values

c1 52 · 813488759

c2 6 · 115637295

c3 0 · 6955745084

c4 0 · 041745555278

c5 0 · 176919300241

c6 −298 · 19819084

c7 −34 · 532716906

c8 −3 · 9225289283

c9 −0 · 2354329626

c10 −0 · 999063481

3.3.1 Non-dimensional Governing Equations

The governing equations are transformed into dimensionless form by utilizing non-

dimensional parameters, which are expressed as below

U =
u

u0

, θ =
T − Tc
Th − Tc

, X =
x

L
, V =

v

u0

, Y =
y

L
, P =

p

ρnfu2
0

,

Re =
u0L

νf
, Gr =

gβf 4 TL3

ν2
f

, P r =
νf
αf
, Ha = B0L

√
σf
µf
, q =

Q0L
2

(ρCp)nfαf
.

By using the dimesionless parametres, the governing system of equations becomes:

• Continuity Equation:

∂U

∂X
+
∂V

∂Y
=0 (3.14)
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• x-Momentum Equation:

U
∂U

∂X
+ V

∂U

∂Y
=− ∂P

∂X
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+
σnf
σf

ρf
ρnf

Ha2

Re
(V sin γ cos γ − U sin2 γ) (3.15)

• y-Momentum Equation:

U
∂V

∂X
+ V

∂V

∂Y
=− ∂P

∂Y
+

1

Re

ρf
ρnf

1

(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+
σnf
σf

ρf
ρnf

Ha2

Re
(U sin γ cos γ − V cos2 γ)

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ (3.16)

• Energy Equation:

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+

1

RePr
qθ (3.17)

The corresponding boundary conditions related to the above PDEs (3.14) to (3.17)

are given below:

• Upper horizontal side:

V = 0, U = 1,
∂θ

∂y
= 0.

• Lower horizontal side:

V = 0, U = −1,
∂θ

∂y
= 0.

• Vertical left side:

V = 0, U = 0, θ = 1.

• Vertical right side:

V = 0, U = 0, θ = 0.
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Following expressions are used to estimate local and average Nusselt numbers

Nu = −knf
kf

∣∣∣∣( ∂θ

∂X

)∣∣∣∣
X=0

,

Nuavg =

∫ 1

0

NudY .

3.4 Numerical Solutions and Validations

The numerical solution of non-dimensional governing equations from (3.14) to

(3.17) along the corresponding boundary conditions has been obtained by utilizing

Galerkin weighted residual method. Governing system is discretized by using

Q2/P1
disc finite element pair in space, temperature and velocity-components (U, V )

in Q2 space and the term pressure is in P1
disc space. Firstly, we obtain the weak

formulation of non-linear governing equations, then the approximate solution by

using Galerkin residual method.

3.4.1 Variational / Weak Formulation

In variational formulation, the non-dimensional governing equations are converted

into weak form, by multiplying the equations with functions of test spaces W and

Q, then integrated over the whole domain Ω.

Let W = [H1(Ω)]3 and Q = L2(Ω) be the test spaces for temperature, velocity

components and pressure, respectively. The non-dimensional equations are as

follow

∂U

∂X
+
∂V

∂Y
=0, (3.18)

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+ A1

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ A2(V sin γ cos γ − U sin2 γ), (3.19)
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(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+ A1

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ A3θ

+ A2

(
U sin γ cos γ − V cos2 γ

)
, (3.20)

U
∂θ

∂X
+ V

∂θ

∂Y
=A4

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+ A5θ. (3.21)

In the above equations Ai’s are given below

A1 =
ρf
ρnf

1

Re

1

(1− φ)2.5
, A5 =

1

RePr
q, A3 = Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
,

A4 =
αnf
αf

1

RePr
, A2 =

ρf
ρnf

σnf
σf

Ha2

Re
.

For weak formulation multiply the Eqs. (3.18) to (3.21) by test spaces W and Q,

where w ε W and q ε Q and then integrate over the whole domain Ω.

Find (U, V, θ, P ) ε W×Q such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
wdΩ +

∫
Ω

∂P

∂X
wdΩ− A1

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
wdΩ

− A2

∫
Ω

(V sin γ cos γ − U sin2 γ)wdΩ = 0, (3.22)

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
wdΩ +

∫
Ω

∂P

∂Y
wdΩ− A1

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
wdΩ

− A3

∫
Ω

θwdΩ− A2

∫
Ω

(U sin γ cos γ − V cos2 γ)wdΩ = 0, (3.23)

∫
Ω

∂U

∂X
qdΩ +

∫
Ω

∂V

∂Y
qdΩ = 0, (3.24)∫

Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
wdΩ− A4

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
wdΩ− A5

∫
Ω

θwdΩ = 0,

(3.25)

for all (w, q) ε W×Q.

