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Abstract

In this work a complete synchronization and anti-synchronization of financial

chaotic systems are presented. The proposed control strategies are based on first

order sliding mode and adaptive integral sliding mode for complete synchroniza-

tion and anti-synchronization of financial chaotic system. In first case the system

parameters are supposed to be known and first order sliding mode control is used

for synchronization and anti-synchronization. In second case the system parame-

ters are supposed to unknown and adaptive integral sliding mode control is used

to adopt the unknown parameters of the system for synchronization and anti-

synchronization. To employ the adaptive integral sliding mode control, the error

system is transformed into a special structure containing a nominal part and some

unknown terms. Then the error system is stabilized using integral sliding mode

control. The stabilizing controller for the error system is constructed which con-

sists of the nominal control plus compensator control. The compensator controller

and the adapted laws are derived on the basis of Lyapunov stability theory.

The proposed control strategies are verified for the following chaotic systems: 3D

Financial Chaotic System and Identical 4D Hyperchaotic Financial System to

achieved the complete synchronization and anti-synchronization together with the

improved performance.
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Chapter 1

Introduction

1.1 Introduction

In literature chaos has not a general definition but there are some properties

of chaotic systems which identify the chaotic behavior of systems. Sensitivity

to initial conditions is the most common property of these systems. Any non-

linear systems can have the ability to show chaotic behavior if it have at least

3-Dimensional system for autonomous system and 2-Dimensional system for non-

autonomous system [1]. Any system can be chaotic, identified by its lyapunov

exponent [2]. For 3D system, the system show a chaotic behavior if its lyapunov

exponents are:

• First lyapunov exponent must be positive

• Second lyapunov exponent must be negative

• Third lyapunov exponent must be zero

So, in a third order dynamical system, the sign of the Lyapunov exponent could

be positive, negative and zero to show chaotic behavior [3].

For 4D system, the system show a chaotic behavior if its lyapunov exponents are:

• First and second lyapunov exponents must be positive

• Third lyapunov exponent must be zero

1
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• Fourth lyapunov exponent must be negative

So, in a forth order dynamical system, the sign of the Lyapunov exponent could

be positive, negative and zero to show chaotic behavior [4].

All physical system have nonlinear dynamics and most of them show a chaotic

behavior. For better understanding of regarding dynamical behavior of nonlinear

systems, a crucial circumstance is investigated synchronization between the non-

linear physical systems. In many naturally processes synchronization has been

observed and show a significant impact on everyday life including science, tech-

nology and social life. Synchronization play an important role among researchers

because of its diverse applications in various fields. In literature, the issue of syn-

chronization of nonlinear systems have been extensively studied. Many times, the

parameters of nonlinear chaotic systems are unknown, the estimation of unknown

parameters is crucial. Estimated laws have a strong effect on synchronization

and anti-synchronization of chaotic systems, their influence on effecting of non-

linear systems cannot be prevented. In many non-linear chaotic systems, wrong

value of unknown parameters could be supply uncertainty and disturb the closed

loop performance of system. Figure (1.1) and (1.2) shows the block diagrams

for master-slave systems and synchronization of nonlinear master-slave systems

via an appropriate controller respectively. Appropriate control signal ensured the

convergence of error dynamics. The proposed work presents a robust sliding mode

Figure 1.1: Master and Slave Systems

control for synchronization and anti-synchronization of 3D and 4D financial chaotic

systems. A sliding manifold is chosen to design a sliding mode control and syn-

chronization and anti-synchronization is achieved in the attending of uncertainty.

The simulation results is done in MATLAB. The error system is asymptotically

stable and converges to origin.
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Figure 1.2: Block diagram ofesynchronization usingscontroller

1.2 Overview

Synchronization and anti-synchronization of 3D and 4D financial chaotic systems

is the rudimentary determination of this work. We need to stabilize the dynamics

of error system (difference of master and slave system) for any initial condition.

The technique used in this work is SMC. In first case, parameters of systems

is considered to be known and First Order SMC is applied to accomplish syn-

chronization and anti-synchronization. In second case, parameters of systems is

considered to be unknown and AISMC is concerned. Adaptive laws are designed

via Lyapunov stability theory and convergence of error system is ensured in the

presence of external disturbance to verify the robustness.

1.3 Motivation

In last decade, the interests in synchronization and anti-synchronization of nonlin-

ear systems has been increased. Chaotic financial systems have a broad range of

applications in different fields including cryptography, Geophysics, biology, elec-

trical engineering, robotics and so on. Due to diverse applications of chaotic sys-

tems, it is very difficult to avoid contact with chaotic behaviors. Control problem

of chaotic systems is very difficult because of its sensitive nature. It is actually

tough to talk about all the appliance domain throughout this short portion, but,

some vigorous research areas and applied examples within the synchronization are

described. Figure (1.3) shows chaotic behaviors in different phenomenon.
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Figure 1.3: Chaotic Behavior

1.4 Thesis Objective

The intention of this research work is to develop suitable synchronization and

anti-synchronization strategies for 3D and 4D nonlinear financial chaotic systems

working in accordance with master-slave principal that addresses

• Chaos Synchronization of 3D and 4D financial chaotic systems.

• Anti-Synchronization of 3D and 4D financial chaotic systems.

1.5 Application of Proposed Work

Since we are dealing with the financial chaotic systems, these systems have very

diverse applications in different fields. This research thesis can help scientific

society in the different fields which are as following.

• Secure Communication

• Encryption

• Stock Exchange

• Contagious Diseases

• Economic Forecasting

• Power Grid

• Control of irregular devices and systems
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1.6 Thesis Organization

This thesis has 5 chapters. After a brief introduction The rest of this thesis is

organized as follows:

Chapter 2: Literature survey

This chapter provides the available literature published regarding the synchro-

nization and anti-synchronization of financial chaotic systems. Base available on

literature review, a more effective control strategies are proposed for 3D and 4D

financial chaotic systems.

Chapter 3: Proposed Control Algorithms for Complete Synchroniza-

tion and Anti-Synchronization

This chapter provides the proposed robust control technique for synchronization

and anti-synchronization of financial chaotic systems. Adaptive sliding mode is

designed to investigate problem of synchronization and anti-synchronization of

non-linear chaotic financial systems considered the known and unknown param-

eters, finally using lyapunov function to substantiate the stability of preferred

control technique.

Chapter 4: Applications of Proposed Algorithm

This chapter presents a simulations and results. The efficiency of proposed control

technique is applied to different financial chaotic systems such as synchronization

of financial chaotic systems and complete synchronization of 4D hyper chaotic fi-

nancial systems

Chapter 5: Conclusion and Future work

This chapter summarize the thesis and draws assumption. The significance of the

proposed work is emphasized. Future directions have also been set for further

work.



Chapter 2

Literature Surveys

2.1 Introductions

This chapter give a review of chaotic systems, synchronization, anti-synchronization,

SMC and AISMC and its technological tendencies are given in literature.

2.2 Chaos

Chaos theory is definitely the branch of mathematics, it’s the study of apparently

unpredictable behavior in systems governed by deterministic laws. A dynamical

strategy is addressed chaotic when this satisfies following properties given in [5],

which popularly termed as butterfly effect.

• Boundness

• Infinitesrecurrence

• Sensitive reliance on initialeconditions

Chaos is referred to as the fact that dynamical system which does not repeat it-

self, despite this system is governed by deterministic equations [6]. Period and the

frequency are accustomed to identify chaotic signals, while phase-plane and corre-

lation are accustomed to identify the attractor and randomness during the chaotic

system. The attractor is section of a state space that there won’t be exit paths.

6
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That is obviously, points which get close enough to the attractor remain close even

after being slightly disturbed. A single state which is known as equilibrium state

occurs in attractor, as well as a cycle of states referred to as a limit cycle [6]. For

chaotic systems, the attractor probably wouldn’t fix to one particular but explores

all a state space surrounding the attractor forever without repeating.

Applying the mathematics of chaos are highly diverse, including study regarding

turbulent flow of fluids, swirling smoke from cigarette, population dynamics, chem-

ical reactions, communication engineering, plasma physics, along with the motion

of groups and clusters of stars. Apart from irregular performance of actual-world

systems, chaos is also invoked for making clear properties such as real trajectories

shown in a particular state space or sojourn times during trajectories in exacting

areas of state space [7]. The nature of scientific details whilst in the literature on

chaos is carefully under-discussed that will put it gently.

