
CAPITAL UNIVERSITY OF SCIENCE AND
TECHNOLOGY, ISLAMABAD

Performance Analysis of
Scheduling Schemes for Cloud

Computing Resources

by

Ammara Sajjad

A thesis submitted in partial fulfillment for the
degree of Master of Science

in the
Faculty of Computing

Department of Computer Science

2020

www.cust.edu.pk
www.cust.edu.pk
ammarakhan330@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright c© 2020 by Ammara Sajjad

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

This thesis work is wholeheartedly dedicated to my beloved parents, sister,

brothers, and my best friends who have been my source of inspiration and gave

me strength when I thought of giving up, who continually provide their moral,

emotional, and financial support. A special feeling of gratitude to my kind

supervisor and loving parents for their love, endless support and encouragement.



CERTIFICATE OF APPROVAL

Performance Analysis of Scheduling Schemes for Cloud

Computing Resources

by

Ammara Sajjad

(MCS173025)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Muhammad Aleem FAST, Islamabad

(b) Internal Examiner Dr. Masroor Ahmed CUST, Islamabad

(c) Supervisor Dr. Muhammad Abdul Qadir CUST, Islamabad

Dr. Muhammad Abdul Qadir

Thesis Supervisor

June, 2020

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

June, 2020 June, 2020



iv

Author’s Declaration

I, Ammara Sajjad hereby state that my MS thesis titled “Performance Anal-

ysis of Scheduling Schemes for Cloud Computing Resources” is my own

work and has not been submitted previously by me for taking any degree from

Capital University of Science and Technology, Islamabad or anywhere else in the

country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Ammara Sajjad)

Registration No: MCS173025



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Performance

Analysis of Scheduling Schemes for Cloud Computing Resources” is

solely my research work with no significant contribution from any other person.

Small contribution/help wherever taken has been dully acknowledged and that

complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Ammara Sajjad)

Registration No: MCS173025



vi

Acknowledgements

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to

Allah, the Lord of the worlds; and prayers and peace be upon Mohammad His ser-

vant and messenger. First and foremost, I must acknowledge my limitless thanks

to Allah, the Ever-Magnificent; the Ever-Thankful, for His help and blessings.I am

totally sure that this work would have never become truth, without His guidance.

I am grateful to some people, who worked hard with me from the beginning till the

completion of the present research particularly my supervisor Dr. Muhammad

Abdul Qadir, who has been always generous during all phases of the research.

I would like to take this opportunity to say warm thanks to all my beloved friends,

who have been so supportive along the way of doing my thesis.

Last but not least, I would like to express my wholehearted thanks to my family for

their generous support they provided me throughout my entire life and particularly

through the process of pursuing the master degree. Because of their unconditional

love and prayers, I have the chance to complete this thesis.

(Ammara Sajjad)

Registration No: MCS173025



vii

Abstract

Scheduling jobs to available resources (VMs) in the cloud is a crucial process in

order to maximize the performance (minimized makespan, higher throughput, and

increased resource utilization) with a minimum cost. Users of a cloud system need

a fair comparison of different scheduling schemes in order to make decisions for

scheduling their jobs. After carefully evaluating the existing comparison between

different scheduling schemes, it was observed that the performance evaluation by

the developers of scheduling schemes have been done by using either a dataset

which favors their scheme or by using partial definitions of the performance pa-

rameters, like, throughput or resource utilization. This demands an independent

evaluation of the scheduling schemes by using fair datasets, and with thorough and

complete definition of the performance parameters. In this research, we evaluate

the performance of eleven popular static scheduling schemes with thorough and

complete definitions of the performance parameters which covers all the aspects in-

cluding size of tasks and VMs of non-uniform computational power. These schemes

are evaluated by using both a third-party dataset Google Cloud Jobs dataset

(GoCJ) and our own prepared dataset named as Random Data Set (RanDS) to

evaluate the worst-case scenario of scheduling schemes. In this analysis, we as-

sume a job pool of independent tasks which lead to a non-pre-emptive scheduling,

in which the tasks are scheduled statically till its completion. The analysis is a

simulation-based. The simulations have been conducted on a renowned cloud sim-

ulator, CloudSim, using GoCJ dataset and RanDS. As per our results, RALBA

has the lowest makespan, highest throughput, and resource utilization while RS

showed the highest makespan, lowest throughput, and resource utilization by using

the GoCJ dataset. With RanDS dataset, RALBA, RASA, and Max-Min showed

the same amount of lowest makespan, highest throughput, and resource utiliza-

tion. One significant result observed that the maximum resource utilization was

98% on the GoCJ dataset and 36.4% by using RanDS for the best performing

scheme, which proves that still there is room to devise a scheme with improved

resource utilization.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xiii

Abbreviations xiv

Symbols xvi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Task Scheduling Model . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 A Motivational Scheduling Scenario . . . . . . . . . . . . . . . . . . 5

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 10

2.1 Task Scheduling Schemes . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 MCT Algorithm [1] . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Min-Min Algorithm [2] . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Max-Min Algorithm [2] . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Sufferage Algorithm [2] . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 RASA [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6 TASA [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.7 RALBA [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



ix

2.1.8 OLB [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.9 RS [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.10 FCFS [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.11 SJF [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Survey Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Survey No 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Survey No 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Survey No 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Survey No 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Survey No 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Survey No 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.7 Survey No 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.8 Survey No 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.9 Survey No 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.10 Survey No 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.11 Survey No 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.12 Survey No 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.13 Survey No 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.14 Survey No 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.15 Survey No 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.16 Survey No 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.17 Survey No 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.18 Survey No 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.19 Survey No 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Thorough Definitions of Performance Measures 30

3.1 Makespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Dataset and Workload Compositions 36

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 GoCJ Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 RanDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Simulation and Results 40

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Makespan-Based Results . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Throughput-Based Results . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Resource Utilization-Based Results . . . . . . . . . . . . . . . . . . 50

5.6 ARUR-Based Results . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 PU -Based Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.8 Analysis of Best Performing Scheme . . . . . . . . . . . . . . . . . . 57

5.8.1 Scenario A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x

5.8.2 Scenario A: Resource Utilization of RALBA for 100 Cloudlets 58

5.8.3 Scenario A: Resource Utilization of RALBA for 500 Cloudlets 60

5.8.4 Scenario A: Resource Utilization of RALBA for 1000 Cloudlets 60

5.8.5 Scenario B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8.6 Scenario B: Resource Utilization of RALBA for 100 Cloudlets 63

5.8.7 Scenario B: Resource Utilization of RALBA for 500 Cloudlets 64

5.8.8 Scenario B: Resource Utilization of RALBA for 1000 Cloudlets 65

6 Analysis and Discussion 68

6.1 Makespan-Based Analysis . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Throughput-Based Analysis . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Resource Utilization-Based Analysis . . . . . . . . . . . . . . . . . . 71

7 Conclusion and Future Direction 74

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 76

Appendix A 82

Appendix B 83

Appendix C 84

Appendix D 85

Appendix E 86

Appendix F 87



List of Figures

1.1 Scheduling of Tasks and VMs in cloud computing . . . . . . . . . . 4

1.2 Comparison with an Ideal Scheduler . . . . . . . . . . . . . . . . . . 6

3.1 Resource Utilization by using ARUR . . . . . . . . . . . . . . . . . 33

3.2 Resource Utilization by using thorough definition . . . . . . . . . . 35

4.1 Composition of the GoCJ Dataset . . . . . . . . . . . . . . . . . . . 37

5.1 Computational Power of VMs . . . . . . . . . . . . . . . . . . . . . 41

5.2 Computational Power of VMs (for scenario A) . . . . . . . . . . . . 42

5.3 Computational Power of VMs (for scenario B) . . . . . . . . . . . . 42

5.4 Makespan Results Using GoCJ Dataset . . . . . . . . . . . . . . . . 43

5.5 Average Makespan Using GoCJ Dataset . . . . . . . . . . . . . . . 44

5.6 Makespan for 500 Cloudlets Using RanDS . . . . . . . . . . . . . . 45

5.7 Makespan for 1000 Cloudlets Using RanDS . . . . . . . . . . . . . . 46

5.8 Average Makespan Using RanDS Dataset . . . . . . . . . . . . . . . 46

5.9 Modified Throughput Using GoCJ Dataset . . . . . . . . . . . . . . 47

5.10 Throughput Using GoCJ Dataset . . . . . . . . . . . . . . . . . . . 47

5.11 Average Modified Throughput Using GoCJ Dataset . . . . . . . . . 48

5.12 Average Throughput Using GoCJ Dataset . . . . . . . . . . . . . . 49

5.13 Throughput for 500 Cloudlets Using RanDS . . . . . . . . . . . . . 49

5.14 Modified Throughput for 500 Cloudlets Using RanDS . . . . . . . . 50

5.15 Throughput for 1000 Cloudlets Using RanDS . . . . . . . . . . . . . 50

5.16 Modified Throughput for 1000 Cloudlets Using RanDS . . . . . . . 51

5.17 Average Modified Throughput Using RanDS . . . . . . . . . . . . . 51

5.18 ARUR Using GoCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.19 Mean ARUR Using GoCJ . . . . . . . . . . . . . . . . . . . . . . . 53

5.20 ARUR for 500 Cloudlets Using Random Dataset . . . . . . . . . . . 53

5.21 ARUR for 1000 Cloudlets Using RanDS . . . . . . . . . . . . . . . 54

5.22 Mean ARUR Using RanDS . . . . . . . . . . . . . . . . . . . . . . . 54

5.23 Computational Power Utilization Using GoCJ . . . . . . . . . . . . 55

5.24 Average Computational Power Utilization Using GoCJ . . . . . . . 56

5.25 Computational Power Utilization for 500 Cloudlets Using RanDS . 57

5.26 Computational Power Utilization for 1000 Cloudlets Using RanDS . 57

5.27 Average Computational Power Utilization Using RanDS . . . . . . 58

5.28 PU of RALBA for 100 Cloudlets in Scenario A . . . . . . . . . . . . 60

xi



xii

5.29 PU of RALBA for 500 Cloudlets in Scenario A . . . . . . . . . . . . 61

5.30 PU of RALBA for 1000 Cloudlets in Scenario A . . . . . . . . . . . 62

5.31 PU of RALBA for 100 Cloudlets in Scenario B . . . . . . . . . . . . 64

5.32 PU of RALBA for 500 Cloudlets in Scenario B . . . . . . . . . . . . 64

5.33 PU of RALBA for 1000 Cloudlets in Scenario B . . . . . . . . . . . 66

A1 Pseudo-Code of MCT Scheduling Scheme . . . . . . . . . . . . . . . 82

B1 Pseudo-Code of Min-Min Scheduling Scheme . . . . . . . . . . . . . 83

C1 Pseudo-Code of Sufferage Scheduling Scheme . . . . . . . . . . . . . 84

D1 Pseudo-Code of RASA Scheduling Scheme . . . . . . . . . . . . . . 85

E1 Pseudo-Code of TASA Scheduling Scheme . . . . . . . . . . . . . . 86

F1 Pseudo-Code of RALBA Scheduling Scheme . . . . . . . . . . . . . 88



List of Tables

2.1 Strengths, Weaknesses, and Complexities of Scheduling Techniques 18

2.2 Summary of Literature Review . . . . . . . . . . . . . . . . . . . . 27

4.1 Statistics of the Cloudlets for GoCJ Dataset . . . . . . . . . . . . . 37

4.2 Statistics of the Cloudlets for RanDS . . . . . . . . . . . . . . . . . 39

5.1 Configuration of the Simulation Environment . . . . . . . . . . . . 41

5.2 PU of RALBA for 100 cloudlets in Scenario A . . . . . . . . . . . . 59

5.3 PU of RALBA for 500 cloudlets in Scenario A . . . . . . . . . . . . 61

5.4 PU of RALBA for 1000 cloudlets in Scenario A . . . . . . . . . . . . 62

5.5 PU of RALBA for 100 cloudlets in Scenario B . . . . . . . . . . . . 63

5.6 PU of RALBA for 500 cloudlets in Scenario B . . . . . . . . . . . . 65

5.7 PU of RALBA for 1000 cloudlets in Scenario B . . . . . . . . . . . . 66

5.8 Comparative Table of Scenario A and B for RALBA . . . . . . . . . 67

6.1 Percentage of Average PU of Scheduling Schemes . . . . . . . . . . 72

xiii



Abbreviations

AMS Advanced MaxSufferage

ARUR Average Resource Utilization Ratio

ELBMM Enhanced Load Balanced Min-Min

FCFS First Come First Serve

FIFO First In First Out

GoCJ Google Cloud Jobs

GA Genetic Algorithm

GSA Genetic Simulated Annealing

HCSP Heterogeneous Computing Scheduling Problems

HPC2N High Performance Computing center North

IaaS Infrastructure as a Service

KPB K-Percent Best

LIGO Laser Interferometer Gravitational Wave Observatory

LBMM Load Balancing Min-Min

LBIMM Load Balancing Improved Min-Min

LBTSA Load Balancing objective Task Scheduling Algorithm

MCT Minimum Completion Time

MET Minimum Execution Time

MT Meta-Task

MIs Million Instructions

MIPS Million Instructions Per Second

MOTSA Multi-Objective Task Scheduling Algorithm

MPTSA Multilevel Priority-Based objective Task Scheduling Algorithm

OLB Opportunistic Load Balancing

xiv



xv

PMs Physical Machines

PSSLB Proactive Simulation-Based Scheduling and Load Balancing

PSSELB Proactive Simulation-Based Scheduling and Enhanced Load sBalancing

PA-LBIMM Priority-Aware Load Balancing Improved Min-Min

QoS Quality of Service

RS Random Selection

RR Round Robin

RALBA Resource-Aware Load Balancing Algorithm

RASA Resource-Aware Scheduling Algorithm

RanDS Random Dataset

RM Resource Manager

SJF Shortest Job First

SA Switching Algorithm

SLA Service Level Agreement

TASA Task-Aware Scheduling Algorithm

TS-GA Tournament Selection Genetic Algorithm

VM Virtual Machine

VMM Virtual Machine Moniter



Symbols

CLS Set of all cloudlets (to be scheduled)

Cloudletii.MI Size of Cloudleti in MI

Tp Total Computational Power

Up Utilized Computational Power

Ip Idle Computational Power

VMS Set of VMs in a data-center

vmCrMap Set of sorted VMs with its computing ratio

vmCrMapj Computation Ratio of VMj in vmCrMap

RPCloudletj Set of remaining possible cloudlets that can be assigned

to VMj

maxPCloudletV Mj Largest cloudlet in RPCloudletj that is assigned to VMj

VMShare Set of sorted VMs with its computing share

VMSharej Computing share of VMj (in MI) in VMShare

CloudletCTij Expected completion time of Cloudleti on VMj

VMCTj Completion time of VMj

CloudletEFTi Earliest finish time of Cloudleti

Fill Scheduler Sub-scheduler that assigns Cloudleti to VMj based

on VMSharej

Spill Scheduler Sub-scheduler that assigns Cloudleti to VMj based

on CloudletEFTi

VMj.MIPS Computing power of VMj in terms of Million Instructions

Per Second (MIPS)

xvi



Chapter 1

Introduction

1.1 Background

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction”[10].The

main intention of cloud computing is to provide virtualization of resources to be ac-

cessed remotely [11]. Most prominent cloud computing platforms are Google App

Engine [12], GoGrid, Aneka [11], Microsoft Azure [13], and, Amazon EC2 [14] for

managing, monitoring, provisioning resources, and application services. In cloud

computing, the virtualization of a service means the combination of registered com-

puting resources collected in a virtual environment called Virtual Machines (VMs).