Let q ≈ qh, V ≈ Vh, w ≈ wh, θ ≈ θh, U ≈ Uh, P ≈ Ph.

By Galerkin’s approximation method

∫
Ω

∂Uh
∂X

qhdΩ +

∫
Ω

∂Vh
∂Y

qhdΩ = 0, (3.26)
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A1

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
whdΩ

−
∫

Ω

∂wh
∂X

PhdΩ + ω1

∫
Ω

UhwhdΩ− ω2

∫
Ω

VhwhdΩ = 0, (3.27)

A1

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
whdΩ

−
∫

Ω

∂wh
∂Y

PhdΩ− ω2

∫
Ω

UhwhdΩ + ω3

∫
Ω

VhwhdΩ− A3

∫
Ω

θhwhdΩ = 0, (3.28)

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
whdΩ + A4

∫
Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ

− A5

∫
Ω

θhwhdΩ = 0. (3.29)

In the above equations, ωi’s are represented as

ω1 = A2sin2 γ, ω2 = A2sin γ cos γ, ω3 = A2cos2 γ.

The FEM approximation functions for trial spaces and test spaces are given below

Uh =
n∑
j=1

UjSj, Vh =
n∑
j=1

VjSj, Ph =
m∑
j=1

Pjηj, θh =
n∑
j=1

θjSj

wh =
n∑
i=1

wiSi, qh =
m∑
i=1

qiηi.

Now inserting the approximate functions of test and trial spaces in equations (3.27)

to (3.29), the matrix form of discretized system is


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




U

V

P

θ

 =


F 1

F 2

F 3

F 4

 , (3.30)

where θ = θj, V = Vj, U = Uj; j = 1, 2, . . . , n, and P = Pj; j = 1, 2, . . . ,m. The

vectors F 1, . . . , F 4 represent the corresponding R.H.S. The corresponding block
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matrices are

K11
ij =

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A1

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

+ ω1

∫
Ω

SjSidΩ,

K22
ij =

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A1

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

+ ω3

∫
Ω

SjSidΩ,

K44
ij =

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A4

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

− A5

∫
Ω

SjSidΩ,

K12
ij =− ω2

∫
Ω

SjSidΩ = K21
ij, K13

ij = −
∫

Ω

∂Si
∂X

ηjdΩ, K23
ij = −

∫
Ω

∂Si
∂Y

ηjdΩ

K24
ij =− A3

∫
Ω

SjSidΩ, K31
ij =

∫
Ω

∂Sj
∂X

ηidΩ, K32
ij =

∫
Ω

∂Sj
∂Y

ηidΩ

K14
ij =K33

ij = K34
ij = K41

ij = K42
ij = K43

ij = 0.

Picard method is applied to linearize the system of non-linear equations. Gauss

elimination method is used to solve the linearized system of equations. The stop-

ping criterion for the convergence of system is mentioned below∣∣∣∣Πn+1 − Πn

Πn+1

∣∣∣∣ 6 10−6

where Π indicates the dependent factors V, θ, P or U . Here, iteration number is

represented by the superscript n in above expression.

3.4.2 Grid Generation and Refinement

First, at level l = 1, the coarsest grid containing one element is designed. Then

the refined form of grid is obtained by dividing each element in further four new
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elements in the way that the corresponding midpoints are joined for level l = l+1.

Figure 3.2: Spatial grid design for mesh l = 1, 2, 3 (from left to right).

3.4.3 Code Validations

In order to validate the code adopted for the numerical solution of mixed con-

vection flow, the current results are compared with the previous results based

on mixed convection flow. In Table 3.3, it is shown that the results are in good

agreement as compared to the published results in literature.