Figure (2.1) show the trajectory in the Lorenz attractor from the phase plane,

depicting the stretching and folding properties [8], which is seen when plotting the

phase plane.

Figure 2.1: The phaseeportrait ofex1, x2, x3

In weather model Lorentz discovered a chaotic phenomenon in [6]. Subsequently,

In 1976 Rossler discovered a chaotic system [9]. Chaos theory has applications in

a variety of fields of science and engineering like oscillators, dynamos, Tokamak

systems, chemical reactions, neural networks, neurology, biology, electrical circuits

crypto systems, memristors random bit generator etc.

Quite a lot of reality phenomena exhibit non-linear behavior, whereas others are

typically nonlinear. In many systems different chaotic orders occurs including
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Swirling smoke from cigarettes, randomly dribbling water through faucet, a wav-

ing flag in wind and biological populations [5].

Initially a mathematical type of chaos was first discovered by Lorenz in 1963 [10].

After Lorenz various popular chaotic systems are suggested by Rikitake in [7],

Rossler [11], Shimizu-Morioka [12], Chua [13], Rucklidge [14], Sprott [9] and Chen

[15]. In parallel while using the developments, chaos and chaotic systems are

utilized in lots of scientific disciplines including engineering, computing, commu-

nication, medicine, biology, management-finance and electronics [16]. Numerous

novel chaotic and hyperchaotic systems shows a different dynamical behaviors have

studied in literature [17, 18].

A hyperchaotic attractor is normally considered chaotic behavior with at the least

two positive Lyapunov exponents, coupled with one null exponent throughout the

flow one negative exponent to ensure the boundless of the perfect solution, so

minimum dimension to the hyperchaotic system is 4.

Recently, there seemed to be great involvement with research on hyperchaotic

systems and applications in secure communications, data encryption, etc. The

earliest 4D hyperchaotic strategy is discovered by O.E. Rossler in 1976. This fig-

ure (2.2) is taken from [18].

Figure 2.2: First Rossler Hyperchaos

Recently, the generation of hyper chaos together with hyperchaotic circuit realiza-

tion have attracted researchers increasing attention. The hyperchaotic system has

a minimum of two positive Lyapunov exponents, indicating the fact that dynam-

ics are enlarged in lots of direction at same time. For virtually any autonomous



Literature Review 9

continuous system, the dimension in the hyperchaotic attractor must be at least

four, however, for that chaotic attractor, three-dimension is enough and has just

a certain positive Lyapunov exponent. Therefore, in comparison with ordinary

chaotic system, hyperchaotic system has more difficult and richer dynamics so as

to be superior used in a number of chaos needed fields.

This thesis presents control technique for chaotic financial systems. The core de-

termination in the work is usually to introduce the most recent control technique

for chaotic financial systems. A first order SMC technique introduced for known,

while AISMC technique with unknown parameters of chaotic financial system.

2.3 Synchronization of Chaotic Systemss

Synchronization of chaos identifies an operation wherein two or many chaotic

systems either identical or non identical rearrange a specific property with the

motion to a standard behavior due to coupling or towards forcing (periodical or

noisy). While chaos synchronization most prone to accomplish, despite the fact

that chaotic subsystems may be different with exact same initial conditions, and

their outcomes often diverge from another.

Synchronization processes occur in each and every field of life, which play a crucial

role in many different contexts, the inclination of just living entities, including ani-

mals to humans, to synchronize jointly may be known as the commonest tendency

throughout the universe. Many fireflies synchronously illuminate, while geese fly

at an identical speed in formation. Applause at concert halls merges carryout a

harmonized sound eventually, along with the menstrual periods of women who

closely interrelate for a long time also synchronize. 1000s of cardiac pacemaker

cells during the heart fire in synchronization to sustain life. Inanimate objects,

similar to particles and planets, synchronize as well. Lasers are produced when

trillions of atoms oscillating synchronized emit photons the identical phase and

frequency. Moreover, either side belonging to the moon could be displayed since

orbital and rotational periods belonging to the moon are synchronized because of

the gravitational pull between the planet earth and moon.

In the previous couple of decades, there was clearly considerable interest concern-

ing synchronization of chaotic and hyperchaotic systems. Regarding their seminal

paper in 1990, Pecora and Carroll [13] initiated a way to synchronize two identical
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chaotic systems and says it turned out feasible for many chaotic systems being

completely synchronized. Later, chaos synchronization are actually utilized for

numerous fields including physics [19], chemistry [20], ecology [21], secure commu-

nications [22], cardiology [16], robotics [23], complex dynamical networks and so

on.

Previously, various control techniques are proposed for synchronization and anti-

synchronization financial chaotic and various non-linear chaotic systems e.g, com-

plete synchronization [11, 24, 25], lag synchronization [12, 26], anticipated synchro-

nization [14], phase synchronization [9], project synchronization [16, 27], general-

ized synchronization [18], mixed synchronization [28] and passivity based synchro-

nization [29]. As a precise case of complete synchronization and anti-synchronization

is attained if driven and response meet that they are quite same. It has been con-

firmed numerically and experimentally, the fact that coupled chaotic systems can

attain anti-synchronization [30]. Recently, control methods are accustomed to

anti-synchronize identical or non-identical chaotic systems and derive sufficient

anti-synchronization conditions, e.g, observer control [31], linear feedback control

[32], back-stepping control [33], adaptive control [34], SMC [35], non-linear control

[36], H∞ control [37], etc.

Throughout this thesis, the most recent control scheme relative to the adaptive

sliding mode control for chaotic synchronization of two chaotic financial systems is

used. The SMC method used for the basic attributes of fast response, easy realiza-

tion, and good transient performance in addition to its insensitivity to parameter

variations and external disturbances.

Research work at synchronization of non-linear systems is briefly revisited as

follows. Since as the pioneer utilize synchronization of two non-linear systems,

namely, master and slave systems [12], the contest of synchronization of non-

linear systems are generally extensively studied within theoretical and practical

systems. Study of synchronization is evolved making use of dynamical parameters

of nonlinear systems similar to unknown parameters etc.

2.3.1 Types of Synchronization

Some main types of synchronization are discussed below:
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• Complete Synchronization:

Signify when master and slave meet for being exactly same is named a Com-

plete synchronization.

e lim
t→+∞

‖e(t)‖ = lim
t→+∞

‖y(t)− x(t)‖ = 0e (2.1)

• Generalized Synchronization:

Signify synchronization within states of two systems utilizing a functional

relation is named generalized synchronization.

e lim
t→+∞

‖e(t)‖ = lim
t→+∞

‖y(t)−D(x(t))‖ = 0 (2.2)

• Phase Synchronization:e

Phase Synchronization mean that when they have bounded phase differ-

ence and uncorrelated amplitude. limt→∞ ‖φ1(t)− φ2(t)‖=0ewhere,eφ1(t)

and φ2(t)eindicates the phases of two coupled oscillators.

• Lag Synchronization:e

Signify when dynamics is explained delay differential equations. Actually

during this one of the many oscillators follows of other.

limt→∞ ‖X1(t)−X2(t− τ)‖=0,eWhere τeisedelay.

• Projective Synchronization:e

In this the states of master X(t)eand slave system Y (t)esynchronize with

respect to scaling factor α. i.e.

e lim
t→+∞

‖e(t)‖ = lim
t→+∞

‖y(t)− αx(t)‖ = 0.e (2.3)

2.3.1.1 Complete Synchronization (CS)

The trajectories belonging to the master along with slave systems converge in be-

coming precisely the same. This is actually the foremost and an effective way of

synchronization [11]. This is situated coupled somehow the identical systems and

well referred being identical synchronization.

Chaotic systems are dynamical systems that shows synchronization, this can es-

sential feature that it is very sensitive to initial conditions [12]. This means that,

two identical chaotic systems starting at nearly exactly the same initial points
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in phase space develop onto trajectories which become uncorrelated through the

entire time.