The Physical Machine (PM) resources are available to the cloud user through vir-

tualization in the form of VMs. A VM emulates a specific computer system and

executes tasks provided by the user. The concept of scheduling in cloud computing

refers to the method of assigning a set of jobs to a set of VMs or allocating VMs to

the available resources (PMs) to meet user demands [15]. Schedulers which per-

form scheduling activity, are often implemented to optimally utilize the resources

in a load-balanced way, allow multiple users to effectively share system resources

1



Introduction 2

[16]. The problem of scheduling tasks to computing resources has a significant

impact on system performance [17]. With an optimized scheduling scheme, one

can enjoy the benefits of minimized makespan and maximized throughput. Thus,

the important scheduling objective is to optimize resource utilization.

1.2 Task Scheduling Model

Scheduling is a non-deterministic polynomial-time hard (NP-hard) problem [18].

Normally, it is difficult to develop an optimal scheduler for producing optimal so-

lutions in a reasonable time, because there are many VMs in a cloud and many

user tasks to be scheduled with different scheduling objectives [15]. Thus, applying

meta heuristics is important which gives near-optimal solutions within a reasonable

amount of time [18]. The tasks (cloudlets) are assumed to be independent, sched-

uled statically till its completion without interruption (non-preemptive), without

any inter-task communication or migration, with the same priority, and no dead-

lines. The VMs are assumed to be heterogeneous with varying computational

power.

A cloud contains a set of heterogeneous VMs which are responsible for the execu-

tion of tasks, represented as V = VM1, V M2, V M3, . . . .., V Mm, where m denotes

the total heterogeneous VMs and a particular VM may be shown as VMj. The

set of n tasks are presented as T = T1, T2, T3, . . . .., Tn, and a specific task can be

represented as Ti. Each task Ti is characterized by eij where eij is the execution

time of the task Ti on VMj and is provided in a utilization matrix C. The column

number in matrix C indicates the number of VMs and the number of rows shows

the number of tasks. In other words, the matrix order is n×m and the elements

of matrix C are real numbers, which specify the maximum completion time of the

VMs used for the tasks.

The problem of task scheduling can now be formally defined as: In accordance

with T and V , create a schedule that allocates different VM in V for each task

in T , so that the utilization of the tasks at any VM does not exceed than the



Introduction 3

utilization bound (makespan) of that VM. The total time of all the scheduled task

on a VMj is termed as the utilization of that VM named as UVMj and if we

multiply the computational power of that VM with UVMj that can be termed

as Computational Power Utilization named as PUj. The difference between the

maximum makespan and UVMj, multiplied with the computational power of VMj

is termed as Idle Computational Power named as Ip of that VM. The Sum of the

idle computational power of all the VMs can be termed as the idle computational

power of the scheduler. The goal of a good scheduling scheme is to minimize idle

computational power.

Scheduling in cloud computing can be done at two different levels: [15] VM-level

and Host-level as shown in Figure 1.1

(i) At the Host-level, VM scheduler is used for the allocation of virtual resources

on physical machines in the cloud datacenters known as VM scheduling.

(ii) At the VM-level, tasks are mapped for execution to the allocated VMs using

task scheduler submitted by cloud users on virtual resources known as task

scheduling.

Assume the cloud platform is supported by PMs: PM1, PM2, PM3, . . . .., PMp,

each of which hosts a set of VMs: V = VM1, V M2, V M3, . . . .., V Mm, through the

corresponding VMM and each PM is managed by RM who tracks the resource

utilization of PMs and gathers runtime statistics from every PM, including PM

resource utilization, availability, and status of the VM. There are N independent

tasks; T1, T2, T3, . . . .., Tn, to be scheduled as shown in Figure 1.1. The user sub-

mits their tasks in the first stage, after which the Task Scheduler collects input

from RMs to ensure an overall efficiency of the resources. The Task scheduler,

which takes into account the user requests received from the service provider and

information received from the RMs, initiates a task algorithm for the scheduling

of tasks for VMs and VM schedulers to schedule VMs for PMs.

This study focusses on Cloudlet-VM scheduling. The task scheduling is the pro-

cess of mapping cloudlets on several available computing resources (VMs) [19],[20].



Introduction 4

Figure 1.1: Scheduling of Tasks and VMs in cloud computing

Effective task scheduling mainly reduces the completion time of the task, increases

throughput, and maximizes resource utilization. Generally, the scheduling schemes

are categorized as static and dynamic. Static scheduling schemes provide a com-

plete map of the task or job before it is executed, while a dynamic scheduling

technique usually relies on runtime parameters to schedule tasks [21].

In this thesis, three performance measures are used to compare different schedul-

ing schemes such as: makespan, throughput, and Resource Utilization.

Makespan is the maximum time for the completion of all the cloudlets (tasks)

in a workload by the available resources [5].

Throughput is referred as the total size of all cloudlets (MIs) completed per unit

time.



Introduction 5

Resource Utilization is a measure of busyness of resources during a scheduling.It

is accomplished by reducing the idle time of a resource.

1.3 A Motivational Scheduling Scenario

Consider we have 5 VMs with different computational power (i.e. 100, 500, 1000,

1500, and 2000 MIPS) and 10 cloudlets with different length (i.e. 9.3, 11.1, 11.3,

11.3, 12.5, 13.5, 33.75, 52.5, 71.25, and 90 MIs). We have tried manually all pos-

sible combinations of scheduling then build an ideal scheduler for this scenario.

And then these 10 cloudlets are scheduled on 5 VMs by using RALBA and RASA

algorithms through simulation because these two algorithms have outperformed

than other algorithms that’s why we have compared these two algorithms with an

ideal scheduling scenario as shown in Figure 1.2. An ideal scheduler has achieved

665.25 sec makespan, 4758 MIs/sec throughput, and 93.2% resource utilization.

While, RALBA and RASA have achieved 712.5 and 706 sec makespan, 4442 and

4483 MIs/sec throughput, 87.1 and 87.9 % resource utilization. So, an ideal sched-

uler is 7% better than RALBA and 6% better than RASA as shown in Figure 1.2.

This indicates that there is a need to critically evaluate the existing state of the

art scheduling schemes and to come up with a scheduling scheme which is closer

to an ideal scheduler and also its complexity should not be exponential.

1.4 Scope

We critically evaluate the performance measures as makespan, throughput, and

resource utilization and then eleven prominent static scheduling schemes including;

FCFS [8], RS [7], SJF [9], OLB [6], MCT [1], Min-Min [2], Max-Min [2], TASA [4],

RASA [3], Sufferage [2], and RALBA [5] are evaluated with thorough and complete

definitions of three performance measures as makespan, throughput, and resource

utilization which covers all aspects including computation power of VMs and size

of tasks. These schemes are evaluated by using both a third-party dataset Google



Introduction 6

Figure 1.2: Comparison with an Ideal Scheduler

Cloud Jobs dataset (GoCJ) and our own prepared dataset named as Random Data

Set (RanDS) to evaluate the worst-case scenario of scheduling schemes.

1.5 Problem Statement

After carefully evaluating the existing comparison between different scheduling

schemes, it was observed that the performance evaluation by the developers of

scheduling schemes have been done by using either self-created synthetic dataset

instead of any third-party popular dataset or by using partial definitions of the

performance measures, like throughput or resource utilization. It has also been

observed that the scheduling schemes have not been evaluated with the worst-case

scenario. And also, the comparison has not been done with an ideal scheduler.



Introduction 7

1.6 Research Questions

We have formulated the following research questions relying on the problem state-

ment describe above:

1. What are the thorough and complete definitions of different performance

measures for a scheduling scheme?

2. What is the resource utilization and throughput of each scheduling scheme

by using thorough and complete definitions of these performance measures?

3. Can we find or formulate a dataset very close to the real-life scenario to see

worst-case performance against the parameters for which the developers of

the scheme has claimed an excellent performance?

4. How a comparison with an ideal scheduling scenarios for a smaller dataset

can be prepared?

1.7 Research Methodology

This section contains a brief description of the proposed methodology. The method-

ology consists of the following steps:

Step 1: Literature Review

In step 1, the literature review is conducted and categorized into two categories.

In category 1, the working, strengths, weaknesses, and time complexities of task

scheduling schemes are described in detail. In category 2, related survey papers

and related studies based on selected scheduling schemes and scheduling objectives

are discussed.

Step 2: Review of Evaluation Metrics

In step 2, performance metrics are reviewed. It was found that the definition

of throughput does not truly reflect when we have the different size of tasks and

similarly, the definition of resource utilization doest not truly reflect when we have



Introduction 8

different computational power of VMs. After reviewing performance metrics from

the literature, two new performance metrics are thoroughly defined which covers

all aspects including size of the tasks and computational power of VMs.

Step 3: Dataset Collection

In this research, we evaluate the performance of eleven popular scheduling schemes

by using both a third-party dataset named as Google Cloud Jobs dataset (GoCJ)

and our own prepared dataset named as Random Data Set (RanDS) which is

acquired from an internet source and modified based on certain parameters. The

details of these datasets are described in Chapter 4.

Step 4: Simulation and Results

This study is simulation-based. In step 4, the CloudSim simulator is integrated

with eclipse IDE for simulation. The scheduling schemes are implemented in java

using CloudSim toolkit. Then the simulation results of all scheduling schemes are

evaluated on the basis of makespan, throughput, and resource utilization that are

discussed in Chapter 5

Step 5: Analysis and Discussion

In step 5, comparative analysis of eleven selected scheduling schemes is conducted

in different scenarios on the basis of three performance measures as makespan,

throughput, and resource utilization. The detailed discussion is given in Chapter

6.

Step 6: Conclusion and Future Direction

In step 6, the conclusion is drawn by keeping in mind the experimental results and

comparative analysis. Some potential future directions are highlighted that could

assist the scientific community for the effective task scheduling mechanism.



Introduction 9

1.8 Thesis Organization

The remainder of the study is formulated as follows:

Chapter 2- provides the literature review in which the working of selected schedul-

ing schemes and related work are discussed.

Chapter 3- provides the thorough definitions of performance measures (i.e. through-

put and resource utilization) which covers all the aspects.

Chapter 4- illustrates the dataset and workload compositions.

Chapter 5- demonstrates the experimental setup and simulation results.

Chapter 6- presents the comparative discussion between state-of-the-art schedul-

ing schemes.

Chapter 7- concludes this thesis along with future directions.



Chapter 2

Literature Review

The literature review is categorized into two categories; category one describes

the working of static task scheduling schemes which we analyze on the basis of

makespan, throughput, and resource utilization. In category two related survey

papers and studies which are based on selected scheduling schemes are discussed.

2.1 Task Scheduling Schemes

In this thesis, we empirically analyze eleven prominent static task scheduling

schemes in cloud computing which are: MCT [1], Min-Min [2], Max- Min [2], FCFS

[8], SJF [9], RS [7], OLB [6], Sufferage [2], RASA [3], TASA [4], and RALBA [5].

The working of these algorithms is described as below:

2.1.1 MCT Algorithm [1]

Let rj represents the ready time for a virtual machine mj that will become ready

for the execution of a task, and eij presents the execution time of task i on machine

mj. MCT algorithm first determines the expected completion time cij using the

rj and eij values at each scheduling interval. By searching the ith row of C

matrix (consisting of the cij values) for each task ti, determines the machine which

10



Literature Review 11

provides the earliest completion time. The task tk is determined and allocated to

the corresponding machine with the minimum expected time of completion. The

task tk is deleted from the meta-task which has just been mapped. At the end, the

matrix C and vector r will be modified, and the above-mentioned procedure will

be repeated for tasks not yet allocated to a machine. MCT examines the current

load of VMs to identify a suitable VM for task scheduling [1]. The MCT algorithm

has to search for all the available VMs at each scheduling interval, to determine

the most appropriate VM for task scheduling that causes significant scheduling

overhead. Therefore, it takes O(M.N) time to map a given workload [5].

2.1.2 Min-Min Algorithm [2]

Let rj represents the ready time for a virtual machine mj that will become ready

for the execution of a task and eij presents the execution time of i on machine

mj. Min-Min scheduling scheme first determines the expected completion time cij

using the rj and eij values at each scheduling interval and selects the minimum one.

By searching the ith row of the C matrix (consisting of the cij values), determines

the machine expected to has an earliest completion time for each task ti. The task

tk having the minimum expected completion time is determined and allocated to

the appropriate machine. The task tk is deleted from the meta-task that has just

been mapped. At the end, the matrix C and vector r will be will be modified, and

the process described above will be repeated for tasks that were not yet allocated

to a machine. If tasks ti and tk compete for a similar virtual machine mj, then

Min-Min allocates machine mj to the task which has less ready time on mj.

From Line (1) to Line (3) of Figure ?? the initialization of the c matrix takes

O(M.N) time: internal for loop runs M times (number of VMs) and external

for loop runs N times (cloudlets). The Min-Min algorithm’s do loop is repeated

N times and every iteration takes O(M.N)) time, so it takes O(M.N2) time to

schedule a given workload [2]. Min-Min algorithm initially schedules shorter jobs

and then executing longer jobs [2][22][3]. Therefore, Min-Min mostly overloads

the faster machines with a greater number of small jobs, while less but larger jobs



Literature Review 12

are allocated to the slower machines. Therefore, the larger jobs mapped on slower

machines often cause a higher makespan for the execution of the workload [6].

2.1.3 Max-Min Algorithm [2]

The Max-Min scheduling scheme is same as Min-Min but the selection criteria of

Max-Min varies from Min-Min. It varies from the Min-Min (as shown in Figure

??) in such a way, once a machine is identified which gives the earliest completion

time for each task, the task tk is determined with the earliest maximum completion

time and then allocated to the most suitable virtual machine. That is, ”minimum”

will be changed to ”maximum” in line (6) of Figure ??. The time complexity of

Max-Min is the same as the complexity of Min-Min [2]. In such situations, the

Max-min algorithm performs relatively better than the Min-Min algorithm, when

the number of shorter tasks exceeds longer tasks [23]. For example, if the workload

contains one long task only, then the Max-Min will run a number of shorter tasks

simultaneously with the long ones. However, Min-Min first executes short tasks

and then completes the longer tasks that leads to poor makespan compared to the

Max-Min [24].