Table 3.3: Comparison of present work with the some published results for
Gr = 100. [2, 30–32]

Re Present study [2] Ref. [30] Ref. [31] Ref. [32]

100 2.03 - 2.05 1.94

400 4.07 4.08 4.09 3.84

1000 6.58 6.48 6.70 6.33

3.4.4 Grid Independent Test

The Nusselt number is computed for q = 5, φ = 0.04, Ha = 25, Ri = 5, γ = 0◦

and Re = 100 at different mesh level (l) along total degree of freedom (DOF) and

number of elements (EL). The grid convergence test for different mesh levels is

given in Table 3.4.
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Table 3.4: Grid independence results for alumina-water nanofluid at Ri = 1.

l EL DOFs Nuavg

4 64 1059 7 · 176050

5 256 4035 7 · 621126

6 1024 15747 7 · 454072

7 4096 62211 7 · 051243

8 16384 247299 6 · 659882

3.5 Results and Analysis

The impacts of magnetic field layouts on alumina-water mixed convective flow

inside square cavity has been studied numerically. Figure 3.3 depicts the role of

Ha on flow domain for γ = 0◦, q = 5, φ = 0.04, Ri = 5 and Re = 100. It is

clear from the figure that both horizontal upper and lower sides move in opposite

way. At Ha = 0, flow is concentrated about horizontal upper and lower sides

due to high value of kinetic energy. Augmentation in magnetic force is reducing

the thickness of cells. Reduction in kinetic energy of flow is noticed due to high

strength of magnetic force. A visible and fine heat layers are distinctly seen with

the left vertical wall at highest values of Ha. Due to high value of Hartmann

number, heat generation is occured inside the enclosure. It is more prominent at

high value of Hartmann number i.e., Ha = 100.

Influence of inclined magnetic field on streamlines and isotherms with Ri = 5,

Ha = 25, φ = 0.04, Re = 100 and q = 5 are displayed in Figure 3.4. It shown in

figure, that inclined magnetic field has efficient effects on the thermal distribution

and flow field. This impact seems more visible at γ > 30◦. An increase in mag-

netic field inclination is main cause of increment in the flow movement. Here the

influence of magnetic field is directly associated with kinetic energy.

Figure 3.5 illustrates the influence of Richardson number Ri on isotherms and

streamlines with φ = 0.04, q = 5, Re = 100, γ = 0◦ and Ha = 25. At the low
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value of Ri, high heat generation is occured. It reduces with an increase in Ri.

The natural to forced convection dominates for increasing Ri. The position of

cells is also changed with the variations of Ri. The flow movement also increases

from vertical left to right wall of the cavity for high Richardson number. The

effects of nanoparticles volume fraction are presented in Figure 3.6 with the help

of isotherms and streamlines. The impact of nanoparticle volume fraction on ther-

mal distribution and streamlines are not clear. Few variations have been noticed

near the top and bottom lids of cavity.

The impact of volumetric heat parameters on isotherms and streamlines is shown

in Figure 3.7 for parameters of γ = 0◦, Ha = 25, φ = 0.04, Ri = 5 and Re = 100.

Temperature distribution is influenced by volumetric heat generation or absorp-

tion. At low value of q, volumetric heat absorption is more dominant than heat

generation. The bottom wall of cavity is cold at low value of q. Flow of heat

increases as the value of q is increased, i.e., more prominant at higher value of q,

i.e., q = 10.

The average Nusselt number distribution is demonstrated in Figure 3.8(a), with

Hartmann number at various Richardson number. The values of Hartmann num-

ber are inversely proportional to mean Nusselt number. Noticeable convection is

observed at higher values of Richardson number. Figure 3.8(b) illustrates that

increase in nanoparticle volume fraction enhanced the Nuavg and it remains lin-

ear for high value of Richardson number. Figure 3.8(c) depicts that the Nuavg

is enhanced linearly with volume fraction φ. Maximum heat transfer occured at

low value of heat absorption parameter. Figure 3.8(d) portrays the impact of

inclined magnetic field with variation in Hartmann number on mean Nusselt num-

ber. The heat transfer is reduced with an augmentation in inclined magnetic field

and Hartmann number.
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Figure 3.3: Influence of Ha on isotherms (right) and streamlines (left) with
q = 5, γ = 0◦, φ = 0.04, Re = 100, Ri = 5.