Chaos synchronization problem have been served using control design techniques

where synchronization is perhaps addressed for the tracking or will probably be

stabilization problem. We applied stabilization control techniques rather than

tracking issues. Applying these stabilization control techniques to dynamical sys-

tems which is known as error system, a controller might be designed which ren-

ders the stabilization from the error trajectories to the origin. These dynamical

error strategy is constructed from main distinction between the master and slave

systems. We consider this to be particular synchronization as complete synchro-

nization (CS) as shown in Figure (2.3).

Figure 2.3: Complete Synchronization of x1 and y1

Two continuous-timeschaotic systems:

sẋ = F (x(t))s

sẏ = H(y(t))
(2.4)

called complete synchronization if obey the following condition:

s lim
t→∞
‖e(t)‖ = lim

t→∞
‖y(t)− x(t)‖ = 0s (2.5)
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2.4 Sliding Mode Control

SMC is robust nonlinear control design technique with inherent robustness prop-

erties in case of uncertainties and parametric variations. SMC inherent a discon-

tinuous term for robustness. SMC structure is obviously more desirable to develop

and use. Along concentrating on the same to the control systems method, also, it

is utilized towards disturbance estimation and rejection.

SMC is special class of variable structure control system [11]. The particular

fundamental notion of SMC is described in [38]. SMC are generally contain two

phases the initial one is reaching phase and another is sliding phase [15]. In that

order belonging to the system are going to be reduce in sliding phase. Reaching

phase signify that system states are force to come along specific sliding manifold

in the finite time while sliding phase mean that after the states are reached to

manifold it is going to slide towards origin in this particular sliding surface.

2.5 Adaptive Sliding Mode Control

In tangible world many non-linear systems being controlled have constant or time

varying parameters which increase the risk for uncertainty. For illustration, robot

manipulators may carry objects with unknown inertial parameters. Power system

might go through large variations in loading conditions. Fire-fighting aircraft are

affected considerable mass changes once they load and unload wide range of wa-

ter. To regulate these kind of systems adaptive control strategy is preferred. The

fundamental reasoning behind adaptive control approach is always estimate the

values of the varying parameters of plant. Adaptive control is developed for both

linear and non-linear systems. Two main approaches are around for designing

adaptive control.

1. sModel-Reference Adaptive Control (MRAC)s

2. sSelf-Tuning Controllers (STC)s
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2.5.1 Model-Reference Adaptive Controls

Fig (2.4) represents the block diagram of MARC. It consists of 4 parts: a plant

containing unknown parameters, a reference model for specifying the required

output, a feedback control for adjusting the values of parameters and adaptation

mechanism for updating the values of adjustable parameters.

Figure 2.4: The block diagram model-reference adaptive control

2.5.2 Self-Tuning Controllers

In other control approaches the parameters of controller is computed from that

regarding plant, in case your parameters are unknown, then that parameters are

replaced by their estimated values which is available from estimator. A controller

thus design by coupling a control with estimator is addressed as self-tunning con-

troller. Fig (2.5) represents the block diagram of this kind of adaptive controller.

2.6 Integral Sliding Mode Controls

Integral sliding mode efforts to reject uncertainties and could possibly help to

circumvent chattering [39]. ISMC has no reaching phase. It implies that sliding

is carried out in initially instant. In integral its order dynamics will be exactly

same while in normal sliding mode its order is reduce in in sliding phase [39]. The
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Figure 2.5: The block diagram self-tuning controller

fundamental introduction of integral sliding mode is discussed in below section.

Look at the following nonlinear system with state space description.

ẋ = g(x, t) + C(x, t)us (2.6)

where x ∈ Rn represents the state vector and u ∈ R represents the control which

appears linearly in system representation.

The system operation under uo may have the following form

sẋo = g(x0, t) + C(xo, t)uos (2.7)

So the system 2.6 become

sẋ = g(x, t) + C(x, t)u+ ζ(x, t)s (2.8)

where ζ(x, t) is the perturbations caused by uncertainty in dynamics which is often

resulting from parameter variations and external disturbances.

The prospective is to design a control law which meets x(t) = x0(t) from the pri-

mary time instant x(0) = x0(0). The required control law is in the type

u = uo + u1 (2.9)

where uo is a perfect control and u1 is defined as that will reject the perturbation

tern ζ(x, t). By putting equation 2.9 in 2.8, yields

sẋ = g(x, t) + C(x, t)uo + C(x, t)u1 + ζ(x, t)s (2.10)
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Sliding surface is define as [40]

σ(x) = σo(x) + z (2.11)

The initial term whilst in the right hand side of 2.11 indicates the contribution of

conventional sliding surface along with second term is definitely the integral term

which can be usually that should be determined from the subsequent analysis.

Time derivative of 2.11 of the dynamics of 2.10, takes the form

σ̇ = 5σo[g(x, t) + C(x, t)uo + C(x, t)u1 + ζ(x, t)] + ż (2.12)

By choosing integral term dynamics

sż =
∂σo(x, t)

∂x
(g(x, t) + C(x, t)uo)s

sz(0) = −σox(0)s

(2.13)

Hence condition z(0) select such that it fulfill the requirement σ(0) = 0.

For achieving the congruence condition x(t) = xo(t), altering the procedure of the

equivalent control method [41].

The expression of u1eq mentioned below

u1eq = −δ (2.14)

For Verification of this condition u1eq = −δ, leads to the forth coming state equa-

tions which force the motion of the system in sliding mode.

sẋ = (g(x, t) + C(x, t)uo)s (2.15)

By enforcing the sliding mode along with the integral sliding surface 2.11 the dis-

continuous control function u1 in 2.9 are mentioned below

su1 = −M(x)sign(σ)s (2.16)

2.7 Sliding Manifold

Towards employment of SMC, at start up a switching surface delineation is needed.

The switching surface may be called in the form of sliding surface. That the sliding
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surface is established, then a aforementioned two phases consist of devote particu-

lar order. Reaching phase is accomplished first, and in addition it is responsible for

the attractiveness of system states through initial condition for any switching sur-

face. When reaching phased is attained, and also system will lie upon the sliding

surface, then sliding phase constantly in place, in addition to system’s stats glides

into the equilibrium point utilizing a discontinuous control action (which also en-

sures robustness). Figure (2.6) shows the reaching phase (RP), sliding mode (SM)

and sliding surface (SS) inside pictorial way.

Figure 2.6: The Sliding Phase, Reaching Phase, Sliding Surface.

2.8 Chattering Phenomenon

As a consequence of discontinuous control, chattering will produce during the sys-

tem as manifest in Figure (2.7) , which is recognized as dangerous to the system’s

mechanical and electromechanical chunks. Like chattering has considerable detri-

mental effect in real-world solicitations. That phenomenon often how you can

considerable undesirable oscillations that reduce the achievement on the system.

Avoiding chattering effect, differing solutions these challenge are proposed. Mod-

ern design scheme using the estimation of sliding variable was presented. The

strategy according to narrating function point of view originated for chattering

research in the structure during the inclusion of this un-modeled dynamics. An

alternate way to diminish chattering effect is perhaps HOSM control techniques.
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Figure 2.7: The Chattering Effect.



Chapter 3

Proposed Control Algorithms for

Complete Synchronization and

Anti-Synchronization

In this particular chapter sliding mode control technique (SMC) are offered to

attain Complete Synchronization and Anti-Synchronization between two financial

chaotic systems. Two cases are believed to be, first one with known parameters

by using first order SMC and 2nd one with unknown parameters by using AISMC

of financial chaotic systems.

3.1 Controller Designing Based on First Order

Sliding Mode Control

Consider the two chaotic systems:

ẋ = a(x) + A(x)β

ẏ = b(y) +B(y)φ+ u
(3.1)

where x = [x1, x2, ...., xn]T ∈ Rn andky = [y1, y2, ...., yn]T ∈ Rnk represents state

vectors of mastereand slave systems (3.1) respectively. β ∈ <p and φ ∈ <q rep-

resents real vectors for known parameters. A(x) ∈ Rn×p and B(y) ∈ Rn×q are

matrices. a(x) ∈ Rn and b(y) ∈ Rm represents vectors of nonlinear functions, and

19
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u(x, y) ∈ Rm represents control vector.

Error defined as:

e = y − qx (3.2)

For synchronization we consider q = 1 and for anti-synchronization we consider

q = −1.