2.1.4 Sufferage Algorithm [2]

The Sufferage algorithm (shown in Appendix C) is built on the assumption that

better mappings can be created through the assignment of the virtual machine to

a task that would ”suffer” most if it is not allocated to that particular machine

based on the completion time. The Sufferage algorithm calculates sufferage value

for every task. For the measurement of the sufferage value, the difference between

the second-best minimum completion time and the earliest minimum completion

time is calculated for every task in each scheduling interval. The task with the

highest sufferage value is consequently allocated to the VM having the shortest

completion time for that task.



Literature Review 13

The initialization process of Sufferage algorithm is the same as the Min-Min or

Max-Min algorithms from lines (1) to (3), in Figure C1. All machines are initially

labeled as unallocated. In every iteration of the for loop from Lines (6) to (14),

a task tk is arbitrarily selected from the meta-task. Find the virtual machine

mj for task tk, which provides the earliest completion time and allocate mj to tk

tentatively, if mj is unallocated. Eliminate task tk from meta-task and mark mj

as assigned. If, however, a task ti has previously been allocated to a machine mj,

then from ti and tk, select the task which has maximum sufferage value, assign

mj to the selected task, and delete the selected task from the meta-task. In the

implementation of the forloop, the unchosen task will never be considered again,

it is taken into account for the next do loop iteration starting from Line (4). At

the completion of for loop, the ready time of each machine is updated and next

do loop iteration is executed until all tasks are scheduled. The first execution

of the for loop takes O(M.N) time as observed from the pseudo-code provided

in Appendix C. The number of tasks assignment performed in one execution of

the for loop depending upon the total number of VMs. Only one task will be

allocated in each execution of the for loop, in the worst case. To schedule the

entire meta-task, the outer do loop executes N iterations. Hence, the time T (N)

taken to schedule a meta-task of size N for the worst case will be [2]

T (N) = N.M + (N − 1)M + (N − 2)M + · · · + M

T (N) = O(N2M) (2.1)

There is an equal number of tasks and virtual machines in the best case, and there

will be no contention between the tasks. Then, in the first execution of the for

loop all the tasks are allocated, so O(N.M) time will be taken by the Sufferage

scheme in the best case scenario [2].



Literature Review 14

2.1.5 RASA [3]

RASA is presented in Appendix D, let rj represents the ready time for a resource

Rj to execute a task and Eij presents the execution time to run task i on a resource

Rj. RASA first determines the expected completion time Cij using the Rj and

Eij values at each scheduling interval. If there are even numbers of resources,

Max-Min technique is used for allocating the first task, on the other hand, the

Min-Min technique is used. One of the two techniques is used alternatively, for

the assignment of remaining tasks to the most suitable resources. For example,

if the Max-Min strategy allocates the first task to a resource, then the next task

will be allocated through the Min-Min. The machine that provides the earliest

completion time is determined by searching the ith row of C matrix (consists of the

Cij values) for each task ti. The task tk with the maximum expected completion

time is determined and allocated to the most appropriate resource. The task tk is

deleted from the meta-task that has been just mapped. At the end, the matrix C

and vector r will be modified, and the above-mentioned procedure will be repeated

alternatively for those tasks which were not yet allocated to a machine. Mostly,

when considering smaller and larger jobs in alternative scheduling steps, RASA

results in a lower makespan [3]. However, when the number of larger jobs is higher

in the workload, RASA penalizes smaller jobs [25].

In Figure D1, the initialization of the C matrix takes O(M.N) time: internal

for loop runs M times (number of VMs) and external for loop runs N times

(cloudlets). The do loop of the RASA algorithm is executed N times and every

iteration takes O(M.N) time. Therefore, the algorithm takes O(M.N2) time [3].

2.1.6 TASA [4]

In Appendix E, let rj denotes the ready time for a resource Rj that becomes

ready to execute a task and Eij represents the execution time to run task i on

a resource Rj. TASA first determines the expected completion time Cij using

the Rj and Eij values at each scheduling interval. If there are even numbers of



Literature Review 15

resources then sufferage strategy is adopted to schedule tasks, otherwise the Min-

Min technique is applied. When resources are even, then the machine which gives

the earliest expected completion time is determined by scanning the ith row of C

matrix (consists of the Cij values) for each task ti. To measure the sufferage value,

the earliest minimum completion time and the second-best minimum completion

time is calculated for each job in each scheduling interval. The task tk with

the maximum sufferage value is determined and allocated to the corresponding

VM which provides the earliest completion time. A task tk is deleted from the

meta-task that has been just mapped. At the end, the matrix C and vector r

will be modified, and the same process will be repeated alternatively for those

tasks that were not yet allocated to a machine. For most cases, TASA provides

better makespan relative to other scheduling schemes including Min-Min, OLB,

and Max-Min [4].

In Figure E1, the initialization of the C matrix takes O(M.N) time: internal

for loop runs M times (number of VMs) and external for loop runs N times

(cloudlets). The do loop of the TASA algorithm is executed N times and each

iteration takes O(M.N) time. Therefore, the algorithm takes O(M.N2) time [4].

2.1.7 RALBA [5]

RALBA is a resource-aware load balancing algorithm. It consists of two sub mod-

ules: Spill scheduler and Fill scheduler as shown in Figure F1. Taking into account

the computational share of virtual machines, Fill Scheduler performs Cloudle to

VM allocation. Having Largest V MShare, Fill scheduler selects VMj and deter-

mines maxPCloudletV Mj for VMj. The candidate cloudlet will be allocated to

the VM and VMSharej of VMj will be updated after the cloudlet allocation. The

candidate cloudle is deleted from the cloudlet list on every scheduling decision and

the computing share of specific VM is modified. Afterwards, RALBA moves to the

second scheduler, Spill scheduler, to assign the remaining cloudlets. Spill sched-

uler performs allocation of Cloudlets to VMs on the basis of EFT of Cloudlets

. The maxCloudlet is chosen and assigned to a particular virtual machine which



Literature Review 16

has EFT for that maxCloudlet. After assigning Cloudlet to VM, the finish time

of a specific VM will be modified. This mapping process is repeated until the

scheduling of all the cloudlets has been done. The time complexity of the spill

scheduler is O(M.N) when N cloudlets are allocated by the spill scheduler. If n

is the number of cloudlets allocated by Fill scheduler then Spill scheduler must

schedule the remaining N − n cloudlets. Hence, the time complexity of RALBA

is O(M2n + M.N − n) [5].

2.1.8 OLB [6]

OLB assigns each task to a VM in an arbitrary order that will be ready next,

regardless of the expected execution time of the task on that VM. If at the same

time several machines are ready, one machine will be randomly selected [6]. To

keep all VMs as busy as possible is the main scheduling objective of OLB schedul-

ing scheme. However, due to the non-consideration of the current workload, it

may result in poor makespan. In the worst case, all M machines may need to

be examined by the scheduler to discover the machine that will be ready next.

Therefore, OLB takes O(M) time [6].

2.1.9 RS [7]

RS assigns cloudlets to VMs randomly, without taking into account the existing

load of the VMs [26]. However, the biased scheduling process used by the RS

may result in the selection of an overloaded VM that could result in low resource

utilization, load imbalance and poor makespan [5]. RS has a simple implementa-

tion, low scheduling overhead and less time complexity relative to other scheduling

schemes [7].



Literature Review 17

2.1.10 FCFS [8]

FCFS is the easiest First In First Out (FIFO) scheduling algorithm. This implies

that the FCFS algorithm serves those tasks that arrive at the queue first. Once

a task is finished, it is assigned to the next task in the queue. Then it eliminates

the executing task from the list. All the tasks behind the queue must wait for

a long time before finishing the long task in this scheme [8]. Although it is easy

to implement, but it is poor in performance because it’s average waiting time is

higher than other scheduling schemes [23].

2.1.11 SJF [9]

In the shortest job first algorithm, the tasks are arranged according to their execu-

tion time in the ascending order and then executed in the same order. The tasks

with the least execution time are executed first completely and then the scheduler

is assigned to other tasks. The intuition behind SJF is to reduce the completion

time [9]. In SJF, knowing or estimating the processing time of each task is a major

problem. It can cause starvation for longer tasks if there are a large number of

shorter tasks. SJF can improve throughput by ensuring that shorter tasks are

executed first.

The brief overview of scheduling schemes is described in Table 2.1 along with their

strengths, weaknesses, and time complexities.



Literature Review 18

Table 2.1: Strengths, Weaknesses, and Complexities of Scheduling Techniques

Algorithms Strengths Weaknesses Complexities
RS [7] Low Complex-

ity than other
algorithms

Poor resource uti-
lization

O(N)

FCFS [8] Avoid too much
idle time of VM

Poor resource uti-
lization

O(N)

SJF [9] Relatively bet-
ter makespan
and throughput
than RS and
FCFS

Poor resource uti-
lization

O(N)

OLB [6] Low Complex-
ity

Load-imbalance O(M)

MCT [1] Better
makespan
than RS,FCFS,
SJF and OLB

Faster machines
overloaded with
more tasks

O(M.N)

Load-imbalance
Min–Min [2] Favors small

sized tasks
Low Resource
Utilization

O(M.N2))

Max–Min [2] Favors larger
tasks

Load-imbalance
for larger size
tasks

O(M.N2)

Sufferage [2] Better
makespan than
RS, OLB, SJF,
FCFS, MCT,
Min–Min,
Max–Min and
TASA

Scheduling over-
head due to the
calculation of
Sufferage-value

O(M.N2)

RASA [3] Fair mapping
of smaller and
longer tasks

Load imbalance O(M.N2)

TASA[4] Better
makespan
and throughput
than MCT,
Min–Min, and
Max–Min,

Load-imbalance O(M.N2)

Favors smaller
tasks



Literature Review 19

Algorithms Strengths Weaknesses Complexities
RALBA [5] Better

makespan
and throughput
than other dis-
cussed schemes,

Load imbalance O(M2.N)

Improved
resource utiliza-
tion

2.2 Survey Papers

A brief review of task scheduling schemes is provided in this section. Many re-

searchers have proposed solutions to the problem of scheduling and allocation of

resources. However, still, there is room to devise a scheme with improved resource

utilization. Related work in the literature was examined, to perform comparative

analysis.

2.2.1 Survey No 1

Hussain et al. [5] performed a comparative analysis of 9 static scheduling schemes.

The scheduling schemes are evaluated using the CloudSim simulator on the basis of

makespan, throughput and resource utilization by using 9 instances of HCSP and

GoCJ datasets. But the method of calculating throughput and resource utilization

in [5] partial, as they referred throughput as “number of tasks executed per second”

this definition of throughput is correct for the tasks of nearly equal size. However,

if the task size differs significantly, throughput can be defined as “length of tasks

(MIs) executed per second”. Empirical evaluation indicates that the ideal solution

for scheduling independent tasks on machines is not based only on throughput,

average resource utilization ratio and execution time; instead, load balancing at

the machine level must also be taken into account in order to fully utilize the

computing power in the cloud system [16]. Among all algorithms, RALBA gives



Literature Review 20

better results in terms of resource utilization [5]. On the other hand, the worst-case

performance of RALBA against the parameters is not formulated in [5].

2.2.2 Survey No 2

Madni et al. [1] have compared task scheduling schemes including FCFS, Max-

Min, Min-Min, Sufferage MCT, and, MET in the IaaS cloud computing system.

The scheduling schemes are evaluated using the CloudSim simulator on the basis of

cost, throughput, resource utilization, and makespan using the HPC2N dataset. In

[1], partial definitions of throughput and resource utilization are used to evaluate

the performance of scheduling schemes. However, results of [1] show that Min-

Min outperforms all other schemes while MET always gives better performance in

terms of resource utilization in the scheduling of the tasks in IaaS cloud computing

[1]. But the worst-case performance of scheduling schemes against the parameters

is also not formulated in [1].

2.2.3 Survey No 3

Ali and Alam [27] reviewed and compared task scheduling schemes on the basis of

throughput, resource utilization, makespan, cost, QoS, and energy consumption.

Most of the schemes discussed in [27] focused on energy consumption and service

cost. The schemes compared in [27] are not analyzed using any third-party popular

dataset, not using thorough and complete definitions of throughput and resource

utilization and also, the methodology for analysis is not discussed.

2.2.4 Survey No 4

Maipan et al. [28] have proposed Max-Average algorithm and reviewed algorithms

for task scheduling, including Max-Min, Min-Min, MET, MCT, and Max-Average

using 4 instances of HCSP dataset. These algorithms were compared based on

average resource utilization and makespan. Simulation results revealed that the



Literature Review 21

Max-Average performs better than other scheduling algorithms but the worst-case

performance of Max-Average against the parameters is not formulated.

2.2.5 Survey No 5

Gopinath and Vasudevan [29] have analyzed two scheduling schemes including

Max-Min and Min-Min. Using the Cloudsim simulator, the performance of both

schemes were observed. Based on the results, Max-Min outperforms Min-Min

in terms of makespan. However, they did not evaluate their analyzed schemes

on different performance metrics to compare the results they only considered the

makespan. Instead of using any benchmark dataset they created and use their

own dataset.

2.2.6 Survey No 6

Patel et al. [30] proposed ELBMM scheduling algorithm using Min-Min in the first

phase of its scheduling to obtain makespan. ELBMM is compared with LBMM

and Min-Min on the basis of makespan only. However, they did not analyze

these algorithms using any benchmark dataset and also, they did not perform any

simulation.

2.2.7 Survey No 7

Mohialdeen [7] conducted a comparative analysis of four scheduling algorithms

such as RS, RR, MCT, and, OLB. The algorithms were compared on the basis

of cost, throughput, and makespan for the LIGO real dataset using the Cloudsim

simulation tool. Experimental results have shown that no single scheduling scheme

provides better performance for different types of quality services. The reason is

that scheduling schemes require to be chosen depending on its ability to ensure



Literature Review 22

good quality of services with reasonable cost and reasonable equity by distribut-

ing equitably the available resources among all the jobs and address the users’

constraints.

2.2.8 Survey No 8

Chen et al. [31] proposed LBIMM and PA-LBIMM algorithms . In the first step of

LBIMM, Min-Min scheduling scheme is used to get makespan for the identification

of the resource receiving most tasks (most heavy load resource). With respect to

the makespan, an effort is being made to move tasks to lighter resources which

creates load balancing between different resources. LBIMM and PA-LBIMM are

simulated using Matlab. They compared LBIMM and PA-LBIMM with a Min-

Min algorithm based on makespan and resource utilization. Partial definition of

resource utilization is used to evaluate the performance of scheduling schemes.