Influence of Inclined Magnetic Field on Mixed Convective Nanofluid Flow 36

γ
=

0◦
γ

=
15
◦

γ
=

30
◦

γ
=

45
◦

γ
=

60
◦

Figure 3.4: Influence of inclined magnetic field on streamlines (left) and
isotherms (right) with q = 5, φ = 0.04, Ri = 5, Re = 100, Ha = 25.
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Figure 3.5: Influence of Ri on streamlines (left) and isotherms (right) with
φ = 0.04, γ = 0◦, Re = 100, q = 5, Ha = 25.
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Figure 3.6: Influence of nanoparticles volume fraction on isotherms (right)
and streamlines (left) with Ri = 5, γ = 0◦, Ha = 25, q = 5, Re = 100.
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Figure 3.7: Influence of volumetric heat parameters on streamlines (left) and
isotherms (right) with φ = 0.04, γ = 0◦, Ri = 5, Re = 100, Ha = 25.
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Figure 3.8: Effect of Ri on Nuavg as a function of Hartmann number and
nanoparticle volume fraction (a-b), impact of q on Nuavg (c) and influence of γ

on Nuavg (d).



Chapter 4

Impact of Inclined Magnetic Field

on Mixed Convective Nanofluid

Flow with Porous Medium

In this chapter the extension is accomplished to the previous work of Hussain et

al. [2]. Porous medium has significant role in convection process. For this pur-

pose, we will analyze the influence of magnetic field inclination with the addition

of homogeneous porous medium inside square cavity on the thermal energy trans-

portation process. The results are portrayed in the form of streamlines, isotherms

and useful plots at the end.

4.1 The Problem Configuration

The flow problem is analyzed inside a square shaped cavity. The problem con-

figuration is presented in Figure 4.1. The fluid throughout the study is two di-

mensional, Newtonian, incompressible and viscous. Changes in flow behaviour

w.r.t time are ignored, i.e., flow is assumed to be steady. Geometrical interpre-

tation shows that the vertical left side of cavity is at high temperature i.e., Th

while the right side is kept cold i.e., Tc. The upper lid of cavity is moving with

41
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velocity u0 ms
−1 while the horizontal lower side is moving with constant veloc-

ity of −u0 ms
−1. Both horizontal upper and lower sides are thermally insulated.

Homogeneous porous medium is implanted in cavity region. Magnetic field of

strength B0 is inclining with angle γ◦. Density variations are significant here due

to temperature differences. To overcome this, Boussinesq approximation is used.

Figure 4.1: Configuration of physical model.

4.2 Governing Equations

From the above assumptions, the dimensional formulation of this governing phe-

nomenon is written below. This set of four PDEs consist of continuity, momentum

and energy equations [15, 16, 33]:

• Continuiy Equation:

∂u

∂x
+
∂v

∂y
=0, (4.1)
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• u-Momentum Equation:

1

ε2

(
u
∂u

∂x
+ v

∂u

∂y

)
=− 1

ρnf

∂p

∂x
+
µnf
ρnfε

(
∂2u

∂x2
+
∂2u

∂y2

)
+
B2

0σnf
ρnf

(v sin γ cos γ − u sin γ2)

− µnf
ρnfK

u− 1.75
√

150Kε
3
2

(√
u2 + v2

)
u, (4.2)

• v-Momentum Equation:

1

ε2

(
u
∂v

∂x
+ v

∂v

∂y

)
=− 1

ρnf

∂p

∂y
+
µnf
ρnfε

(
∂2v

∂x2
+
∂2v

∂y2

)
+

(ρβ)nf
ρnf

g(T − Tc)

+
B2

0σnf
ρnf

(u sin γ cos γ − v cos2 γ)

− µnf
ρnfK

v − 1.75
√

150Kε
3
2

(√
u2 + v2

)
v, (4.3)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
=αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
+

Q0

(ρCp)nf
(T − Tc). (4.4)

The corresponding boundary conditions related to the above PDEs (4.1) to (4.4)

are mentioned below

• Upper horizontal side:

u = u0, v = 0,
∂T

∂y
= 0.

• Lower horizontal side:

u = −u0, v = 0,
∂T

∂y
= 0.

• Vertical left side:

u = 0, v = 0, T = Th.
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• Vertical right side:

u = 0, v = 0, T = Tc.

Effective properties of the nanofluid are discussed in equations (3.5), (3.6), (3.12).

4.3 Dimensionless Governing Equations

The governing system can be changed into dimensionless system by using the given

dimensionless parameters [2, 16]:

θ =
T − Tc
Th − Tc

, U =
u

u0

, Y =
y

L
, V =

v

u0

, X =
x

L
, P =

p

ρnfu2
0

,

Da =
k

L2
, Re =

u0L

νf
, Gr =

gβf 4 TL3

ν2
f

, P r =
νf
αf
, q =

Q0L
2

(ρCp)nfαf

Ha = B0L

√
σf
µf
.