Then error dynamics is:

ė = ẏ − qẋ = b(y) +B(y)φ+ u− q{a(x) + A(x)β} (3.3)

Now design u , such that error system (3.13) becomes asymptotically stable for

complete synchronization.

3.1.1 Synchronization and anti-synchronization with known

parameters

Examine the following chaotic system:

ẋ = a(x) + A(x)β

ẏ = b(y) +B(y)φ+ u
(3.4)

By taking error as:

e = y − qx (3.5)

where error is e = [e1, e2, ...., en]T ∈ Rn now for error dynamics by taking deriva-

tive of error:

ė = ẏ − qẋ = b(y) +B(y)φ+ u− q{a(x) + A(x)β} (3.6)

If we chose

u = −b(y)−B(y)φ+ q{a(x) + A(x)β}+ ee (3.7)

where, ee = [e2, e3, ...., en v]T and put u in 3.6

while v is a new input and system dynamics (3.6) will become
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ė1 = e2

ė2 = e3

...

ėn = v

(3.8)

After that define the Hurwitzksliding surfaceksystem (3.8) as:

σ = e1 +
n−1∑
i=2

ciei + en

σ̇ = ė1 +
n−1∑
i=2

ciėi + ėn

σ̇ = e2 +
n−1∑
i=2

ciei+1 + v

(3.9)

By choosing v = −e2−
∑n−1

i=2 ciei+1−ksign(σ)−kσ we have, σ̇ = −ksign(σ)−kσ.

Therefore we can say that system (3.8) is asymptotically stable.

For this we conclude that, σ → 0, consequently (e1, e2, ...., en)→ 0 .

3.2 Controller Designing Based on Adaptive

Integral Sliding Mode Control

Examine the chaotic system having external disturbance:

ẋ = a(x) + A(x)β

ẏ = b(y) +B(y)φ+ hv + u

v̇ = kf(y)− jf(v)

(3.10)

where x = [x1, x2, ...., xn]T ∈ Rn andky = [y1, y2, ...., yn]T ∈ Rnk represents state

vectors of mastereand slave systems (3.10) respectively, while v̇ in (3.10) rep-

resents the vector of time varying external disturbances. β ∈ <p and φ ∈ <q

represents real vectors for known parameters. A(x) ∈ Rn×p and B(y) ∈ Rn×q are

matrices. a(x) ∈ Rn and b(y) ∈ Rm represents vectors of nonlinear functions, and

u(x, y) ∈ Rm represents control vector. The external disturbance has upper bound
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vo.

v ≤ vo (3.11)

Now define error as:

e = y − qx (3.12)

For synchronization we consider q = 1 and for anti-synchronization we consider

q = −1.

For error dynamics by taking derivative of error signal:

ė = ẏ − qẋ = b(y) +B(y)φ+ hv + u− q{a(x) + A(x)β} (3.13)

Now design u , such that error system (3.13) becomes asymptotically stable for

complete synchronization.

3.2.1 Synchronization and anti-synchronization with

unknown parameters

Permit β̂, φ̂ be estimate of β, φ respectively, φ̃ = φ− φ̂ and β̃ = β − β̂ be error in

estimating β, φ.

so the equation (3.1) becomes,

ẋ = a(x) + A(x)θ̃ + A(x)β̂

ẏ = b(y) +B(y)φ̃+B(y)φ̂+ hv + u
(3.14)

Define error signal,

e = y − qx (3.15)

Now for error dynamics by taking derivative of equation (3.15):

ė = ẏ − qẋ = b(y) +B(y)φ̂+B(y)φ̃+ hv + u− q{a(x) + A(x)β̂ + A(x)β̃} (3.16)
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If we choose

u = −b(y)−B(y)φ̂+ q{a(x) + A(x)β̂}+ ee (3.17)

By putting value of u so equation (3.16) becomes

ė = ee+B(y)φ̃− qA(x)β̃ + hv (3.18)

[ė1, ė2, ...., ėn]T = [e2, e3, ...., en v]T +B(y)φ̃− qA(x)β̃ + hv (3.19)

By using AISMC, we choose first the nominal system for (3.19) as:

ė1 = e2

ė2 = e3

...

ėn = v0

(3.20)

By defining the hurwitz sliding manifold for 3.20 as:

σ0 = e1 +
n−1∑
i=2

ciei + en

σ̇0 = ė1 +
n−1∑
i=2

ciėi + ėn

σ̇0 = e2 +
n−1∑
i=2

ciei+1 + v0

(3.21)

If we chooseev0 = −e2−
∑n−1

i=2 ciei+1−kσ0 we have,eσ̇0 = −kσ0. Therefore we can

say that system (3.20) iseasymptoticallyestable.

By choosing the integral sliding surface for the system (3.19)

σ = σ0 + z

Where, z iskintegral term calculated later, to keep away from the reaching phase,

chooseez(0) in such a way z(0) = −σ(0). choose v = v0 + vs spot, v0 is aenominal

input and vseis discontinuous term calculated later.

Where C = [1 c1 c2, ...., cn−1 1] is chosen in this way that σ become Hurwitz poly-

nomial.
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Then,

σ = Ce+ zk

By taking derivative,

σ̇ = Cė+ żk

By putting ė value we have,

σ̇ = C[ee+B(y)φ̃− qA(x)β̃ + hv] + ż

σ̇ = e2 +
∑n−1

i=2 ciei + v0 + vs + CB(y)φ̃− qCA(x)β̃ + Chv + ż

Now define Lyapunov function:

V = 1
2
σ2 + 1

2
β̃T β̃ + 1

2
φ̃T φ̃

In this we sketch the adaptive law for β̃, β̂, φ̃, φ̂ and determine vs in this a way

that V̇ < 0.

Examine a lyapunovefunction V = 1
2
σ2+ 1

2
β̃T β̃+ 1

2
φ̃T φ̃.Thenev̇ < 0 if the adaptives

lawsefor β̃, β̂, φ̃, φ̂ and the utility of vs are selected as:

ż = −e2 −
∑n−1

i=2 ciei+1 − v0
vs = −ksign(σ)− kσ
˙̃β = σqAT (x)CT − k1β̃
˙̃φ = −σBT (y)CT − k2φ̃ where, k, k2, k3 > 0
˙̂
β=- ˙̃β
˙̂
φ=- ˙̃φ

Proof:

V = 1
2
σ2 + 1

2
β̃T β̃ + 1

2
φ̃T φ̃

By taking derivative we have:

V̇ = σσ̇ + β̃T ˙̃β + φ̃T ˙̃φ

= σ{e2 +
∑n−1

i=2 ciei + v0 + vs + CB(y)φ̃− qCA(x)β̃ + Chv + ż}+ β̃T ˙̃β + φ̃T ˙̃φ

= σ{e2 +
∑n−1

i=2 ciei + v0 + vs + Chv + ż}+β̃T{ ˙̃β − qσAT (x)CT}+φ̃T{ ˙̃φ+ σBT (s)CT}
By using

ż = −e2 −
∑n−1

i=2 ciei+1 − v0
vs = −ksign(σ)− kσ
˙̃β = σqAT (x)CT − k1β̃
˙̃φ = −σBT (y)CT − k2φ̃ where, k, k2, k3 > 0

We have

V̇ = −kσ2 + σ[Chvo − ksign(σ)]− k1β̃T β̃ − k2φ̃T φ̃

If k > Chvo then we can wind up that σ, β̃, φ̃ → 0 that σ → 0, consequently

(e1, e2, ...., en)→ 0.



Chapter 4

Applications of Proposed

Algorithm

Introduction

In this chapter, numerical examples of chaotic finance systems are contemplate to

verify the Suggested control strategy.

4.1 Numerical Example 1

4.1.1 3D Financial Chaotic System

In non-linear systems, researchers are struggling to use the notion of non-linear

dynamics, specially the chaos theory, to analyze the complexness of economic and

financial systems recently [42–45]. That Strotz et al. have performed the pioneer-

ing effort in this field [46], a number of economics chaotic models have already

been preferred, for instance Kaldorian model [47], the IS-LM model [48], the hy-

perchaotic finance system [4], and various non-linear dynamical models [49–51].