However, they performed experiments using a self-created dataset instead of using

any benchmark dataset.

2.2.9 Survey No 9

Braun et al. [32] carried out a study of the relative performance of eleven schedul-

ing algorithms on the basis of makespan using the HCSP dataset. They created

their own simulation software to implement and analyze the algorithms. They cre-

ated the HCSP dataset to provide a simulation base for the research community

to analyze the performance of scheduling schemes. The results of their simulations

show that the Min-Min produces minimum makespan compared to other schemes.

2.2.10 Survey No 10

Elzeki et al. [33] proposed a modified version of the Max-Min scheduling scheme.

The proposed technique works on the expected execution time rather than the

completion time. Improved Max-Min assigned the task to a VM having maximum



Literature Review 23

execution time. The experiments are compared with the RASA and Max-Min

algorithms on the basis of makespan. However, they performed experiments using

a dataset created by themselves rather than using any third-party popular dataset.

2.2.11 Survey No 11

Upendra and Purvi [34] proposed a modified version of the improved Max-Min

scheduling scheme. Improved Max-Min assigned the task to a VM with maximal

execution time, but the enhanced Max-Min assigned the task to a VM which has

average execution time or the execution time nearest greater than the average

execution time producing minimum completion time. The experiments are sim-

ulated in the CloudSim and compared with improved Max-Min on the basis of

makespan. Enhanced Max-Min attained improved makespan and load balance of

resources than improved Max-Min scheme. However, experiments are performed

using a self-created dataset rather than using any third-party popular dataset.

Also, the worst-case scenario of proposed scheduling schemes is not formulated.

2.2.12 Survey No 12

Muthucumaru et al. [2] studied dynamic mapping heuristics for independent tasks

employing heterogeneous distributed computing systems. Batch and immediate

mode schemes have been considered in [2]. The authors introduced three new

schemes, two for immediate mode and one for batch mode. K-percent best (KPB)

and Switching Algorithm (SA) have been proposed for immediate mode and the

Sufferage algorithm has been proposed for batch mode. To perform a comparison

of these schemes with some existing ones, simulation studies were performed on

the basis of makespan. In the immediate mode, the KPB outperformed the other

schemes and sufferage performed best in the batch mode.



Literature Review 24

2.2.13 Survey No 13

Hussain et al. [6] empirically analyzed ten static scheduling schemes using the

Cloudsim simulation tool. The experiments were conducted using three workloads:

two synthetics and one benchmark GoCJ workload against makespan, throughput,

and resource utilization. However, partial definitions of metrics were used to

evaluate the performance of scheduling schemes. The outcomes have revealed that

sufferage and TASA perform best, based on makespan and resource utilization

than other schemes. However, OLB produces poor makespan and low resource

utilization.

2.2.14 Survey No 14

Safwat et al. [35] proposed a scheduling scheme TS-GA which is based on the

Genetic Algorithm for assigning and executing independent tasks. The objective of

the proposed technique was to minimalize the completion time, maximize resource-

utilization, and decrease the execution cost- of tasks. The performance of the

proposed scheme was evaluated using CloudSim toolkit and results were compared

with three schemes; the default GA, Round-Robin, and the improved TS-GA

algorithms against makespan, resource utilization, cost, speedup, and efficiency.

The experimental results revealed that the TS-GA algorithm performs better than

other scheduling schemes. However, experiments are performed using self-created

dataset rather than any benchmark dataset. Also, the worst-case scenario of the

proposed scheduling scheme is not formulated.

2.2.15 Survey No 15

Maipan et al. [36] proposed an Extended Min-Min Algorithm which assigns jobs

on the basis of the difference between the maximum and minimum execution time.

The performance of the proposed scheme was compared with RR, FCFS, Min-Min,



Literature Review 25

and Max-Min using Inspiral and Montage datasets against makespan. The simu-

lation was done on Cloudsim and results show that the proposed algorithm gives

minimum makespan as compared to other algorithms. However, they considered

the only makespan to analyze the performance of the proposed scheme and also

the worst-case scenario of the proposed scheduling scheme is not formulated.

2.2.16 Survey No 16

Chiang et al. [37] proposed a novel technique called Advanced MaxSufferage

(AMS) to improve the performance of scheduling schemes. The proposed scheme

was compared with the sufferage and MaxSufferage algorithm using the HCSP

dataset on the basis of makespan and load balancing. Based on the results, it

is concluded that AMS has better makespan than sufferage and MaxSufferage.

Also, AMS get better load balancing result than previous algorithms in a hetero-

geneous environment. On the other hand, the worst-case scenario of the proposed

scheduling scheme is not formulated.

2.2.17 Survey No 17

Kokilavani et al. [38] introduced Load Balanced Min-Min (LBMM) scheduling

scheme to bypass the conventional Min–Min boundaries. The proposed scheme

contains two-steps. The traditional Min-Min scheme is executed in the first step

to get the makespan and the tasks are rescheduled in the second step to effec-

tively utilize the unused resources. The LBMM is compared with Min-Min in

C++ on the basis of resource utilization and makespan. The results depict that

the proposed scheme improves resource utilization and decreases the makespan.

However, experiments are performed using a self-created dataset rather than us-

ing any third-party popular dataset. Also, the worst-case scenario of the proposed

scheduling scheme is not formulated.



Literature Review 26

2.2.18 Survey No 18

Maipan-uku et. al. [39] reviewed four different immediate and batch mode

schemes, including Max-Min, Min-Min, MET, and, MCT. The scheduling schemes

are evaluated on the basis of resource utilization and makespan. The results re-

vealed that in an immediate mode, MCT is better than MET. In batch mode, Max-

Min outperforms Min-Min based on both resource utilization and makespan. The

Max-Min decreases the makespan and improves resource utilization as compared

to both immediate and batch mode schemes. However, algorithms are compared

theoretically instead of simulation.

2.2.19 Survey No 19

Li et al. [40] carried out a comparative analysis of seven scheduling schemes (given

in Table 2.2) based on makespan, average resource utilization, average slowdown,

and average offloading time. Experimental results show that mapping tasks simply

based on the estimated execution time or average processing time are not appro-

priate. Conversely, the expected completion time must be taken into account.

Also, the MCTComm algorithm offers the lowest average slowdown and shortest

average wait times and, SufferageComm steadily outperforms in terms of both

the average slowdown and average waiting time. While, on the basis of average

resource utilization, MaxMinComm outperforms the other schemes.

Table 2.2 provides a summary of empirical studies in the form of performance met-

rics, scheduling techniques, used definitions and dataset, and simulator/ evaluation

strategy.



Literature Review 27

Table 2.2: Summary of Literature Review

Ref
Perf. Measures Definitons

Used
Scheduling
Techniques

Dataset
Used

Simulator/
Evaluation
Strategy

M
a
k
e
sp

a
n

T
h
ro

u
g
h
p
u
t

R
e
so

u
rc

e
U

ti
li
za

ti
o
n

[5] Yes Yes Yes Partial

MCT,
MET,
OLB,
Min-Min,
Max-Min,
Sufferage,
TASA,
RASA,
RALBA

HCSP,
GoCJ

CloudSim

[1] Yes Yes Yes Partial

FCFS,
MCT,
MET,
Min-Min,
Max-Min,
Sufferage

HCP2N Cloudsim

[31] Yes No Yes Partial
LBIMM,
PALBIMM,
Min-Min

Self-created
synthetic

Matlab

[33] Yes No No Partial

Improved
Max-Min,
Max-Min,
RASA

Self-created
synthetic

Java

[30] Yes No No Partial
ELBMM,
LBMM,
Min-Min

Self-created
synthetic

Theoretical

[26] Yes No No Partial

OLB,
MET,
MCT,
Min-Min,
Max-Min,
Duplex,
GA,
SA,
GSA,
Tabu,
A*

HCSP Self-created S/W



Literature Review 28

Ref
Perf. Measures Definitions

Used
Scheduling
Techniques

Dataset
Used

Simulator/
Evaluation
Strategy

M
a
k
e
sp

a
n

T
h
ro

u
g
h

p
u
t

R
e
so

u
rc

e
U

ti
li
za

ti
o
n

[2] Yes No No -

KPB,
SA,
Sufferage,
MCT,
Min-Min,
Max-Min

HCSP SmartNet

[8] Yes Yes No Partial

RS,
RR,
OLB,
MCT

LIGO Cloudsim

[29] Yes No No -
Min-Min,
Max-Min

Self-created
synthetic

Cloudsim

[27] Yes Yes Yes Partial
MOTSA,
MPTSA,
LBTSA

Self-created
synthetic

Not Known

[28] Yes No Yes -

Min-Min,
Max-Min,
MET,
MCT,
Max-Average

HCSP simulation

[34] Yes No No -

Enhanced
Max-Min,
Improved
Max-Min

Self-created
synthetic

Cloudsim

[6] Yes Yes Yes Partial

OLB,
MCT,
Min-Min,
Max-Min,
RASA,
TASA,
Sufferage,
LBIMM,
PSSLB,
PSSELB

GoCJ,
Synthetic

Cloudsim



Literature Review 29

Ref
Perf. Measures Definitions

Used
Scheduling
Techniques

Dataset
Used

Simulator/
Evaluation
Strategy

M
a
k
e
sp

a
n

T
h
ro

u
g
h

p
u
t

R
e
so

u
rc

e
U

ti
li
za

ti
o
n

[35] Yes No Yes Partial
TS-GA,
RR,
GA

Self-created
synthetic

Cloudsim

[36] Yes No No -

Extended
Min-Min,
RR,
FCFS,
Min-Min,
Max-Min

Inspiral,
Montage

Cloudsim

[37] Yes No Yes Partial
AMS,
Sufferrage,
Max-Sufferrage

HCSP Cloudsim

[38] Yes No Yes Partial
LBMM,
Min-Min

Self-created
synthetic

Simulation

[39] Yes No Yes Partial

MET,
MCT,
Min-Min,
Max-Min

Self-created
synthetic

Theoretical

[40] Yes No Yes Partial

MET,
MinHop,
METComm,
MCTComm,
MinMinComm,
MaxMinComm,
SufferageComm

Self-created
synthetic

Matlab

After carefully evaluating the existing comparison between different scheduling

schemes, it was observed that the performance evaluation has been done by using

either self-created synthetic dataset instead of any third-party popular dataset

or by using partial definitions of the performance measures, like throughput and

resource utilization. It was also observed that the scheduling schemes have not

been evaluated with worst-case scenario dataset, and not with an ideal scheduler

on a smaller scale scenario.



Chapter 3

Thorough Definitions of

Performance Measures

In this chapter, we will highlight the problem in defining the performance measures

i.e. throughput and resource utilization that are used in the evaluation of the

schemes covered in previous chapter literature review. We will provide thorough

and complete definitions of throughput and resource utilization which covers all

aspects including size of the tasks and VMs with non-even computational power.

3.1 Makespan

Makespan is the maximum time for the completion of all the cloudlets (tasks) in

a workload by the available resources [5].The makespan to execute n cloudlets on

m virtual machines is expressed as follows [5]

Makespan = max
∀j=1,2,3,··· ,m

(VM CT )j (3.1)

VM CTj is the time to complete all tasks on jth VM, and VM CTj is computed

as follows:

30



Thorough Definitions of Performance Measures 31

VM CTj =

nj∑
i=1

Cloudleti.MI

VMj.MIPS
(3.2)

where Cloudleti.MI represents the size of Cloudleti in terms of Million Instruc-

tions (MIs), VMj.MIPS is the computing power of VMj in terms of Million

Instructions Per Second (MIPS) and nj denotes the total number of cloudlets as-

signed to VMj.

3.2 Throughput

Throughput is referred as the number of cloudlets (jobs) completed per unit time

[5].

Throughput =
n

Makespan
(3.3)

where n denotes the number of jobs or cloudlets and Makespan is the maximum

time for the completion of all the cloudlets. This definition is for the tasks of

nearly equal size. However, if the task size differs significantly, then this definition

of throughput becomes meaningless so we should incorporate the size of the tasks.

Let us consider an example to understand the problem of traditional throughput

that is used in literature. For this we have two scenarios:

Scenario A: In this scenario, we have 15 cloudlets having different size (MIs)

and three VMs of 5000 MIPS each. The total size of cloudlets is 12000 MIs and

Makespan for this scenario is 1.21 second. According to the Equation 3.3 the

throughput is 12.39 tasks per second.

Scenario B: In this scenario, we have 3 cloudlets of same size (5000 MIs each)

and three VMs of 5000 MIPS each. The total size of cloudlets is 15000 MIs and



Thorough Definitions of Performance Measures 32

Makespan for this scenario is 1.1 second. According to the 3.3 the throughput is

2.72 tasks per second.

From these two scenarios, scenario A is better according to the definition of tra-

ditional throughput because in scenario A 12.39 tasks are executed per second

while 2.72 tasks are executed in scenario B. But in actual scenario B is better

than scenario A, because in scenario B, 15000 MIs are processed per second while

in scenario A, only 12000 MIs are processed per second. To incorporate the size

of the tasks we have proposed a modified throughput which covers all aspects

including size of the tasks and it can be defined as follows:

Modified Throughput =
TotalSizeinMIs

Makespan
(3.4)

where TotalSizeinMIs is total length of all cloudlets and Makespan is the max-

imum completion time to execute all the cloudlets.

According to modified throughput, the throughput of scenario A is 9917.35 MIs

per second and throughput of scenario B is 13636.36 MIs per second. As in sce-

nario B, the greater number of MIs are executed so this scenario is better than

scenario A.

3.3 Resource Utilization

In the literature, resource utilization is computed by using the Average Resource

Utilization Ratio (ARUR). ARUR is the ratio of average makespan to the maxi-

mum makespan of the cloud system [5],[41] and is calculated as follows:

ARUR =

∑m
j=1(VM CT )j

m

Makespan
(3.5)



Thorough Definitions of Performance Measures 33

Figure 3.1: Resource Utilization by using ARUR

Where
∑m

j=1(VM CT )j

m
is the average completion time of all the VMs, and Makespan

is the maximum time for the completion of all the system workload. ARUR

is useful when we have the same computational power of VMs but when the

computational power of VMs differ then ARUR does not truly reflect that which

VM is actually used. Suppose we have two scenarios; in scenario a slow VM is

idle whose computational power is 100 MIPS while in scenario b, fast VM is idle

whose computational power is 2500 MIPS as given in Figure 3.1. Here, the question

is that which scenario is better? According to ARUR, both scenarios are same

because by using ARUR method both scenarios have same resource utilization i.e.