By using the above mentioned dimensionless physical parameters, the dimensional

PDEs from (4.1) to (4.4) is transformed into the following dimensionless system.

∂U

∂X
+
∂V

∂Y
=0, (4.5)

1

ε2

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+

1

Re

ρf
ρnf

1

ε(1− φ)2.5

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− µnf
ρnfνf

1

ReDa
U − 1.75

√
150Daε

3
2

(√
U2 + V 2

)
U

+
ρf
ρnf

σnf
σf

Ha2

Re
(V sin γ cos γ − U sin2 γ), (4.6)

1

ε2

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+

1

Re

ρf
ρnf

1

ε(1− φ)2.5

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− µnf
ρnfνf

1

ReDa
V − 1.75

√
150Daε

3
2

(√
U2 + V 2

)
V

+Ri
ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
θ

+
σnf
σf

ρf
ρnf

Ha2

Re
(U sin γ cos γ − V cos2 γ), (4.7)
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U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf
αf

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+

1

RePr
qθ. (4.8)

Following conditions on boundaries are related to the above system of Eqs. (4.5)

to Eq. (4.8).

• Upper horizontal side:

V = 0, U = 1,
∂θ

∂y
= 0.

• Lower horizontal side:

V = 0 U = −1,
∂θ

∂y
= 0.

• Vertical left side:

V = 0, U = 0, θ = 1.

• Vertical right side:

V = 0, U = 0, θ = 0.

4.4 Numerical Solution

The numerical solution of non-dimensional equations is obtained by using finite

element method. Galerkin’s residual method is applied here to achieve the weak

formulation of the coupled equations from (4.5) to (4.8) with the respective bound-

ary conditions. The non-linear equations are discretized into quadtrilateral ele-

ments in whole domain (Ω). For this purpose, first of all find the weak form of

the equations. Following are the main steps of solution procedure:

4.4.1 Variation Formulation

The basic attribute of finite element method is to convert the strong form of gov-

erning equations into weak form. For variational formulation, governing equations
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are multiplied by test functions and integrate over the whole domain Ω.

The strong form of governing system of equations from (4.5) to (4.8) is given below

∂U

∂X
+
∂V

∂Y
=0, (4.9)

A1

(
U
∂U

∂X
+ V

∂U

∂Y

)
=− ∂P

∂X
+ A2

(
∂2U

∂X2
+
∂2U

∂Y 2

)
− A4U

+ A3(V sin γ cos γ − U sin2 γ)− A5U, (4.10)

A1

(
U
∂V

∂X
+ V

∂V

∂Y

)
=− ∂P

∂Y
+ A2

(
∂2V

∂X2
+
∂2V

∂Y 2

)
− A4V

+ A3

(
U sin γ cos γ − V cos2 γ

)
− A5V + A6θ, (4.11)

U
∂θ

∂X
+ V

∂θ

∂Y
=A7

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
+ A8θ. (4.12)

In the above equations, Ai’s are given below

A1 =
1

ε2
, A2 =

1

Re

ρf
ρnf

1

ε(1− φ)2.5
, A6 = Ri

ρf
ρnf

(
1− φ+

ρsβs
ρfβf

φ

)
,

A4 =
µnf
ρnfνf

1

ReDa
, A5 =

1.75
√

150Daε
3
2

(√
U2 + V 2

)
, A3 =

ρf
ρnf

σnf
σf

Ha2

Re
,

A7 =
αnf
αf

1

RePr
, A8 =

1

RePr
.

Let W = [H1(Ω)]3 be the test spaces for velocity components (U, V ) and temper-

ature θ, Q = L2(Ω) refers to the test space for pressure P component. Let w ε W

and q ε Q are the respective test functions for the test spaces. For variation formu-

lation multiply momentum and energy equation with test function w. Similarly

multiply q test function with continuity equation.
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Find (U, V, θ, P ) ε W×Q such that

A1

(
U
∂U

∂X
+ V

∂U

∂Y

)
wdΩ +

∫
Ω

∂P

∂X
wdΩ− A2

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
wdΩ

− A3

∫
Ω

(V sin γ cos γ − U sin2 γ)wdΩ + A4

∫
Ω

UwdΩ + A5

∫
Ω

UwdΩ = 0, (4.13)

A1

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
wdΩ +

∫
Ω

∂P

∂Y
wdΩ− A2

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
wdΩ

− A6

∫
Ω

θwdΩ− A3

∫
Ω

(U sin γ cos γ − V cos2 γ)wdΩ + A4

∫
Ω

V wdΩ

+ A5

∫
Ω

V wdΩ = 0, (4.14)

∫
Ω

∂U

∂X
qdΩ +

∫
Ω

∂V

∂Y
qdΩ = 0, (4.15)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
wdΩ− A7

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
wdΩ− A8

∫
Ω

θwdΩ = 0.