It is recognized that economic chaotic systems are certainly troubled by exter-

nal disturbances esteemed from environmental involvement [52–55] which may

accompany the disrupting of economic and financial chaotic systems and may

cause undesirable outcomes. It is significant to evaluate the global stabilization

of economic and financial chaotic systems to underneath the inclusion of external

25



Applications Of Proposed Algorithm 26

disturbance. Few outcomes are actually revealed with regard to robust stabiliza-

tion of complex systems [56, 57]. Previously decades, complete synchronization of

chaotic systems has attracted numerous attention, complete because synchroniza-

tion could possibly get the essential outcomes faster. Behind schedule, while using

the magnify within the research, miscellaneous complete synchronization methods

were debated. Just like, in [24, 30], the authors have explored the function of

complete synchronization of chaotic systems, in addition to the scaling function

adopted to get constant or unity. In [11, 24, 25], the authors debated function

complete synchronization of chaotic financial systems. Currently, many research

efforts stated above are dedicated to examine the presetting scaling function in

numerical specimen. Whereas the complications faced by the authors about the

definite integral scaling function are dealt to possible extend but they’ve got rarely

been explored, which is still unsolved. Inspired by the prevailing works, we are

going to acquire complete synchronization and anti-synchronization criteria to the

financial chaotic systems.

Appraise the Chaotic financial system [28] as the master system mentioned here

under

eẋ1 = x3 + (x2 − a)x1e

eẋ2 = 1− bx2 − x21e

eẋ3 = −x1 − cx3e

(4.1)

where x1 is the interesterate, x2 is the investmentedemand, and x3 is the price in-

dex. a > 0 represents the savingeamount, b > 0 represents theecost persinvestment

and c > 0 represents theeelasticity of demandsof commercialemarkets.

and the dynamics of slave system

eẏ1 = y3 + (y2 − a)y1 + u1e

eẏ2 = 1− by2 − y21 + u2e

eẏ3 = −y1 − cy3 + u3e

(4.2)

The system parameters are a = 0.9,eb = 0.2 and c = 1.5, with these parameters

system 4.1 exhibitsechaotic behavior.
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Figure 4.1: Phase portrait of 3 Dimensional Chaotic Financial system.

4.2 Numerical Example 2

4.2.1 Identical 4D Hyperchaotic Financial Systems

The financial Chaotic systems has attracted a substantial amount of attraction

from researchers in recent years. The financial systems are involved with the exis-

tence [43]. Chaos look when economic crisis happens. The 2007 global economic

crisis shows arsenic intoxication the chaos. The dynamical behaviors in the system

are more intricate simply because they have many positive Lyapunov exponent and

are generally expanded in many direction. So a highly effective and rapid control

method is incredibly essential for government for taking safety measures when

chaotic phenomenon appears. The dynamics of the financial system do a signif-

icant role while in the continuing build out of economic system. Although the,

dynamics of any financial system relies on multiple input variables in an incredibly

complex and nonlinear fashion. Financial system, even though deterministic, can

exhibits chaotic behavior. Since a chaotic system might be more responsive to

small errors and alterations in parameters, their synchronization is vital originat-

ing from a control reason for view.

In the work we present synchronization and anti-synchronization of 3D financial

chaotic system and 4D hyperchaotic financial systems.The response strategy is

taken like a perturbed system by some bounded external disturbances. Two cases

are believed to be:



Applications Of Proposed Algorithm 28

1. System Parameters are Known: In this case the synchronization and

anti-synchronization is achieved using first orderesliding mode control.

2. System Parameters are Unknown:eIn this case the adaptiveeintegral

slidingemode control is used to achieve thessynchronization and anti- syn-

chronization, and to estimate the system parameters.

In 2012, a new hyperchaotic finance system was suggested. The model is expressed

by the admirers 4D hyperchaotic financial system [4]:

Master system is given below

eẋ1 = x3 + (x2 − a)x1 + x4e

eẋ2 = 1− bx2 − x21
eẋ3 = −x1 − cx3e

eẋ4 = −dx1x2 − kx4e

(4.3)

where x1erepresents the interest rate, x2 represents theeinvestment demand, x3

represents the price index, and x4 represents the average profit margins. a > 0

represents the savingeamount, b > 0 represents the cost pereinvestment, c > 0

represents the elasticityeof demand ofscommercial markets and d, k > 0 represents

some system’s parameters.

and the slave system

eẏ1 = y3 + (y2 − a)y1 + y4 + u1e

eẏ2 = 1− by2 − y21 + u2e

eẏ3 = −y1 − cy3 + u3

eẏ4 = −dy1y2 − ky4 + u4

(4.4)

The system parameters are a = 0.9, sb = 0.2, sc = 1.5, sd = 0.2, sk = 0.17 , with

these parameters system (4.3) exhibits chaotic behavior.

4.3 First Order Sliding Mode Control

In this section first order SMC is dispensed for synchronization and anti-synchroniza-

tion of chaotic financial system.
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4.3.1 3 Dimensional System

By defining error signals:

ee1 = y1 − qx1
ee2 = y2 − qx2
ee3 = y3 − qx3

(4.5)

For synchronization put q = 1 and for anti-synchronization put q = −1.

By taking the derivative of error signals we get error dynamics:

ė1 = ẏ1 − qẋ1 = y3 + (y2 − a)y1 − q(x3 + (x2 − a)x1) + u1

ė2 = ẏ2 − qẋ2 = 1− by2 − y21 − q(1− bx2 − x21) + u2

ė3 = ẏ3 − qẋ3 = −y1 − cy3 − q(−x1 − cx3) + u3

(4.6)

By choosing

u1 = −y3 − (y2 − a)y1 + q(x3 + (x2 − a)x1) + e2

u2 = −1 + by2 + y21 + q(1− bx2 − x21) + e3

u3 = y1 + cy3 + q(−x1 − cx3) + v

(4.7)

In 4.7 v represents the new input, which can be mentioned below:

eė1 = e2

eė2 = e3

eė3 = v

(4.8)

Defining the Hurwitz sliding surfaceefor system 4.6 as:

σ = (1 + d
dt

)2e1

σ = e1 + 2e2 + e3

By taking the derivative

σ̇ = ė1 + 2ė2 + ė3

By putting values we have

σ̇ = e2 + 2e3 + v

By choosing v = −e2 − 2e3 − ksign(σ)− kσ
By putting value of v we get

σ̇ = −ksign(σ)− kσ
So we can say that error system 4.6 is asymptotically stable.

In simulations,ethe initial conditions areechosen as given in system x(0) = [3, 1, 2]T ,

y(0) = [−2, 3,−1]T .eThe parameters values are: a = 0.9, b = 0.2, c = 1.5 .



Applications Of Proposed Algorithm 30

Consider a Lyapunov function:

V = 0.5σ2

Hence by taking the derivative,

V̇ = σσ̇

V̇ = σ(−ksign(σ)− kσ) = −|k| − kσ2

From this we can say that σ → 0, since σ is Hurwitz therefore ei → 0,i = 1, .., 3,

therefore the systems 4.8 is asymptotically stable.