70 % as shown in Figure 3.1. But in actual the scenario a is better in which slow

VM is idle.



Thorough Definitions of Performance Measures 34

To overcome this problem, we have proposed a Computational Power Utilization

(PU) to compute resource utilization. PU is a performance metric which shows the

overall utilization of the system, and is expressed in Equation 3.6 as follows:

PU =
UP

TP

× 100 (3.6)

where UP is Utilized Computational Power and TP is Total Computational Power

of all VMs. UP and TP are computed as in Equation 3.7 and 3.8

UP =
m∑
j=1

(VM CTj ×MIPSj)j
Makespan

(3.7)

TP = UP + IP (3.8)

Where IP is Idle computational power and is computed as:

IP =
m∑
j=1

(Idle T imej ×MIPSj)j
Makespan

(3.9)

and Idle Time can be computed by using the following formula:

Idle T ime =
m∑
j=1

(max Makespan−Makespanj)j (3.10)

where m denotes the total number of VMs and Makespanj is the makespan on

jth VM.

Now consider an above example in which we have two scenarios; in scenario a slow

VM is idle whose computational power is 100 MIPS while in scenario b, fast VM

is idle whose computational power is 2500 MIPS. Here, the question is that which

scenario is better? According to PU, the scenario a has achieved 97.2 % resource

utilization when the slow VM was idle, while when fast VM was idle in scenario b



Thorough Definitions of Performance Measures 35

Figure 3.2: Resource Utilization by using thorough definition

then the resource utilization was 51.5 % as shown in Figure 3.2 , so scenario a is

better than scenario b according to PU method and also in actual the scenario a

is better in which slow VM is idle.

In this thesis, eleven prominent scheduling schemes are evaluated by using thor-

ough definitions of performance measures which covers all the aspects having task

of different size and VMs with non-even computational power.



Chapter 4

Dataset and Workload

Compositions

4.1 Dataset

In this research, we evaluate the performance of eleven popular static scheduling

schemes by using both a third-party popular dataset, Google Cloud Jobs dataset

(GoCJ) [42] and our prepared dataset named as Random Data Set (RanDS). The

details of these datasets are described as follows:

4.1.1 GoCJ Dataset

GoCJ is based on the realistic Google cluster traces. The GoCJ dataset is stored

in a Mendeley Data repository which consists of 21 text files [42]. Each text file

consists of a set of rows, where each row has a numeric value presenting the size of

a job in terms of MIs. In GoCJ, the cloudlet sizes are distributed as: small (15,000-

55,000 MI), medium (59,000-99,000 MI), large (101,000-135,000 MI), extra-large

(150,000-337,500 MI), and huge (525,000-900,000 MI) (as shown in Figure 4.1).

Using the distribution of cloudlet sizes in GoCJ, we have extracted the following

statistics about the sizes of jobs from each text file as shown in Table 4.1.

36



Dataset and Workload Compositions 37

Figure 4.1: Composition of the GoCJ Dataset

Table 4.1: Statistics of the Cloudlets for GoCJ Dataset

Dataset File Name Number of Cloudlets Dataset File Name Number of Cloudlets

GoCJ Dataset 100.txt

Small Jobs = 19

GoCJ Dataset 350.txt

Small Jobs = 60
Medium Jobs = 39 Medium Jobs = 131
Large Jobs = 31 Large Jobs = 119
Extra Large Jobs= 3 Extra Large Jobs= 14
Huge Jobs = 8 Huge Jobs = 26

GoCJ Dataset 150.txt

Small Jobs = 22

GoCJ Dataset 400.txt

Small Jobs = 55
Medium Jobs = 58 Medium Jobs =165
Large Jobs = 51 Large Jobs = 139
Extra Large Jobs= 6 Extra Large Jobs= 18
Huge Jobs = 13 Huge Jobs = 23

GoCJ Dataset 200.txt

Small Jobs = 42

GoCJ Dataset 450.txt

Small Jobs = 85
Medium Jobs = 75 Medium Jobs = 184
Large Jobs = 63 Large Jobs = 141
Extra Large Jobs= 4 Extra Large Jobs=17
Huge Jobs = 16 Huge Jobs = 23

GoCJ Dataset 250.txt

Small Jobs = 58

GoCJ Dataset 500.txt

Small Jobs = 96
Medium Jobs = 93 Medium Jobs = 191
Large Jobs = 79 Large Jobs = 155
Extra Large Jobs= 7 Extra Large Jobs= 25
Huge Jobs = 13 Huge Jobs = 33

GoCJ Dataset 300.txt

Small Jobs = 61

GoCJ Dataset 550.txt

Small Jobs = 98
Medium Jobs = 114 Medium Jobs = 226
Large Jobs = 95 Large Jobs = 176
Extra Large Jobs= 7 Extra Large Jobs= 17
Huge Jobs = 23 Huge Jobs = 33



Dataset and Workload Compositions 38

Dataset File Name Number of Cloudlets Dataset File Name Number of Cloudlets

GoCJ Dataset 600.txt

Small Jobs = 114

GoCJ Dataset 850.txt

Small Jobs = 148
Medium Jobs = 229 Medium Jobs = 363
Large Jobs = 190 Large Jobs = 259
Extra Large Jobs=25 Extra Large Jobs= 33
Huge Jobs = 42 Huge Jobs = 47

GoCJ Dataset 650.txt

Small Jobs = 118

GoCJ Dataset 900.txt

Small Jobs = 156
Medium Jobs = 243 Medium Jobs = 344
Large Jobs = 210 Large Jobs = 298
Extra Large Jobs= 33 Extra Large Jobs= 44
Huge Jobs = 46 Huge Jobs = 58

GoCJ Dataset 700.txt

Small Jobs = 116

GoCJ Dataset 950.txt

Small Jobs = 179
Medium Jobs = 295 Medium Jobs = 347
Large Jobs =222 Large Jobs = 337
Extra Large Jobs= 29 Extra Large Jobs= 39
Huge Jobs = 38 Huge Jobs = 48

GoCJ Dataset 750.txt

Small Jobs = 145

GoCJ Dataset 1000.txt

Small Jobs = 162
Medium Jobs = 284 Medium Jobs = 423
Large Jobs = 240 Large Jobs = 322
Extra Large Jobs= 28 Extra Large Jobs= 33
Huge Jobs = 53 Huge Jobs = 60

GoCJ Dataset 800.txt

Small Jobs = 160

- -

Medium Jobs = 315
Large Jobs = 252
Extra Large Jobs= 27
Huge Jobs = 46

4.1.2 RanDS

RanDS is our own prepared dataset which is used to test the worst-case scenario of

scheduling schemes. Initially, a random dataset was downloaded from the internet

which has 20 text files. Each text file consists of cloudlets with different sizes but

the length of each cloudlet (MIs) in the random dataset was very small as compare

to the GoCJ dataset. In the file containing 500 cloudlets, the length of the smallest

cloudlet was only 2MIs and the length of the largest cloudlet was 44930 MIs. And

for 1000 cloudlets, the length of the smallest cloudlet was only 118 MIs which is

very small as compared to the smallest cloudlet of the GoCJ dataset. So, two files

are chosen from the random dataset (i.e., with 500 and 1000 number of cloudlets)

and the size of each cloudlet is increased by adding 1000 MIs. Now in updated

RanDS for 500 number of cloudlets, the length of the smallest cloudlet is 2000

MIs and the length of the largest cloudlet is 44930000 MIs. Similarly, for 1000

cloudlets the length of the smallest cloudlet is 1118 MIs and the length of the



Dataset and Workload Compositions 39

largest cloudlet is 13001000 MIs, respectively. The sizes of some of the cloudlets

for RanDS is given in Table 4.2 as a sample.

Table 4.2: Statistics of the Cloudlets for RanDS

Length of 500
Cloudlets (MIs)
in Random
Dataset

Length of 500
Cloudlets (MIs)
in RanDS

Length of 1000
Cloudlets (MIs)
in Random
Dataset

Length
of 1000
Cloudlets
(MIs) in
RanDS

73 73000 5800 6800
78 78000 219 1219
24 24000 7334 8334
155 155000 2000 3000
120 120000 3098 4098
216 216000 118 1118
873 873000 1802000 1803000
1070 1070000 20933 21933
947 947000 20933 21933
1152 1152000 135678 136678
822 822000 1782225 1783225
877 877000 13000000 13001000
1189 1189000 11422 12422
815 815000 31622 32622
843 843000 30443 31443
824 824000 42755 43755
943 943000 40081 41081
1112 1112000 32274 33274
39228 39228000 37394 38394
44930 44930000 32555 33555
36363 36363000 37901 38901
41105 41105000 41616 42616
41733 41733000 33780 34780
30979 30979000 44474 45474



Chapter 5

Simulation and Results

5.1 Experimental Setup

Use of real cloud, for evaluation of scheduling and resource allocation policies,

is often limited and a challenging problem. In real infrastructures, an extremely

difficult task is the reproduction of reliable results. In cloud infrastructure recon-

figuration of many experiments is a costly and time-consuming task. Moreover,

experiments cannot be performed in a repeatable, reliable, and scalable manner

in a real cloud environment. Therefore, an ideal alternative is to use a simulation

environment that enables cloud developers to conduct experiments by employing

the desired and varying configurations related to computing infrastructure and

dataset (i.e., cloud jobs). So, for empirical evaluation, we use a well-known simu-

lator; CloudSim [43] (version 3.0.3). It is an open-source framework for modeling

and analyzing the performance of cloud services. A user job/task is represented as

cloudlet in CloudSim and the job’s size (computational requirement) is measured

in terms of MIs.

The experiments are conducted on a machine equipped with Intel Core i3-4010U

Quad-core processor (having 1.70 GHz clock speed) and 4.00 GB of main memory.

Liu and Cho [44] describe the workloads and computing machines on a Google clus-

ter and found that 93% of Google cluster machines are fairly homogenous and only

40



Simulation and Results 41

6% of machines with higher computing capabilities. We construct an experimen-

tal setup for empirical evaluation using the characteristics of the real computing

machines (found in the analysis of Liu and Cho [44]). All the experiments are

performed by using 30 VMs, hosted on 10 host machines within one data-center.

Table 5.1 shows the configuration details for the simulation environment used.

Figure 5.1 presents the overall statistics of the VMs and their computing power

in terms of MIPS. As shown in Figure 5.1, the slowest and fastest VMs have the

computing power of 100 and 4000 MIPS, respectively.

Table 5.1: Configuration of the Simulation Environment

Simulator/Version Cloudsim version 3.0.3
Computing power of cloudhost
machines

4 Dual-core (4000 MIPS), 6 Quad-core
(4000 MIPS)

Total cloudhost machines 10
Host machine memory 16,384 MBs (each)
Total VMs 30 heterogeneous VMs
Total Cloudlets 100,150,200,250,300,350,400,450,500,550,

600,650,700,750,800,850,900,950,1000

Figure 5.1: Computational Power of VMs

Later on, we performed an analysis of best performing scheme by changing the

overall statistics of the VMs and their computing power (MIPS). This experiment



Simulation and Results 42

Figure 5.2: Computational Power of VMs (for scenario A)

Figure 5.3: Computational Power of VMs (for scenario B)

is conducted to analyze the impact of outperforming scheme on resource utiliza-

tion. The number of cloudlets used in this experiment are 100, 500, and 1000 from

GoCJ. This experiment is comprised of two scenarios:

Scenario A: In this scenario, the number of VMs with slowest computational

power (100 MIPS) is increased as shown in Figure 5.2.

Scenario B: In this scenario, the computational power for slowest VMs is changed

from 100 MIPS to 500 MIPS. Details are shown in Figure 5.3.



Simulation and Results 43

Figure 5.4: Makespan Results Using GoCJ Dataset

5.2 Experimental Results

This section explains the simulation results obtained after running the task schedul-

ing schemes on CloudSim. We consider eleven prominent static scheduling schemes

including: FCFS [30], RS [8], SJF [7], OLB [9] , MCT [33], Min-Min [6], Max-Min

[6], TASA [2], RASA [4], Sufferage [6], and RALBA [17]). An in-depth empirical

study is conducted to better understand the scheduling mechanisms in terms of

makespan, throughput, and resource utilization. Each experiment is conducted 10

times and the analysis are performed on average values.

5.3 Makespan-Based Results

We use term makespan to represent the completion of all execution of the cloudlets

in a workload. The scheduling scheme whose makespan is minimum is considered

best. Figure 5.4 demonstrates the makespan results of eleven scheduling schemes

for GoCJ benchmark workload. The x-axis shows the number of cloudlets (jobs)

and y-axis shows the makespan (measured in seconds). As shown in Figure 5.4,

makespan increases in most cases when we increase the number of cloudlets. For

more clarity, the average makespan of all the schemes using different number of



Simulation and Results 44

Figure 5.5: Average Makespan Using GoCJ Dataset

cloudlets is calculated as follows:

Avg Makespan =
N∑
i=1

Makespani

N
(5.1)

where N represents the number of experiments conducted for each scheduling

scheme and Makespani represents the makespan of ith experiment. Each exper-

iment is repeated using a varying number of cloudlets (i.e., cloudlets100 − 1000,

as given in Table 5.1). The average makespan results for all scheduling schemes

are presented in Figure 5.5. The x-axis presents scheduling schemes and y-axis

shows average makespan of each scheduling scheme (measured in seconds). As

shown in Figure 5.5, for the execution of GoCJ dataset, our results revealed that

the RALBA, Sufferage, and RASA attains lower makespan as compared to the

other scheduling schemes. However, there is a minor difference between Sufferage,

and RASA with respect to makespan for GoCJ workload. On the other hand,

FCFS, and SJF achieves largest makespan while RS performs worse than all other

schemes.

Figure 5.6 and 5.7 show the makespan results of 11 scheduling schemes using

RanDS for 500 and 1000 cloudlets. RALBA, RASA, and Max-Min achieved the



Simulation and Results 45

Figure 5.6: Makespan for 500 Cloudlets Using RanDS

same makespan on RanDS. After RALBA and RASA, Sufferage and TASA al-

gorithms gives the minimum makespan when compared to rest of the schemes

using RanDS. On the other hand, OLB has achieved highest makespan for 500

cloudlets-based scheduling and for 1000 number of cloudlets RS has perfomed

worst. Figure 5.8 shows the average makespan result for RanDS. As shown in Fig-

ure 5.8, RALBA, RASA and Max-Min achieved the same makespan on average

and outperforms all other schemes while OLB has performed worst. The reason

is that, OLB keeps all machines as busy as possible regardless of considering the

job’s execution time on that particular machine. As a result, OLB scheduling

scheme mostly results in poor makespan.