(4.16)

∀ (w, q) ε W×Q

Let θ ≈ θh, V ≈ Vh, q ≈ qh, U ≈ Uh, w ≈ wh, P ≈ Ph

By Galerkin’s approximation method

A2

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ + A1

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
whdΩ

+ A4

∫
Ω

UhwhdΩ + A5

∫
Ω

UhwhdΩ−
∫

Ω

∂wh
∂X

PhdΩ + ω1

∫
Ω

UhwhdΩ

− ω2

∫
Ω

VhwhdΩ = 0, (4.17)

A2

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ + A1

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
whdΩ

+ A4

∫
Ω

VhwhdΩ + A5

∫
Ω

VhwhdΩ−
∫

Ω

∂wh
∂Y

PhdΩ− ω2

∫
Ω

UhwhdΩ

+ ω3

∫
Ω

VhwhdΩ− A6

∫
Ω

θhwhdΩ = 0, (4.18)

∫
Ω

∂Uh
∂X

qhdΩ +

∫
Ω

∂Vh
∂Y

qhdΩ = 0, (4.19)
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∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
whdΩ + A7

∫
Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ

− A8

∫
Ω

θhwhdΩ = 0, (4.20)

where ωi’s in above equations are represented as

ω1 = A3sin2 γ, ω2 = A3sin γ cos γ, ω3 = A3cos2 γ.

The equations from (4.17) to (4.20) are approximated by using the FEM approx-

imation functions for trial spaces and test spaces are given below

Uh =
n∑
j=1

UjSj, Vh =
n∑
j=1

VjSj, Ph =
m∑
j=1

Pjηj, θh =
n∑
j=1

θjSj

wh =
n∑
i=1

wiSi, qh =
m∑
i=1

qiηi.

Now inserting the approximate functions of test and trial spaces in equations (4.17)

to (4.20), the matrix form of discretized system is


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44




U

V

P

θ

 =


F 1

F 2

F 3

F 4

 , (4.21)

whereθ = θj, V = Vj, U = Uj; j = 1, 2, . . . , n, and P = Pj; j = 1, 2, . . . ,m. The

vectors F 1, . . . , F 4 represent the corresponding R.H.S. The corresponding block

matrices are

K11
ij =A1

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A2

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

+ A4

∫
Ω

SjSidΩ + A5

∫
Ω

SjSidΩ + ω1

∫
Ω

SjSidΩ,

K22
ij =A1

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A2

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

+ A4

∫
Ω

SjSidΩ + A5

∫
Ω

SjSidΩ + ω3

∫
Ω

SjSidΩ,
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K44
ij =

∫
Ω

(
n∑
j=1

UjSj
∂Sj
∂X

+
n∑
j=1

VjSj
∂Sj
∂Y

)
SidΩ + A7

∫
Ω

(
∂Sj
∂X

∂Si
∂X

+
∂Sj
∂Y

∂Si
∂Y

)
dΩ

− A8

∫
Ω

SjSidΩ,

K12
ij =− ω2

∫
Ω

SjSidΩ = K21
ij, K13

ij = −
∫

Ω

∂Si
∂X

ηjdΩ, K23
ij = −

∫
Ω

∂Si
∂Y

ηjdΩ

K24
ij =− A6

∫
Ω

SjSidΩ, K31
ij =

∫
Ω

∂Sj
∂X

ηidΩ, K32
ij =

∫
Ω

∂Sj
∂Y

ηidΩ

K14
ij =K33

ij = K34
ij = K41

ij = K42
ij = K43

ij = 0.

The system of non-linear equations is linearized by using Picard method while the

linearized algebraic equations are solved by using Gaussian elimination scheme to

achieve approximated solution. In order to obtain the convergence of approximated

solution, the stopping criterion will remain same for the present case as discussed

in Chaper 3.

4.5 Results and Discussion

The influence of inclined magnetic field on mixed convection of nanofluid filled in

double lid driven enclosure with porous medium has been studied numerically for

different parameters.