4.3.2 Synchronization of 3 Dimensional Chaotic Financial

System

For Synchronization set q=1 in eq (4.5):
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Figure 4.2: Synchronization of 3D Financial Chaotic System, (a) Synchroniza-
tion of interest rate corresponding to initial condition [x1(0), y1(0) = (3,−2)],
(b) Synchronization of investment demand corresponding to initial condition
[x2(0), y2(0) = (1, 3)], (c) Synchronization of price index corresponding to ini-
tial condition [x3(0), y3(0) = (2,−1)], (d) and (e) Time history of the errors e1,

e2 and e3
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Figure 4.3: Synchronization of 3D Financial Chaotic System, (a) Sliding man-
ifold σ (b) Control effort v
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4.3.3 Anti-Synchronization of 3 Dimensional Chaotic

Financial System

For anti-synchronization set q= -1 in eq (4.5):
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Figure 4.4: Anti-Synchronization of 3D Financial Chaotic System, (a) Anti-
Synchronization of interest rate corresponding to initial condition [x1(0), y1(0) =
(3,−2)], (b) Anti-Synchronization of investment demand corresponding to ini-
tial condition [x2(0), y2(0) = (1, 3)], (c) Anti-Synchronization of price index
corresponding to initial condition [x3(0), y3(0) = (2,−1)], (d) and (e) Time

history of the errors e1, e2 and e3
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Figure 4.5: Anti-Synchronization of 3D Financial Chaotic System, (a) Sliding
manifold σ (b) Control effort v
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4.3.4 4 Dimensional System

Now by defining error signals:

ee1 = y1 − qx1
ee2 = y2 − qx2
ee3 = y3 − qx3
ee4 = y4 − qx4

(4.9)

For synchronization select q = 1 and for anti-synchronization select q = −1

By taking derivative of error signals error dynamics becomes:

eė1 = ẏ1 − qẋ1 = (y3 + (y2 − a)y1 + y4) + u1 − q(x3 + (x2 − a)x1 + x4)

eė2 = ẏ2 − qẋ2 = (1− by2 − y21) + u2 − q(1− bx2 − x21)

eė3 = ẏ3 − qẋ3 = (−y1 − cy3) + u3 − q(−x1 − cx3)

eė4 = ẏ4 − qẋ4 = (−dy1y2 − ky4) + u4 − q(−dx1x2 − kx4)

(4.10)

By choosing:

u1 = −(y3 + (y2 − a)y1 + y4) + q(x3 + (x2 − a)x1 + x4) + e1

u2 = −(1− by2 − y21) + q(1− bx2 − x21) + e2

u3 = −(−y1 − cy3) + q(−x1 − cx3) + e3

u4 = −(−dy1y2 − ky4) + q(−dx1x2 − kx4) + v

(4.11)

In 4.11 v represents the new input, which can be mentioned below:

ė1 = e2

ė2 = e3

ė3 = e4

ė4 = v

(4.12)

Defining the Hurwitzesliding surface for 4.10 as:

σ = (1 + d
dt

)3e1

σ = e1 + 3e2 + 3e3 + e4

By taking derivative we have:

σ̇ = ė1 + 3ė2 + 3ė3 + ė4

Putting values:

σ̇ = e2 + 3e3 + 3e4 + v
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If we choose v = −e2 − 3e3 − 3e4 − kσ
By putting v value σ̇ = −kσ.

So we can say thateerror system 4.10 is asymptoticallyestable.

In simulations, theeinitial conditions areechosen as given in system

x(0) = [3, 1, 2,−3]T , y(0) = [−2, 3,−1,−4]T .

The parameters values are: a = 0.9, eb = 0.2, ec = 1.5, ed = 0.2, ek = 0.17 .

Define aeLyapunov function:

V = 0.5σ2

By taking derivative:

V̇ = σσ̇

V̇ = σ(−kσ) = −kσ2

From this we can say that σ → 0, since σ is Hurwitz therefore ei → 0,i = 1, .., 4,

therefore the systems 4.12 is asymptotically stable.

4.3.5 Synchronization of 4D Hyperchaotic Financial

System

For Synchronization set q= 1 in eq (4.18):
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Figure 4.6: Synchronization of 4D Hyperchaotic Financial System, (a) Syn-
chronization of interest rate corresponding to initial condition [x1(0) , y1(0) =
(3,−2)], (b) Synchronization of investment demand corresponding to initial con-
dition [x2(0), y2(0) = (1, 3)], (c) Synchronization of price index corresponding
to initial condition [x3(0), y3(0) = (2,−1)],(d) Synchronization of average profit
margins corresponding to initial condition [x4(0), y4(0) = (−3,−4)], (e) and (f)

Timeehistory of the errors e1,ee2,ee3 andee4
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Figure 4.7: Synchronization of 4D Hyperchaotic Financial System, (a) Sliding
manifold σ (b) Control effort v

4.3.6 Anti-Synchronization of 4D Hyperchaotic Financial

System

For Anti-synchronization set q= -1 in eq (4.18):
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Figure 4.8: Anti-Synchronization of 4D Hyperchaotic Financial System,
(a) Anti-Synchronization of interest rate corresponding to initial condition
[x1(0), y1(0) = (3,−2)], (b) Anti-Synchronization of investment demand cor-
responding to initial condition [x2(0), y2(0) = (1, 3)], (c) Anti-Synchronization
of price index corresponding to initial condition [x3(0), y3(0) = (2,−1)],(d)
Anti-Synchronization of average profit margins corresponding to initial condi-
tion [x4(0), y4(0) = (−3,−4)], (e) and (f) Timeehistory of the errors e1,ee2,ee3

andee4
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Figure 4.9: Anti-Synchronization of 4D Hyperchaotic Financial System, (a)
Sliding manifold σ (b) Control effort v
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4.4 Adaptive Integral Sliding Mode Control

In this section AISMC is dispensed for synchronization and anti-synchronization

of financial chaotic systems. In this method the parameters are expected unknown

and are estimated using ADISMC.

4.4.1 3 Dimensional System

Leteâ, b̂, ĉebe estimateevalue ofea, b, c andelet ã = a − â, b̃ = b − b̂, c̃ = c − ĉe

beeerrors.

Hence system 4.1 and 4.2 with external perturbations are shown below:

eẋ1 = x3 + x2x1 − âx1 − ãx1
eẋ2 = 1− b̂x2 − b̃x2 − x21
eẋ3 = −x1 − ĉx3 − c̃x3

(4.13)

eẏ1 = y3 + y2y1 − ây1 − ãy1 + h1v1 + u1

eẏ2 = 1− b̂y2 − b̃y2 − y21 + h2v2 + u2

eẏ3 = −y1 − ĉy3 − c̃y3 + h3v3 + u3

(4.14)

External disturbances are given below:

ev̇1 = 2y1y2 − 0.4v1

ev̇2 = −2y1y3 − 0.8v2

ev̇3 = −1.2y1y2 − 0.5v3

(4.15)

The error signals are given below:

e1 = y1 − qx1
e2 = y2 − qx2
e3 = y3 − qx3

(4.16)

For synchronization select q = 1 and for anti-synchronization select q = −1.

By taking derivative of error signals dynamics become:
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eė1 = ẏ1 − qẋ1 = (y3 + y2y1 − ây1 − ãy1 + h1v1) + u1 − q(x3 + x2x1 − âx1 − ãx1)

eė2 = ẏ2 − qẋ2 = (1− b̂y2 − b̃y2 − y21 + h2v2) + u2 − q(1− b̂x2 − b̃x2 − x21)

eė3 = ẏ3 − qẋ3 = (−y1 − ĉy3 − c̃y3 + h3v3) + u3 − q(−x1 − ĉx3 − c̃x3)
(4.17)

By choosing

u1 = −(y3 + y2y1 − ây1 + h1v1) + q(x3 + x2x1 − âx1) + e2

u2 = −(1− b̂y2 − y21 + h2v2) + q(1− b̂x2 − x21) + e3e

u3 = −(−y1 − ĉy3 + h3v3) + q(−x1 − ĉx3) + v

(4.18)

In 4.18 v represents the new input,ethe system 4.17 can beewritten as:

ė1 = −ãy1 + q(ãx1) + e2

ė2 = −b̃y2 + q(b̃x2) + e3

ė3 = −c̃y3 + q(c̃x3) + v

(4.19)

By using AISMC, choose theenominal system for 4.19 as:

eė1 = e2

eė2 = e3

eė3 = v0

(4.20)

Defining the Hurwitzesliding surface for nominalesystem 4.20 as:

σ0 = (1 + d
dt

)2e1e

σ0 = e1 + 2e2 + e3

By taking derivative:

σ̇0 = ė1 + 2ė2 + ė3e

Putting values:

eσ̇0 = e2 + 2e3 + v0

By choosing

v0 = −e2 − 2e3 − kσ0,ek > 0ewe have σ̇0 = −kσ0.
Hence theeerror system 4.17 iseasymptotically stable.

Now choose the integral slidingesurface for the system 4.16 as under:

eσ = σ0 + ze

eσ = e1 + 2e2 + e3 + ze

Where z is someeintegral term discussed later.

To circumvent the reaching phase, chooseez(0) in such a way σ(0) = 0.
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Take v = v0 + vsewhere, v0 is nominaleinput and vs is discontinuous term com-

puted later.