5.4 Throughput-Based Results

In this study, we have computed throughput in two different ways; one is by us-

ing traditional method of calculating throughput which was used in the previous

chapter literature review as: throughput is referred as the number of cloudlets

executed per second. But this method of defining throughput is partial because

the length of cloudlets varies in the dataset, so, we defined throughput as: number

of million instructions (total length of cloudlets) executed per unit time which we



Simulation and Results 46

Figure 5.7: Makespan for 1000 Cloudlets Using RanDS

Figure 5.8: Average Makespan Using RanDS Dataset

called modified throughput as discussed in Chapter 1 in equation ??. A schedul-

ing scheme producing higher throughput is assumed a better performing scheme.

Figure 5.9 presents the results of modified throughput and Figure 5.10 presents

the traditional throughput results for the execution of GoCJ workload. As shown

in Figure 5.9, RALBA has executed greater number of million instructions per

unit time for different number of cloudlets using GoCJ dataset. After RALBA,

the second-best scheduling scheme is RASA on the basis of both modified and

traditional throughput. For more clarity in the simulation results, the average



Simulation and Results 47

Figure 5.9: Modified Throughput Using GoCJ Dataset

Figure 5.10: Throughput Using GoCJ Dataset

throughput is calculated as:

Avg Throughput =
N∑
i=1

Throughputi
N

(5.2)

where N represents the number of experiments conducted for each scheduling algo-

rithm and Throughputi represents the throughput of ith experiment. Each exper-

iment is repeated using a varying number of cloudlets (i.e., cloudlets100−1000, as



Simulation and Results 48

given in Table 5.1). Figure 5.11 presents the average modified throughput for all

scheduling schemes using GoCJ dataset. The x-axis shows the scheduling schemes

and y-axis shows average modified throughput (MI/second). According to the

modified throughput, RALBA executes 37125.39 million instructions per second

on average, while 0.2832 jobs per second according to traditional throughput as

shown in Figure 5.12. Likewise, average makespan results, RALBA and RASA

achieved the highest throughput. Similarly, RS, FCFS, and SJF techniques have

the least throughput as shown in Figure 5.11 and 5.12.

Figure 5.11: Average Modified Throughput Using GoCJ Dataset

Figure 5.13 and 5.14 show the throughput results of 11 scheduling schemes using

RanDS for 500 cloudlets. As shown in Figures 5.13 and 5.14, Max-Min, RALBA

and RASA have achieved same throughput, similarly TASA and Sufferage at-

tained same throughput using RanDS, while RS has least throughput than all

other schemes.

Figure 5.15 and 5.16 present throughput for 1000 number of cloudlets using RanDS.

It is observed that the RALBA, RASA, TASA, Sufferage, and Max-Min pro-

duce the same throughput using RanDS but the performance of these schedul-

ing schemes become poor by increasing the number of cloudlets (i.e., from 500 to



Simulation and Results 49

Figure 5.12: Average Throughput Using GoCJ Dataset

Figure 5.13: Throughput for 500 Cloudlets Using RanDS

1000). However, SJF and FCFS have least modified throughput while RS per-

formed worse than all other scheduling schemes on average using RanDS as given

in Figure 5.17.



Simulation and Results 50

Figure 5.14: Modified Throughput for 500 Cloudlets Using RanDS

Figure 5.15: Throughput for 1000 Cloudlets Using RanDS

5.5 Resource Utilization-Based Results

This parameter indicates the efficiency of an algorithm while keeping the available

resources busy during the scheduling. The optimization of resources is achieved

by reducing the idle time of the resource. In this work, resource utilization is

computed in two ways: one is by using ARUR and second method is by using

PU .



Simulation and Results 51

Figure 5.16: Modified Throughput for 1000 Cloudlets Using RanDS

Figure 5.17: Average Modified Throughput Using RanDS

5.6 ARUR-Based Results

Figure 5.18 shows the ARUR-based experimental results of eleven schemes for

GoCJ benchmark workload. The ARUR value remains between 0 and 1, where

the value near to 1 indicates exemplary resource utilization (i.e., closest to 100%

resource utilization). As shown in Figure 5.18, RALBA gives relatively highest

resource utilization than other scheduling schemes. Max-Min has much variation

in resource utilization ratio with the increasing number of cloudlets. The reason



Simulation and Results 52

Figure 5.18: ARUR Using GoCJ

is that Max-Min schedules long and short tasks simultaneously, so sometimes it

utilizes almost 100% resources and sometimes its utilization undergoes below 50%

as given in Figure 5.18. However, FCFS and SJF produced almost similar results

and performs worst in terms of average resource utilization ratio.

For more clarity Mean ARUR value for each scheduling is described based on the

following equation:

Mean ARUR =
N∑
i=1

ARURi

N
(5.3)

where N represents the number of experiments conducted for each scheduling

algorithm and ARURi represents ARUR of ith experiment.

Figure 5.19 presents the Mean ARUR results for all schemes. RALBA and suffer-

age algorithms produce the highest resource utilization, (i.e,. 97.5% and 92.9%) as

compared to other scheduling schemes. The FCFS scheduling algorithm produces

the least resource utilization among all scheduling schemes using GoCJ dataset.

Figure 5.20 and 5.21 present the ARUR results of 11 scheduling schemes us-

ing RanDS for 500 and 1000 cloudlets. As shown in Figure 5.20 and 5.21 for



Simulation and Results 53

Figure 5.19: Mean ARUR Using GoCJ

Figure 5.20: ARUR for 500 Cloudlets Using Random Dataset

RanDS, Max-Min scheduling algorithm outperforms all other schemes on the ba-

sis of ARUR. On RanDS the RALBA has attained only 36% resource utilization

for 500 cloudlets and for 1000 cloudlets its utilization becomes poorer (i.e., 16%)

as given in Figure 5.21. The experimental results show that RASA is second-

best algorithm on the basis of ARUR using RanDS. The MCT scheme attains

the highest ARUR (13.5% resource utilization), as compared to Min-Min, OLB

and FCFS for RanDS. Furthermore, SJF and RS scheduling schemes have poor

resource utilization among all scheduling schemes.



Simulation and Results 54

Figure 5.21: ARUR for 1000 Cloudlets Using RanDS

Figure 5.22: Mean ARUR Using RanDS

Figure 5.22 show the mean ARUR based experimental results for the execution

of RanDS of all scheduling schemes. Using RanDS, Max-Min has outperformed

all other scheduling schemes on the basis of mean ARUR while OLB and RS have

given poor results on mean ARUR.



Simulation and Results 55

Figure 5.23: Computational Power Utilization Using GoCJ

5.7 PU-Based Results

In this section, we compare all scheduling schemes on the basis of computational

power utilization (PU) of each VM by using own prepared formula as discussed

in Chapter 1 in equation ??. The algorithm which consumes more computational

power is considered best. Figure 5.23 presents computational power utilization-

based results of all scheduling schemes for GoCJ benchmark workload. The x-axis

presents number of cloudlets and y-axis shows the computational power utilization

in percentage. For more clarity in the simulation results, the average computa-

tional power utilization is calculated using Equation 5.4 and results are given in

Figure 5.24.

Average PU =
N∑
i=1

PU i

N
(5.4)

Figure 5.24, presents the average computational power utilization-based results

for the execution of GoCJ workload. RALBA has attained 98.6% computational

power utilization and outperforms rest of the other algorithms. After RALBA,

the second-best algorithm is RASA, which is resource aware scheduling algorithm

and it attained 97% utilization, as shown in Figure 5.24. OLB algorithm has 76%

computational power utilization when we have different number of cloudlets using



Simulation and Results 56

Figure 5.24: Average Computational Power Utilization Using GoCJ

GoCJ (as given in Table 1). However, RS has 20.78% computational power uti-

lization because it assigns tasks to VMs randomly without considering the current

load of VMs. On the other hand, SJF and FCFS have almost similar resource uti-

lization (i.e., 6.5% and 6.1%) which is very low as compared to other scheduling

schemes.

Figure 5.25 and 5.26 present the computational power-utilization results of 11

scheduling schemes using RanDS for 500 and 1000 cloudlets. As shown in Figure

5.25 and 5.26 for RanDS, Max-Min scheduling algorithm outperforms all other

schemes on the basis of resource utilization. The reason is that Max-Min is likely

to do better than other scheduling schemes in cases where there are many shorter

tasks than longer tasks. However, on RanDS, the RALBA has attained only 45.6%

resource utilization for 500 cloudlets and for 1000 cloudlets its utilization becomes

poorer (i.e., 27.3%) as given in Figure 5.26. The experimental results show that

both RASA and RALBA attain equal resource utilization using RanDS. The MCT

scheme attains highest resource utilization (i.e., 37.9%), as compared to Min-Min,

OLB, SJF and FCFS for RanDS.

Figure 5.27 shows the average computational power utilization-based results for

the execution of RanDS of all scheduling schemes. Using RanDS; Max-Min, RASA,



Simulation and Results 57

Figure 5.25: Computational Power Utilization for 500 Cloudlets Using RanDS

Figure 5.26: Computational Power Utilization for 1000 Cloudlets Using
RanDS

and RALBA has attained same resource utilization on average while RS and SJF

performed worst on the basis of resource utilization.

5.8 Analysis of Best Performing Scheme

This experiment is conducted to analyze the impact of above-discussed outper-

forming scheme on resource utilization. As RALBA outperforms other scheduling



Simulation and Results 58

Figure 5.27: Average Computational Power Utilization Using RanDS

schemes in previously discussed results, so this experiment is conducted to analyze

the impact of resource utilization of RALBA by changing the computational power

of VMs. This experiment is comprised of two scenarios. In these two scenarios we

have increased the non-uniformity of VMs.

5.8.1 Scenario A

In this scenario , number of VMs is 30, out of which 9 VMs are considered slowest

machines with computational power (100 MIPS). Other 21 VMs have different

computational power. In both scenarios, three files are selected from GoCJ dataset

having numbers of cloudlets: 100, 500, and, 1000, (each having different MIs). The

statistics of VMs for scenario A are presented in Figure 5.2.

5.8.2 Scenario A: Resource Utilization of RALBA for 100

Cloudlets

In Table 5.2, MIPS and computational power utilization (PU) of each VM for

RALBA are listed when we have 100 cloudlets. The PU of RALBA on each VM

increases and decreases based on computational power of VMs, as shown in Figure



Simulation and Results 59

Table 5.2: PU of RALBA for 100 cloudlets in Scenario A

VMID MIPS PU (%) VMID MIPS PU (%)
1 100 0% 16 1000 96.37%
2 100 0% 17 1250 86.79%
3 100 59.55% 18 1500 99.98%
4 500 81.42% 19 1750 85.27%
5 750 83.44% 20 4000 95.04%
6 1000 84.89% 21 100 86.62%
7 1250 95.64% 22 100 0%
8 1500 98.82% 23 100 86.62%
9 1750 84.76% 24 500 84.02%
10 4000 87.81% 25 750 82.87%
11 100 32.48% 26 1000 83.16%
12 100 86.62% 27 1250 86.79%
13 100 0% 28 1500 86.64%
14 500 83.16% 29 1750 96.40%
15 750 82.87% 30 4000 88.11%

Average PU 73.54%

5.28. We have 9 VMs whose computational power is 100 MIPS and these VMs

are slowest. Out of these 9 VMS, RALBA has scheduled tasks on 5 VMs and 4

VMs remains idle in this scenario. RALBA heuristic produces a VM-level load-

imbalance by overloading the faster VMs and under-utilizing the slower VMs (i.e.,

the VM1, VM2, VM13, and VM22 remains idle) as shown in Figure 5.28. RALBA

has attained only 73.5% resource utilization in this scenario, while when the num-

ber of slow VMs were 3 as discussed in above section, then the resource utilization

of RALBA was 92.9% for 100 number of cloudlets. We observed that, RALBA

gives better resource utilization when we have relatively fast VMs, as shown in

Figure 5.28. Similarly, the makespan for 100 cloudlets in above result was almost

386 seconds but now the makespan increased (471.76 seconds) and throughput

also decreased due to low resource utilization. Based on these results, we conclude

that when we have a greater number of slower VMs and relatively a lesser number

of cloudlets, then the performance of RALBA is significantly changed.



Simulation and Results 60

Figure 5.28: PU of RALBA for 100 Cloudlets in Scenario A

5.8.3 Scenario A: Resource Utilization of RALBA for 500

Cloudlets

The computational power utilization of RALBA for 500 cloudlets at each VM is

shown in Figure 5.29 and Table 5.3. In this experiment, RALBA has almost similar

resource utilization for 500 cloudlets as discussed in section 4.2.3. But makespan

of RALBA for 500 cloudlets increases and throughput decreases because we have

a greater number of slow VMs as compared to above experimental setup. In this

experiment, RALBA has achieved above 95% resource utilization for all VMs as

given in Table 5.3

5.8.4 Scenario A: Resource Utilization of RALBA for 1000

Cloudlets

The computational power utilization of RALBA for 1000 cloudlets at each VM is

shown in Figure 5.30 and Table 5.4. In this experiment, RALBA attained 98%

resource utilization for 1000 cloudlets and it is almost similar to the previous value

of resource utilization as discussed in section 4.2.3. But makespan of RALBA for



Simulation and Results 61

Table 5.3: PU of RALBA for 500 cloudlets in Scenario A

VMID MIPS PU (%) VMID MIPS PU (%)
1 100 97.83% 16 1000 99.80%
2 100 97.83% 17 1250 99.59%
3 100 97.83% 18 1500 99.99%
4 500 98.94% 19 1750 99.60%
5 750 99.18% 20 4000 99.84%
6 1000 99.51% 21 100 96.81%
7 1250 98.92% 22 100 97.83%
8 1500 99.85% 23 100 96.81%
9 1750 98.93% 24 500 99.35%
10 4000 99.46% 25 750 99.04%
11 100 97.83% 26 1000 99.40%
12 100 96.81% 27 1250 98.72%
13 100 97.83% 28 1500 99.37%
14 500 99.35% 29 1750 99.28%
15 750 99.62% 30 4000 99.38%

Average PU 98.82%

Figure 5.29: PU of RALBA for 500 Cloudlets in Scenario A

1000 cloudlets increase and throughput decrease as given in Table 4.8 because we

have a greater number of slow VMs as compared to above setup.