The influence of variation in Hartmann number on heat transfer process with

γ = 0◦, φ = 0.04, Ri = 5, Re = 100, q = 5 and Da = 10−3 is depicts in Figure

4.2. In the absence of magnetic field at Ha = 0, streamlines are less concentrated

with top lid and bottom lid of cavity with a visible flow activity due to greater

kinetic energy (K.E) of fluid in the center of cavity. As the strength of magnetic

field increases, these concentric cells grows with the top and bottom lids, showing

the reduced flow circulation in the center of cavity. This effect is more prominant

at the highest value of Hartmann number, i.e., Ha = 100. For this value of Ha

strength of Lorentz force is dominated on this buoyancy-driven flow. The flow

activity seems to retard at the central region due to less kinetic energy (K.E) of
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fluid at this high strength of magnetic force. Thin thermal layer is noticed with

the left wall in isotherms of Figure 4.2 at Ha = 0 and 25. Heat layer seems more

visible and consequently shifting towards the top lid. Cold region at the bottom

increases in this regard. At the highest value of magnetic field i.e., Ha = 100,

more visible heat layers are distinctly seen with the left wall of cavity. Here the

heat movement is confined from left wall to the top lid of cavity without affecting

the bottom side and right wall. Hence less convection is observed at this high

strength of Lorentz force. Increment in Hartmann number facilitates prominant

volumetric heat generation.

Effect of Richardson number with Ri = 0.01, 0.1, 1, 5, and 10 are shown in Figure

4.3. The forced convection is dominated at the low values of Ri on flow charac-

teristics. Due to greater strength of shear forces more cells are formed with the

top lid and at the bottom lid. Lids movement is aiding this strength. Influence

of buoyancy force dominates for increasing Richardson number. At this stage, the

rotating cells start to vanish which produces a weak flow activity at the central

portion of cavity. Here most of the streamlines start accumulate at the left and

right sides. Isotherms in Figure 4.3 distinctly depicts the heat flow inside square

cavity. At forced convection dominated flow, thick thermal layer is developed with

left wall and this effect reduces gradually as Ri increases. For natural convective

flow, thin thermal layers are found with left wall showing the presence of less heat

energy due to high buoyancy force effects. A visible volumetric heat absorption is

analyzed for the increased value of Ri.

Influence of Darcy number with φ = 0.04, γ = 0◦, Re = 100, q = 5, Ri = 5 and

Ha = 25 is presented in Figure 4.4. For low Darcy numbers, i.e., Da = 10−5

and 10−4, drag forces enhanced due to least permeability for which more merged

rotating cells are formed at the moving horizontal upper and lower lids. Hence

weak flow circulation is seemed at the center cavity due to the domination of re-

sistive forces of medium. At Da = 10−3, rotating cells are seemed with top and

bottom lids with fine but weak flow movement from left to right wall of cavity.

At the valued of Da = 10−2 and 10−1, increased flow movement is seen due to

least effect of drag forces of porous medium. This impact is also influenced by
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movement of horizontal upper and lower lids of cavity. Due to this an accelerated

flow activity is distinctly viewed in central region. At these values permeability of

medium increases with least effects of drag forces. Similar effects can be observed

in the isotherms of Figure 4.4. For low value of Darcy number, thin merged heat

layers are formed at the left wall and less absorption of heat is noticed due to high

drag forces effects. Hence less heat transport activity is noticed. As Da grows up

to 10−2 and 10−1, noticeable thick heat layer is analyzed at the left wall which is

constantly absorbed by moving top lid. Hence maximum temperature distribution

is viewed at these values of Da.

Figure 4.5(a) portray the variations in Nuavg with different Hartmann number for

different modes of convection. It is noticed that Nuavg decreases gradually with

the increment in Ha. As in increasing Hartmann number the Lorentz force is

enhanced and it reduces the speed of flow. Noticeable convection is observed at

Ri = 10 due to the domination of buoyancy forces. Figure 4.5(b) shows differ-

ences in Nuavg with the growing values of Darcy number. It is realized that Nuavg

increases at the rising values of Da. This variation become more significant for

buoyancy-driven flow at Ri = 5 and 10. Figure 4.5(c) illustrates the variations in

Nuavg for different magnetic field inclination with varied Hartmann numbers. It

is found that Nuavg increases gradually with increasing magnetic field inclination.