By taking derivative:

σ̇ = ė1 + 2ė2 + ė3 + że

Putting values:

σ̇ = (−ãy1 + q(ãx1) + e2) + 2(−b̃y2 + q(b̃x2) + e3) + (−c̃y3 + q(c̃x3) + v) + ż

By choosingeLyapunov function:

V = 1
2
σ2 + 1

2
(ã2 + b̃2 + c̃2)

Sketch theeadaptive laws for ã, â, b̃, b̂, c̃, ĉ andecompute vs just like that V̇ < 0.

Appraised a Lyapunov function: V = 1
2
σ2 + 1

2
(ã2 + b̃2 + c̃2).

Afterwards V̇ < 0 if theeadaptive laws foreã, â, b̃, b̂, c̃, ĉeand the value of vs are

chosen as:

ż = −e2 − 2e3 − kσ0, k > 0− v0, vs = −kσ − ksign(σ0)

˙̃a = σe1 − kã
˙̃b = 2σe2 − kb̃
˙̃c = σe3 − kc̃
˙̂a = −σe1 + kã

˙̂
b = −2σe2 + kb̃

˙̂c = −σe3 + kc̃

(4.21)

Proof :

Since

V̇ = σσ̇ + ã ˙̃a+ b̃ ˙̃b+ c̃ ˙̃c

= σ(−ãe1 − 2b̃e2 − c̃e3 − ksign(σ)) + ã ˙̃a+ b̃ ˙̃b+ c̃ ˙̃ce

= ã(−σe1 + ˙̃a) + b̃(−2σe2 + ˙̃b) + c̃(−σe3 + ˙̃c)− kσ2

By putting

˙̃a = σe1 − kã
˙̃b = 2σe2 − kb̃
˙̃c = σe3 − kc̃
˙̂a = −σe1 + kã

˙̂
b = −2σe2 + kb̃

˙̂c = −σe3 + kc̃

(4.22)
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We have

V̇ = −kσ2 − k1ã2 − k2b̃2 − k3c̃2.
For this we can say thateσ, ã, b̃, c̃→ 0.eSinceeσ → 0,etherefore e = (e1, e2, e3)→ 0.

In simulations,ethe initial conditionseare selected as: x(0) = [3, 1, 2]T ,ey(0) =

[−2, 3,−1]T e.

The true value of the unknown parameterseare choseneas: a = 0.9, b = 0.2, c = 1.5.

4.4.2 Synchronization of 3D Financial Chaotic System

For Synchronization set q=1 in eq (4.16):
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Figure 4.10: Synchronization of 3D Financial Chaotic System with adapta-
tion of parameters, (a) Synchronization of interest rate corresponding to initial
condition [x1(0), y1(0) = (3,−2)], (b) Synchronization of investment demand
corresponding to initial condition [x2(0), y2(0) = (1, 3)], (c) Synchronization of
price index corresponding to initial condition [x3(0), y3(0) = (2,−1)], (d) and

(e) Time history of the errors e1, e2 and e3
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Figure 4.11: Synchronization of 3D Financial Chaotic System, (a) â, b̂, ĉ
represents the adaptation of unknown parameters, (b) v1, v2, v3 represents the

time varying disturbances.
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Figure 4.12: Synchronization of 3D Financial Chaotic System with adaptation
of parameters, (a) Sliding manifold σ (b) Control effort v

4.4.3 Anti-Synchronization of 3D Financial Chaotic

System

For Anti-synchronization set q=-1 in eq (4.16):
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Figure 4.13: Anti-Synchronization of 3D Financial Chaotic System with adap-
tation of parameters, (a) Anti-Synchronization of interest rate corresponding
toeinitial condition [x1(0), y1(0) = (3,−2)], (b) Anti-Synchronization of invest-
ment demand corresponding toeinitial condition [x2(0), y2(0) = (1, 3)], (c) Anti-
Synchronization of price index corresponding toeinitial condition [x3(0), y3(0) =

(2,−1)], (d) and (e) Time history of the errors e1, e2 and e3
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â

b̂

ĉ
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Figure 4.14: Anti-Synchronization of 3D Financial Chaotic System, (a) â, b̂, ĉ
represents the adaptation of unknowneparameters, (b) v1, v2, v3 represents the

time varying disturbances.
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Figure 4.15: Anti-Synchronization of 3D Financial Chaotic System with adap-
tation of parameters, (a) Sliding manifold σ (b) Control effort v

4.4.4 4 Dimensional System

Leteâ, b̂, ĉ, d̂, k̂ebe estimateevalue ofea, b, c, d, k and leteã = a− â, b̃ = b− b̂,
c̃ = c− ĉ, d̃ = d− d̂, k̃ = k − k̂ be errors.

Thus system 4.3 and 4.4 with external perturbations are mentioned below:
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eẋ1 = x3 + x2x1 − âx1 − ãx1 + x4

eẋ2 = 1− b̂x2 − b̃x2 − x21
eẋ3 = −x1 − ĉx3 − c̃x3
eẋ4 = −d̂x1x2 − d̃x1x2 − k̂x4 − k̃x4

(4.23)

eẏ1 = y3 + y2y1 − ây1 − ãy1 + y4 + h1v1 + u1

eẏ2 = 1− b̂y2 − b̃y2 − y21 + h2v2 + u2

eẏ3 = −y1 − ĉy3 − c̃y3 + h3v3 + u3

eẏ4 = −d̂y1y2 − d̃y1y2 − k̂y4 − k̃y4 + h4v4 + u4

(4.24)

External disturbances are given below:

ev̇1 = 2y2y3 − 0.4v1

ev̇2 = −2y1y4 − 0.8v2

ev̇3 = −1.2y1y2 − 0.5v3

ev̇4 = y2y3 − 0.5v4

(4.25)

By defining the error signals:

e1 = y1 − qx1
e2 = y2 − qx2
e3 = y3 − qx3
e4 = y4 − qx4

(4.26)

For synchronization select q = 1 and select q = −1 for anti-synchronization. By

taking derivative of error signals we get error dynamics:

eė1 = ẏ1 − qẋ1
eė1 = (y3 + y2y1 − ây1 − ãy1 + y4 + h1v1) + u1 − q(x3 + x2x1 − âx1 − ãx1 + x4)

eė2 = ẏ2 − qẋ2
eė2 = (1− b̂y2 − b̃y2 − y21 + h2v2) + u2 − q(1− b̂x2 − b̃x2 − x21)

eė3 = ẏ3 − qẋ3
eė3 = (−y1 − ĉy3 − c̃y3 + h3v3) + u3 − q(−x1 − ĉx3 − c̃x3)

eė4 = ẏ4 − qẋ4
eė4 = (−d̂y1y2 − d̃y1y2 − k̂y4 − k̃y4 + h4v4) + u4 − q(−d̂x1x2 − d̃x1x2 − k̂x4 − k̃x4)

(4.27)
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By choosing

u1 = −(y3 + y2y1 − ây1 + y4 + h1v1) + q(x3 + x2x1 − âx1 + x4) + e1

u2 = −(1− b̂y2 − y21 + h2v2) + q(1− b̂x2 − x21) + e2

u3 = −(−y1 − ĉy3 + h3v3) + q(−x1 − ĉx3) + e3

u4 = −(−d̂y1y2 − k̂y4 + h4v4) + q(−d̂x1x2 − k̂x4) + v

(4.28)

Where v isethe new input,ethe system 4.27 can beewritten as:

ė1 = −ãy1 + q(ãx1) + e2

ė2 = −b̃y2 + q(b̃x2) + e3

ė3 = −c̃y3 + q(c̃x3) + e4

ė4 = −d̃y1y2 − l̃y4 + q(d̃x1x2) + q(l̃x4) + v

(4.29)

By using AISMC,echoose the nominalesystem for 4.29 as:

eė1 = e2

eė2 = e3

eė3 = e4

eė4 = v0

(4.30)

Defining the Hurwitzesliding surface forenominal system 4.30 as:

σ0 = (1 + d
dt

)3e1

σ0 = e1 + 3e2 + 3e3 + e4

By taking derivative:

σ̇0 = ė1 + 3ė2 + 3ė3 + ė4e

σ̇0 = e2 + 3e3 + 3e4 + v0e

If we choose v0 = −e2 − 3e2 − 3e4 − kσ0,ek > 0

By putting v0 we get σ̇0 = −kσ0.
So we can say that error system 4.30 is asymptoticallyestable.