Simulation and Results 62

Table 5.4: PU of RALBA for 1000 cloudlets in Scenario A

VMID MIPS PU (%) VMID MIPS PU (%)
1 100 98.11% 16 1000 99.94%
2 100 97.61% 17 1250 98.43%
3 100 97.10% 18 1500 99.99%
4 500 97.96% 19 1750 98.74%
5 750 98.67% 20 4000 98.65%
6 1000 98.40% 21 100 97.10%
7 1250 98.63% 22 100 97.61%
8 1500 98.57% 23 100 97.10%
9 1750 98.67% 24 500 97.96%
10 4000 98.73% 25 750 98.60%
11 100 97.60% 26 1000 98.67%
12 100 97.10% 27 1250 98.44%
13 100 98.11% 28 1500 98.51%
14 500 97.96% 29 1750 98.48%
15 750 98.60% 30 4000 98.60%

Average PU 98.82%

Figure 5.30: PU of RALBA for 1000 Cloudlets in Scenario A

5.8.5 Scenario B

In this scenario, the computational power for slowest VMs is changed from 100

MIPS to 500 MIPS. The statistics of VMs for simulating Scenario B are presented

in Figure 5.3.



Simulation and Results 63

Table 5.5: PU of RALBA for 100 cloudlets in Scenario B

VMID MIPS PU (%) VMID MIPS PU (%)
1 500 84.18% 16 750 81.94%
2 750 79.69% 17 1000 86.71%
3 1000 76.61% 18 1250 85.75%
4 1250 82.63% 19 1500 84.37%
5 1500 84.09% 20 1750 84.21%
6 1750 84.21% 21 4000 95.66%
7 4000 86.98% 22 500 83.06%
8 500 83.96% 23 750 83.06%
9 750 82.87% 24 1000 81.10%
10 1000 79.41% 25 1250 83.06%
11 1250 86.20% 26 1500 83.24%
12 1500 83.65% 27 1750 84.21%
13 1750 80.41% 28 4000 87.09%
14 4000 99.97% 29 500 84.18%
15 500 81.94% 30 750 86.80%

Average PU 84.09%

5.8.6 Scenario B: Resource Utilization of RALBA for 100

Cloudlets

The computational power utilization of RALBA for 100 cloudlets at each VM

is shown in Figure 5.31 and Table 5.5. It can be observed from Figure 5.31,

by changing the computational power of VMs, utilization of RALBA also affects.

When we have 9 VMs whose computational power was 100 MIPS in above scenario,

then the average resource utilization of RALBA was 73.5%, but now RALBA has

84% average resource utilization by changing the computational power of VMs

from 100 to 500 MIPS. However, RALBA gives better resource utilization when

we have relatively fast VMs, as shown in Figure 5.31. Similarly, the makespan and

throughput for 100 cloudlets in this scenario is relatively better than the results

of scenario A, as given in Table 5.5.



Simulation and Results 64

Figure 5.31: PU of RALBA for 100 Cloudlets in Scenario B

Figure 5.32: PU of RALBA for 500 Cloudlets in Scenario B

5.8.7 Scenario B: Resource Utilization of RALBA for 500

Cloudlets

The resource utilization of RALBA for 500 cloudlets at each VM is shown in Figure

5.32 and Table 5.6. In this experiment, RALBA attained 99% average resource

utilization for 500 cloudlets. As shown in Figure 5.32, RALBA consumes 98%

computational power of each VM. The makespan and throughput also improves

in this scenario as compared to scenario A.



Simulation and Results 65

Table 5.6: PU of RALBA for 500 cloudlets in Scenario B

VMID MIPS PU (%) VMID MIPS PU (%)
1 500 98.07% 16 750 99.87%
2 750 98.74% 17 1000 99.42%
3 1000 99.43% 18 1250 99.99%
4 1250 98.85% 19 1500 99.17%
5 1500 99.34% 20 1750 99.61%
6 1750 99.45% 21 4000 99.29%
7 4000 99.69% 22 500 98.07%
8 500 98.07% 23 750 99.28%
9 750 98.75% 24 1000 99.35%
10 1000 99.36% 25 1250 99.08%
11 1250 99.07% 26 1500 99.16%
12 1500 99.15% 27 1750 99.37%
13 1750 99.68% 28 4000 99.41%
14 4000 99.92% 29 500 98.34%
15 500 99.42% 30 750 98.75%

Average PU 99.17%

5.8.8 Scenario B: Resource Utilization of RALBA for 1000

Cloudlets

The resource utilization of RALBA for 1000 cloudlets at each VM is shown in

Figure 5.33 and Table 5.7. In this experiment, RALBA attained 99.6% resource

utilization for 1000 cloudlets and it is relatively better than the results of scenario

A. Based on these results we conclude that with the increasing number of cloudlets

and greater number of fast VMs, resource utilization of RALBA also increases. But

when we have relatively small number of cloudlets and greater number of slower

VMs then the resource utilization of RALBA is biased.

As per our results, RALBA has the lowest makespan, highest throughput, and re-

source utilization while RS showed the highest makespan, lowest throughput, and

resource utilization by using the GoCJ dataset. With RanDS dataset, RALBA,

RASA, and Max-Min showed the same amount of lowest makespan, highest through-

put, and resource utilization. One significant result observed that the maximum

resource utilization was 98% on the GoCJ dataset and 36.4% by using RanDS for

the best performing scheme.



Simulation and Results 66

Table 5.7: PU of RALBA for 1000 cloudlets in Scenario B

VMID MIPS PU (%) VMID MIPS PU (%)
1 500 98.90% 16 750 99.49%
2 750 99.88% 17 1000 99.36%
3 1000 99.43% 18 1250 99.65%
4 1250 99.55% 19 1500 99.77%
5 1500 99.63% 20 1750 99.95%
6 1750 99.95% 21 4000 99.68%
7 4000 99.99% 22 500 99.62%
8 500 98.91% 23 750 99.47%
9 750 99.43% 24 1000 99.57%
10 1000 99.88% 25 1250 99.69%
11 1250 99.75% 26 1500 99.61%
12 1500 99.73% 27 1750 99.79%
13 1750 99.95% 28 4000 99.77%
14 4000 99.99% 29 500 99.04%
15 500 99.49% 30 750 99.79%

Average PU 99.62%

Figure 5.33: PU of RALBA for 1000 Cloudlets in Scenario B



Simulation and Results 67

Table 5.8: Comparative Table of Scenario A and B for RALBA

For 100 Cloudlets Scenario A Results Scenario B Results
Makespan (sec) 461.7 356.3

Throughput (jobs/sec) 0.2100 0.2694
Throughput (MI/sec) 29256.25 37910.78

ARUR (0-1) 0.73 0.84
PU (%) 73.5 84.1

For 500 Cloudlets Scenario A Results Scenario B Results
Makespan (sec) 1972.8 1478.5

Throughput (jobs/sec) 0.2483 0.3327
Throughput (MI/sec) 32949.55 43964.71

ARUR (0-1) 0.98 0.99
PU (%) 98.8 99.1

For 1000 Cloudlets Scenario A Results Scenario B Results
Makespan (sec) 3964.7 2938.0

Throughput (jobs/sec) 0.2476 0.3355
Throughput (MI/sec) 32703.70 44131.82

ARUR (0-1) 0.98 0.99
PU (%) 98.2 99.6



Chapter 6

Analysis and Discussion

In this chapter, comparitive analysis and discussion of simulation results about

above-mentioned scheduling schemes is provided.

6.1 Makespan-Based Analysis

In Figure 5.5, scheduling schemes are compared on the basis of makespan for GoCJ

benchmark workload. RALBA has completed the execution of all the tasks earlier

than the other schemes, as shown in Figure 5.5. It is observed that by chang-

ing the dataset and computational power of resources it affects the performance of

different schemes in terms of makespan, throughput, and resource utilization. Fig-

ure 5.8 shows the average makespan result of eleven scheduling schemes by using

RanDS. RALBA, RASA, and Max-Min produce the same makespan on RanDS

while on GoCJ dataset, RALBA outperforms the other schemes as shown in Fig-

ure 5.5. The makespan of RALBA is almost equivalent to RASA and Max-Min on

average as shown in Figure 5.8. On the other hand, the makespan of Max-Min on

GoCJ dataset for 500 and 1000 cloudlets is much larger than RALBA and RASA.

The reason is that, Max-Min mostly performs better in the scenario when there

is a large number of small-sized jobs with a fewer larger jobs. Max-Min algo-

rithm assigns task on resources where larger tasks have more priority than smaller

68



Analysis and Discussion 69

tasks. Our experimental results show that after RALBA and RASA, the Sufferage

scheduling scheme has lower makespan, higher throughput and better resource uti-

lization as compared to the TASA, Min-Min, Max-Min, MCT, OLB, FCFS, SJF

and RS schemes by using GoCJ dataset. Reduced makespan and higher resource

utilization is achieved due to the selection of a suitable VM for cloudlet scheduling.

The suitable VM means which will suffer most in terms of makespan. By assigning

suitable machines to the tasks that have the highest sufferage values among all

contending tasks, the Sufferage algorithm reduces the overall completion time.

The scheduling mechanism of TASA is based on Sufferage and Min-Min schemes.

Therefore, TASA provides reduced makespan as compared to Min-Min, Max-Min,

MCT, OLB, RS, SJF and FCFS. On the other hand, RASA uses the Min-Min

strategy to execute small tasks before the large ones and applies the Max-Min

strategy to avoid delays in the execution of large tasks and to support concurrency

in the execution of large and small tasks, therefore it gives mostly good results.

Sufferage and RASA have performed almost identical to RALBA due to resource-

aware scheduling mechanism. However, RALBA also considers load-balance factor

for scheduling; therefore, it has produced higher resource utilization as compared

to RASA and Sufferage on GoCJ dataset. But it is observed that the RALBA

scheduling mechanism produces a schedule that results in slower machines being

idle (for the small-sized job pool), however, a gradual improvement in resource

utilization was observed for the large size job pool and faster VMs (as discussed

above in scenario 1 and 2).

The experimental results have revealed that on GoCJ dataset the Min-Min algo-

rithm has lower makespan than the Max-Min due to a larger number of shorter

size jobs in the dataset. Alternatively, Max-Min has achieved lower makespan

on RanDS and has significantly improved resource utilization on both GoCJ and

RanDS as compared to the Min–Min which overloads faster VMs with small-sized

tasks. The makespan given by the OLB is larger than the makespan obtained by

MCT, Min-Min, and Max-Min on both datasets because OLB assigns a task to

the machine that becomes ready next, without considering the execution time of



Analysis and Discussion 70

the task onto that machine. If multiple machines become ready at the same time,

then one machine is arbitrarily chosen by OLB.

As shown in Figure 5.5, RS has performed worse than all other scheduling schemes

for GoCJ dataset because, RS arbitrarily assigns a job to a randomly selected

VM. However, the unfair scheduling method used by the RS leads to the poor

makespan.On the other hand, OLB has achieved largest makespan on RanDS the

reason is that, OLB keeps all machines as busy as possible regardless of considering

the job’s execution time on that particular machine. As a result, OLB scheduling

scheme mostly results in poor makespan.

6.2 Throughput-Based Analysis

Figure 5.11 shows that, for GoCJ dataset the RALBA has achieved 1.2, 1.6, 2.7,

15.6, 23.0, 22.7, and 225.3% higher throughput on average as compared to RASA,

Sufferage, TASA, MCT, Min-Min, Max-Min, and OLB schemes, respectively. As

shown in Figures 5.17 and 5.14 Max-Min, RALBA and RASA have same through-

put, similarly TASA and Sufferage attained same throughput for 500 cloudlets us-

ing RanDS, while on GoCJ dataset RALBA outperforms these scheduling schemes

on the basis of throughput. RALBA attained (37205.58 MI/second) throughput

for 500 cloudlets using GoCJ dataset, while using RanDS RALBA has attained

low throughput i.e., 17186.88 MI/second. Similarly, the performance of other

scheduling schemes also significantly changed by changing the dataset.

It is observed that the RALBA, RASA, and Max-Min produce the same through-

put using RanDS but the performance of these scheduling schemes becomes poor

by increasing the number of cloudlets (i.e., from 500 to 1000). On GoCJ dataset,

RALBA outperforms the other schemes as shown in Figure 5.11. Using RanDS,

Max-Min has same amount of throughput as RALBA and RASA while on GoCJ

dataset the throughput of RALBA and RASA was better than Max-Min. It is

observed that the Sufferage and TASA schemes have almost same throughput on



Analysis and Discussion 71

both GoCJ and RanDS. However, SJF and FCFS have achieved least through-

put while RS performed worse than all other scheduling schemes on average using

RanDS as given in Figure 5.17.

The Experiments have revealed that MCT scheduling scheme gives the good results

as compared to the Min-Min, OLB, RS, SJF, and, FCFS. This is because the

MCT assigns the job to the most appropriate VM that is able to accomplish the

job within the given constraints. Furthermore, it can be noted that RS, SJF, and

FCFS performs worst based on throughput in all experiments.

6.3 Resource Utilization-Based Analysis

In Table 6.1, the results showed that the RALBA heuristic attained higher re-

source utilization (i.e., 1.54%, 3.03% and 1.85%) higher, as compared to the RASA,

TASA and Sufferage for the execution of GoCJ workload. However, RASA and

Max-Min has attained same resource utilization as RALBA for RanDS. The Max-

Min algorithm attained 8.33% higher resource utilization as compared to Suf-

ferage and TASA for RanDS while on GoCJ dataset Sufferage attained 21.15%

higher resource utilization than Max-Min and 1.14%, higher than TASA. More-

over, Max-Min achieved 4.99% higher resource utilization as compare to OLB for

GoCJ dataset, while on RanDS, Max-Min has achieved 35.82% and 439.2% higher

resource utilization as compare to Min-Min and OLB.

Furthermore, it is observed that MCT has achieved (7.38% and 7.25%) higher

resource utilization, as compared to Max-Min and Min-Min for GoCJ dataset,

while on RanDS, Max-Min has better resource utilization (i.e., 16.29%, 35.82%)

than MCT and Min-Min. The Sufferage and RASA have achieved higher resource

utilization of 1.14% and 1.46%, respectively, as compared to TASA for GoCJ

workload. This minor improvement in resource utilization by RASA over TASA is

due to the lower resource utilization produced by the Min-Min scheduling scheme.



Analysis and Discussion 72

Table 6.1: Percentage of Average PU of Scheduling Schemes

Algorithms GoCJ Dataset RanDS
MCT 85.8 % 31.3 %

Min-Min 80 % 26.8 %
Max-Min 79.9 % 36.4 %
Sufferage 96.8 % 33.6 %
RALBA 98.6 % 36.4 %
RASA 97.1 % 36.4 %
TASA 95.7 % 33.6 %
OLB 76.1 % 6.75 %
RS 20.7 % 2.88 %
SJF 6.5 % 4.16 %

FCFS 6.1 % 5.38 %

Figure 5.22 shows the mean ARUR based experimental results for the execution

of RanDS of all scheduling schemes. Using RanDS, Max-Min has attained 6.9,

10, 21.3, 21.4, 43.9, and 131.5% higher resource utilization as compared to the

RASA, RALBA, Sufferage, TASA, MCT, and Min-Min schemes, respectively. On

the other hand, on GoCJ dataset, Figure 5.19 shows that the RALBA has attained

7.2, 4.9, 9.2, 18.3, 50.7, 21.5, and 28.3% higher resource utilization than RASA,

Sufferage, TASA, Max-Min, Min-Min, MCT, and OLB schemes, respectively. Sim-

ilarly, using RanDS, RS and OLB performed worst while on GoCJ dataset, RS

and SJF has lowest resource utilization.