Most enhanced convection is viewed at γ = 90◦ for least magnetic field strength

at Ha = 25. Hence with increasing Lorentz force strength Nuavg decreases.

Figure 4.6(a) shows variations in θavg with increasing Hartmann number. Rise in

θavg illustrate that the ratio of heat transfer through convection heat transfer by

conduction decrease. This leads to the fact that conduction mode is dominating.

Due to this average temperature distribution inside cavity increases espacially for

Ri = 5 and 10. Moreover, natural convection is more significant for the rise in θavg.

Figure 4.6(b) depicts the changes in θavg for increasing values of Da for all Ri. The

heat transfer through convection dominates here for which average temperature

decreases. Temperature distributes uniformly through out the cavity, due to the

balance between resistive and buoyancy forces. Hence maximum θavg is recorded

for mixed convection regime at Ri = 1. Figure 4.6(c) illustrates the θavg variations
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with the magnetic field inclination at different Hartmann number. Enhanced con-

vection is seen at γ = 45◦ for increased magnetic field strength, i.e., Ha = 100.

This is due to the Lorentz forces which are retarding mode of convection. Hence

heat transfer due to conduction becomes visible in the presence of Lorentz forces.
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Figure 4.2: Influence of Hartmann number on streamlines (left) and isotherms
(right) with γ = 0◦, Da = 10−3, Ri = 5, Re = 100, q = 5, φ = 0.04.
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Figure 4.3: Influence of Richardson number on isotherms (right) and stream-
lines (left) with φ = 0.04, γ = 0◦, Re = 100, q = 5, Ha = 25, Da = 10−3.
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Figure 4.4: Influence of Darcy number on streamlines (left) and isotherms
(right) with φ = 0.04, γ = 0◦, q = 5, Ha = 25, Ri = 5, Re = 100.
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Figure 4.5: Influence of Ri on Nuavg as a function of Hartmann number (a),
impact of Darcy number on Nuavg (b) and effect of inclined magnetic field on

Nuavg (c).
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Figure 4.6: Impact of Ri on θavg as a function of Ha (a), effect of Da on θavg
(b) and influence of inclined magnetic field on θavg (c).



Chapter 5

Conclusion

In this dissertation, the analysis of mixed convection of alumina-water nanofluid

with porous medium under the influence of inclined magnetic field and internal

heat parameters in a square cavity is investigated. Both the horizontal cavity walls

are adiabatic whereas the left cavity wall exhibit hot temperature and right one has

cold temperature. Furthermore square cavity has pourous medium. The dimen-

sional equations are transformed into dimensionless form by using non-dimension

variables and then discretized by using GFEM. We analyzed the impact of Hart-

mann, Richardson and Darcy numbers with the help of isotherms and streamlines.

The graphical representation for average temperature and Nusselt number has also

discussed.

In this study, a complete review of Hussain et al. [2] work is given. Also, the

extension of this work is presented by using the concept of pourous medium.

The average Nusselt number and temperature are examined to analyze convection

process. Also, the heat distribution and flow behaviour have been investigated

through streamlines and isotherms. From the present study, the following results

are concluded;

• Less heat convection is observed at high strength of Lorentz force. Increase

in Hartmann number facilitates prominant volumetric heat generation.

58
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• Increase in Richardson number enhanced the thermal distribution flow where

forced convection is dominated at low values of Richardson number. A visible

volumetric heat absorption is analyzed for increased values of Richardson

number.

• An augmentation in thermal distribution and flow movement is observed for

high values of Darcy number due to the least effect of drag forces.

• Nuavg decreases gradually with an increasing Hartmann number. Noticeable

convection is observed at Ri = 10 due to the domination of buoyancy forces.

Average temperature increases with rise in Hartmann number. It is more

prominant for Ri = 5 and 10.

• Average Nusselt number grows for increasing values of Darcy number whereas

this variation is more significant for buoyancy-driven flow as Ri = 5 and 10

while average temperature is decreases for augmentation in Darcy number

for all Ri. Maximum average temperature is observed for mixed convection

regime ar Ri = 1.

• A significant reduction in Nuavg is observed with increasing Lorentz force

strength. Most enhanced convection is viewed at γ = 90◦ for least magnetic

field strength at Ha = 25 whereas average temperature increases with the

variation in magnetic field inclination at different Hartmann number. En-

hanced convection is seen at γ = 45◦ for increased magnetic field strength.
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