Now choose integral slidingesurface for theesystem 4.29 as:

σ = σ0 + z

σ = e1 + 3e2 + 3e3 + e4 + z

Where, zeis some integraleterm discussed later.eTo circumvent theereaching phase,

chooseez(0)esuch thateσ(0) = 0.

Chooseev = v0 +vse where,ev0 is nominaleinput and vs is discontinuous term com-

puted later.
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By taking derivative:

σ̇ = ė1 + 3ė2 + 3ė3 + ė4 + ż

σ̇ = (−ãy1+q(ãx1)+e2)+3(−b̃y2+q(b̃x2)+e3)+3(−c̃y3+q(c̃x3)+e4)+(−d̃y1y2−
l̃y4 + q(d̃x1x2) + q(l̃x4) + v) + ż

By choosingeLyapunov function:

V = 1
2
σ2 + 1

2
(ã2 + b̃2 + c̃2 + d̃2 + k̃2)

Design the adaptive laws for ã, â, b̃, b̂, c̃, ĉ, d̃, d̂, k̃, k̂ and computeevs such thateV̇ <

0.

Consider a Lyapunovefunction:

V = 1
2
σ2 + 1

2
(ã2 + b̃2 + c̃2 + d̃2 + k̃2). Afterward V̇ < 0 if theeadaptive laws for

ã, â, b̃, b̂, c̃, ĉ, d̃, d̂, k̃, k̂ and the valueeof vs areechosen as:

ż = −e2 − 3e3 − 3e4 − kσ0, k > 0− v0, vs = −kσ − ksign(σ0)

˙̃a = σe1 − k1ã
˙̃b = 3σe2 − k2b̃
˙̃c = 3σe3 − k3c̃
˙̃d = σx1x2 − σy1y2 − k4d̃
˙̃k = σe4 − k5k̃
˙̂a = −σe1 + k1ã

˙̂
b = −3σe2 + k2b̃

˙̂c = −3σe3 + k3c̃

˙̂
d = −σx1x2 + σy1y2 + k4d̃

˙̂
k = −σe4 + k5k̃

(4.31)

Proof :

Since

V̇ = σσ̇ + ã ˙̃a+ b̃ ˙̃b+ c̃ ˙̃c+ d̃ ˙̃d+ k̃ ˙̃k

By putting values:

= σ(−ãe1−3b̃e2−3c̃e3− d̃x1x2− k̃e4− d̃y1y2−ksign(σ)) + ã ˙̃a+ b̃ ˙̃b+ c̃ ˙̃c+ d̃ ˙̃d+ k̃ ˙̃ke

= ã(−σe1 + ˙̃a) + b̃(−3σe2 + ˙̃b) + c̃(−3σe3 + ˙̃c) + d̃(−σx1x2 +σy1y2 + ˙̃d) + k̃(−σe4 +
˙̃l)− kσ2

By putting
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˙̃a = σe1 − k1ã
˙̃b = 3σe2 − k2b̃
˙̃c = 3σe3 − k3c̃
˙̃d = σx1x2 − σy1y2 − k4d̃
˙̃k = σe4 − k5k̃
˙̂a = −σe1 + k1ã

˙̂
b = −3σe2 + k2b̃

˙̂c = −3σe3 + k3c̃

˙̂
d = −σx1x2 + σy1y2 + k4d̃

˙̂
k = −σe4 + k5k̃

(4.32)

We have

V̇ = −kσ2 − k1ã2 − k2b̃2 − k3c̃2 − k3d̃2 − k3k̃2.
For we terminateethateσ, ã, b̃, c̃, d̃, k̃ → 0. Since σ → 0e

thereforeee = (e1, e2, e3, e4)→ 0.

Inesimulations, theeinitial conditions are taken as: x(0) = [3, 1, 2,−3]T , y(0) =

[−2, 3,−1,−4]T .

The true value ofethe unknowneparameters are chosen as:ea = 0.9, eb = 0.2, ec =

1.5, ed = 0.2, ek = 1.

4.4.5 Synchronization of 4D HyperChaotic Financial

System

For synchronization put q = 1
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Figure 4.16: Synchronization of 4D Hyperchaotic Financial System with adap-
tation of parameters, (a) Synchronization of interest rate corresponding to initial
condition [x1(0), y1(0) = (3,−2)], (b) Synchronization of investment demand
corresponding to initial condition [x2(0), y2(0) = (1, 3)], (c) Synchronization
of price index corresponding to initial condition [x3(0), y3(0) = (2,−1)],(d)
Synchronization of average profit margins corresponding to initial condition
[x4(0), y4(0) = (−3,−4)], (e) and (f) Timeehistory of the errors e1,ee2,ee3 andee4
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Figure 4.17: Synchronization of 4D Hyperchaotic Financial System, (a)
â, b̂, ĉ, d̂, k̂ represents the adaptation of unknowneparameters, (b) v1, v2,

v3, v4 represents the time varying disturbances.
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Figure 4.18: Synchronization of 4D Hyperchaotic Financial System with adap-
tation of parameters, (a) Sliding manifold σ (b) Control effort v

4.4.6 Anti-Synchronization of 4D HyperChaotic Financial

System

For Anti-synchronization put q = −1
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Figure 4.19: Anti-Synchronization of 4D Hyperchaotic Financial System
with adaptation of parameters, (a) Anti-Synchronization of interest rate cor-
responding toeinitial condition [x1(0), y1(0) = (3,−2)], (b) Anti- Synchroniza-
tion of investment demand corresponding toeinitial condition [x2(0), y2(0) =
(1, 3)], (c) Anti-Synchronization of price index corresponding toeinitial condi-
tion [x3(0), y3(0) = (2,−1))],(d) Anti- Synchronization of average profit mar-
gins corresponding toeinitial condition [x4(0), y4(0) = (−3,−4)], (e) and (f)

Timeehistory of the errors e1,ee2,ee3 andee4
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Figure 4.20: Anti-Synchronization of 4D Hyperchaotic Financial System, (a)
â, b̂, ĉ, d̂, k̂ represents the adaptation of unknowneparameters, (b) v1, v2, v3,

v4 represents the time varying disturbances.
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Figure 4.21: Anti-Synchronization of 4D Hyperchaotic Financial System with
adaptation od parameters, (a) Sliding manifold σ (b) Control effort v



Chapter 5

Conclusion and Future work

5.1 Introduction

In this particular research work complete synchronization of financial chaotic sys-

tems is carried out by using first order SMC and AISMC, this chapter is aimed to

explain outcomes and conclusion of this research thesis.

5.2 Performance Analysis

The performance of proposed work is summarized in Table 5.1, based on different

features in simulated results. After analyzing, we conclude that the adaptive inte-

gral sliding mode control (AISMC) carries substantial marks in case of robustness.

Table 5.1: Comparative analysis of FOSMC and AISMC.

Attributes First Order SMC
Adaptive Integral
SMC

Synchronization Yes Yes
Anti-
Synchronization

Yes Yes

Robustness No Yes
Computational
Complexity

No Yes

Chattering Yes Yes

67
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5.3 Conclusion

These studies work is definitely the synchronization and anti-synchronization sche-

me between two financial chaotic systems. Two cases are believed first is systems

with known parameters, and 2nd is systems with unknown parameters. In first

case the synchronization and anti-synchronization are accomplished by utilizing

first order SMC, whilst in second case the AISMC is applied. To use the AISMC,

the error strategy is converted into a certain structure including nominal part and

some unknown terms. The unknown terms are calculated adaptively. Than the

error strategy is stabilized utilizing integral sliding mode control. The stabilizing

controller towards error strategy is established featuring its the nominal control

and some compensator control. The controller and also adapted law are derived

so then derivative with the Lyapunov function set off rigidly negative. Numerical

simulations are demonstrated to endorse the proposed schemes introduced during

this work.

5.4 Future Research Directions

After the completion of this research work, some future directions are recommend.

• Apply proposed control algorithms to other financial chaotic systems.

• Implement the proposed control strategies to the practical financial chaotic

systems.

• Compare the simulated results with practical results of financial chaotic sys-

tems.
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