During the implementation of Min-Min algorithm, it is noticed that mostly all

VMs based on 100 MIPS and a few of VMS with 500 MIPS remain idle when

the Min-Min algorithm is used to schedule the GoCJ workload. Additionally, the

Min-Min overloads the fastest VMs with shorter tasks (based on 4000 MIPS). The

Max-Min scheduling, on the other hand, produces better distribution of workload

compared to the Min-Min; however, only a few VMs (both slower and faster) are

overloaded. The Max-Min algorithm overcomes the Min-Min imbalance due to

the presence of a few large cloudlets that suits the Max-Min scheduling.

The RALBA, RASA, Sufferage, TASA and Max-Min produce comparatively a

load-balanced schedule. Among these algorithms, RALBA and RASA produces



Analysis and Discussion 73

the highest resource utilization because of the resource-aware mechanism. How-

ever, an interesting observation is that the few VMs based on 100 MIPS remain

idle in case of scenario 1 for RALBA. In addition, the recourse-aware method used

by the RALBA often creates a large load imbalance when scheduling is done by

using slow VMs and a smaller number of cloudlets (i.e. 100 cloudlets), as shown

in Figure 5.28.

Furthermore, due to the inherent usage of Min-Min and Max-Min alternatively,

in scheduling process, RASA produces better results. However, the slowest VMs

still idle due to the inherent use of Min-Min algorithm and the fastest VMs re-

main overloaded when a small number of cloudlets are scheduled by the RASA.

The alternative Min-Min and Max-Min methods used by the RASA ensures a

fair scheduling for both large and small-sized cloudlets. Likewise, in the eleven

scheduling schemes implemented, the TASA strategy mostly provides the smallest

makespan. Moreover, due to the use of Min-Min in alternative scheduling steps,

most of the slower VMs (i.e. 100 MIPS) are idle for the small-sized job pool.

On the other hand, TASA overcomes the load imbalance (caused by the Min-Min

algorithm) to some extent by using the inherent method of Sufferage in alterna-

tive scheduling steps. A better resource utilization is provided by the Sufferage

scheduling scheme; however, very few slow VMs (with 100 MIPS) remain idle.

The results show that there is sufficient possibility of unbalanced workload dis-

tribution among VMs, even a scheduling scheme achieves an improved value of

resource utilization. It is empirically evident that most of the existing schedul-

ing schemes produce a reduced makespan with a higher throughput. However,

often these algorithms result in a load imbalanced scheduling. We suggest that

the scheduling schemes should address the load-balancing issue to attain resource

utilization for cloud computing resources.



Chapter 7

Conclusion and Future Direction

7.1 Conclusion

An empirical analysis is carried out by studying eleven prominent static scheduling

schemes against makespan, throughput and resource utilization. The experiments

are conducted on CloudSim simulation tool by using two datasets, a third-party

GoCJ benchmark dataset and other is our own prepared dataset named as RanDS.

RanDS is used to evaluate the worst case scenario. Both datasets are based on

static, non-preemptive and independent tasks. It was observed that the partial

definitions of throughput and resource utilization are used in the literature which

we have studied. As, throughput is referred as the number of tasks completed

per unit time. This definition of throughput is for the tasks of nearly equal size.

However, if the task size differs significantly, then this definition of throughput does

not truly reflect. After examining the definition we have formulated a complete

and thorough definition of throughput which incorporates the size of the tasks as

follows:

Throughput is referred as the total size of all cloudlets (MIs) completed per unit

time, and is expressed in Equation 3.4.

Similarly, ARUR is used in previous studies to compute the resource utilization.

ARUR is useful when we have the same computational power of VMs but when the

74



Conclusion and Future Direction 75

computational power of VMs differ then ARUR does not truly reflect that which

VM is actually used. We have formulated a new definition to compute resource

utilization which covers all aspects including non-even computational power of

VMs as follows:

PU is a performance metric which shows the overall utilization of the system, and

is expressed in Equation 3.6

It was observed that the RALBA was at the top with lowest makespan, highest

throughput, and resource utilization by using both GoCJ and RanDS dataset.

However, the resource utilization of RALBA was observed as 36.4% by using

RanDS, which proves that still there is a room to devise a scheme with improved

resource utilization.

7.2 Future Direction

The scheme which is best reported in the literature has achieved 36.4% resource

utilization as per our results by using RanDS. In a consequent to this work, there

is a room to devise a resource-aware scheduling scheme with improved resource

utilization.



Bibliography

[1] S. H. H. Madni, M. S. A. Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J.

Usman, “Performance comparison of heuristic algorithms for task scheduling

in iaas cloud computing environment,” PloS one, vol. 12, no. 5, 2017.

[2] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dy-

namic mapping of a class of independent tasks onto heterogeneous computing

systems,” Journal of parallel and distributed computing, vol. 59, no. 2, pp.

107–131, 1999.

[3] S. Parsa and R. Entezari-Maleki, “Rasa: a new grid task scheduling algo-

rithm,” International Journal of Digital Content Technology and its Applica-

tions, vol. 3, no. 4, pp. 91–99, 2009.

[4] S. Taherian Dehkordi and V. Khatibi Bardsiri, “Tasa: A new task scheduling

algorithm in cloud computing,” Journal of Advances in Computer Engineering

and Technology, vol. 1, no. 4, pp. 25–32, 2015.

[5] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, and M. A. Islam, “Ralba: a

computation-aware load balancing scheduler for cloud computing,” Cluster

Computing, vol. 21, no. 3, pp. 1667–1680, 2018.

[6] A. Hussain, M. Aleem, M. A. Iqbal, and M. A. Islam, “Investigation of cloud

scheduling algorithms for resource utilization using cloudsim,” Computing and

Informatics, vol. 38, no. 3, pp. 525–554, 2019.

[7] I. A. Mohialdeen, “Comparative study of scheduling al-gorithms in cloud

computing environment,” Journal of Computer Science, vol. 9, no. 2, pp.

252–263, 2013.

76



Bibliography 77

[8] N. Chowdhury, K. A. Uddin, S. Afrin, A. Adhikary, and F. Rabbi, “Perfor-

mance evaluation of various scheduling algorithm based on cloud computing

system,” Asian Journal of Research in Computer Science, pp. 1–6, 2018.

[9] R. Aluri, S. Mehra, A. Sawant, P. Agrawal, and M. Sohani, “Priority based

non-preemptive shortest job first resource allocation technique in cloud com-

puting,” International Journal of Computer Engineering and Technology

(IJCET), vol. 9, no. 2, pp. 132–139, 2018.

[10] P. Mell, T. Grance et al., “The nist definition of cloud computing,” National

Institute of Standards and Technology: Gaithersburg,, 2011.

[11] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The aneka

platform and qos-driven resource provisioning for elastic applications on hy-

brid clouds,” Future Generation Computer Systems, vol. 28, no. 6, pp. 861–

870, 2012.

[12] A. Zahariev, “Google app engine,” Helsinki University of Technology, pp. 1–5,

2009.

[13] D. Chappell et al., “Introducing the azure services platform,” White paper,

Oct, vol. 1364, no. 11, 2009.

[14] S. Subashini and V. Kavitha, “A survey on security issues in service delivery

models of cloud computing,” Journal of network and computer applications,

vol. 34, no. 1, pp. 1–11, 2011.

[15] N. Almezeini and A. Hafez, “Review on scheduling in cloud computing,”

International Journal of Computer Science and Network Security, vol. 18,

no. 2, pp. 108–111, 2018.

[16] P. Suri and S. Rani, “Design of task scheduling model for cloud applications

in multi cloud environment,” in International Conference on Information,

Communication and Computing Technology. Springer, 2017, pp. 11–24.



Bibliography 78

[17] G. U. Srikanth, V. U. Maheswari, A. Shanthi, and A. Siromoney, “Task

scheduling model,” Indian Journal of Science and Technology, vol. 8, p. 33,

2015.

[18] D. A. Alboaneen, H. Tianfield, and Y. Zhang, “Glowworm swarm optimisa-

tion based task scheduling for cloud computing,” in Proceedings of the Second

International Conference on Internet of things, Data and Cloud Computing,

2017, pp. 1–7.

[19] A. Thomas, G. Krishnalal, and V. J. Raj, “Credit based scheduling algorithm

in cloud computing environment,” Procedia Computer Science, vol. 46, pp.

913–920, 2015.

[20] D. Agarwal, S. Jain et al., “Efficient optimal algorithm of task scheduling

in cloud computing environment,” International Journal of Computer Trends

and Technology (IJCTT), vol. 9, no. 7, pp. 344–349, 2014.

[21] A. Deldari, M. Naghibzadeh, and S. Abrishami, “Cca: a deadline-constrained

workflow scheduling algorithm for multicore resources on the cloud,” The

journal of Supercomputing, vol. 73, no. 2, pp. 756–781, 2017.

[22] S. Biradar and D. Pawar, “A review paper of improving task division assign-

ment using heuristics,” International Journal of Science and Research (IJSR),

vol. 4, no. 1, pp. 609–613, 2015.

[23] S. S. Brar and S. Rao, “Optimizing workflow scheduling using max-min al-

gorithm in cloud environment,” International Journal of Computer Applica-

tions, vol. 124, no. 4, 2015.

[24] P. Banga and S. Rana, “Heuristic based independent task scheduling tech-

niques in cloud computing: a review,” International Journal of Computer

Applications, vol. 166, no. 1, pp. 0975–8887, 2017.

[25] I. De Falco, U. Scafuri, and E. Tarantino, “Two new fast heuristics for map-

ping parallel applications on cloud computing,” Future Generation Computer

Systems, vol. 37, pp. 1–13, 2014.



Bibliography 79

[26] S. Atiewi, S. Yussof, and M. Ezanee, “A comparative analysis of task schedul-

ing algorithms of virtual machines in cloud environment,” Journal of Com-

puter Science, vol. 11, no. 6, p. 804, 2015.

[27] S. A. Ali and M. Alam, “A relative study of task scheduling algorithms

in cloud computing environment,” in 2016 2nd International Conference on

Contemporary Computing and Informatics (IC3I). IEEE, 2016, pp. 105–111.

[28] J. Maipan-Uku, A. Muhammed, A. Abdullah, and M. Hussin, “Max-average:

An extended max-min scheduling algorithm for grid computing environt-

ment,” Journal of Telecommunication, Electronic and Computer Engineering

(JTEC), vol. 8, no. 6, pp. 43–47, 2016.

[29] P. G. Gopinath and S. K. Vasudevan, “An in-depth analysis and study of

load balancing techniques in the cloud computing environment,” Procedia

Computer Science, vol. 50, pp. 427–432, 2015.

[30] G. Patel, R. Mehta, and U. Bhoi, “Enhanced load balanced min-min algo-

rithm for static meta task scheduling in cloud computing,” Procedia Computer

Science, vol. 57, pp. 545–553, 2015.

[31] H. Chen, F. Wang, N. Helian, and G. Akanmu, “User-priority guided min-

min scheduling algorithm for load balancing in cloud computing,” in 2013

national conference on parallel computing technologies (PARCOMPTECH).

IEEE, 2013, pp. 1–8.

[32] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.

Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen et al., “A com-

parison of eleven static heuristics for mapping a class of independent tasks

onto heterogeneous distributed computing systems,” Journal of Parallel and

Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[33] O. Elzeki, M. Reshad, and M. Elsoud, “Improved max-min algorithm in cloud

computing,” International Journal of Computer Applications, vol. 50, no. 12,

2012.



Bibliography 80

[34] U. Bhoi, P. N. Ramanuj et al., “Enhanced max-min task scheduling algorithm

in cloud computing,” International Journal of Application or Innovation in

Engineering and Management (IJAIEM), vol. 2, no. 4, pp. 259–264, 2013.

[35] S. A. Hamad and F. A. Omara, “Genetic-based task scheduling algorithm in

cloud computing environment,” International Journal of Advanced Computer

Science and Applications, vol. 7, no. 4, pp. 550–556, 2016.

[36] J. Maipan-uku, A. Mishra, A. Abdulganiyu, and A. Abdulkadir, “An ex-

tended min-min scheduling algorithm in cloud computing,” i-manager’s Jour-

nal on Cloud Computing, vol. 5, no. 2, p. 20, 2018.

[37] M.-L. Chiang, H.-C. Hsieh, W.-C. Tsai, and M.-C. Ke, “An improved task

scheduling and load balancing algorithm under the heterogeneous cloud com-

puting network,” in 2017 IEEE 8th International Conference on Awareness

Science and Technology (iCAST). IEEE, 2017, pp. 290–295.

[38] T. Kokilavani, D. G. Amalarethinam et al., “Load balanced min-min algo-

rithm for static meta-task scheduling in grid computing,” International Jour-

nal of Computer Applications, vol. 20, no. 2, pp. 43–49, 2011.

[39] J. Maipan-uku, I. Rabiu, and A. Mishra, “Immediate/batch mode scheduling

algorithms for grid computing: A review,” International Journal of Research-

GRANTHAALAYAH, 2017.

[40] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance

cloudlets for computation offloading in mobile ad hoc clouds,” The Journal

of Supercomputing, vol. 71, no. 8, pp. 3009–3036, 2015.

[41] S. K. Panda and P. K. Jana, “Sla-based task scheduling algorithms for hetero-

geneous multi-cloud environment,” The Journal of Supercomputing, vol. 73,

no. 6, pp. 2730–2762, 2017.

[42] A. Hussain and M. Aleem, “Gocj: Google cloud jobs dataset for distributed

and cloud computing infrastructures,” Data, vol. 3, no. 4, p. 38, 2018.



Bibliography 81

[43] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice

and experience, vol. 41, no. 1, pp. 23–50, 2011.

[44] Z. Liu and S. Cho, “Characterizing machines and workloads on a google clus-

ter,” in 2012 41st International Conference on Parallel Processing Workshops.

IEEE, 2012, pp. 397–403.



Appendix A

Pseudo-Code of MCT Scheduling Scheme

1: for all tasks T i in meta− task Mv do
2: for all machines mj do
3: ci j=ei j + rj
4: end for
5: end for
6: do until all tasks in Mv are mapped
7: for each task Tk in Mv find the minimum completion time
8: find the task Tk with the earliest completion time
9: assign task Tk to the resource Rj that gives the earliest completion time

10: delete task Tk fromMv

11: update rj
12: update ci j for all i
13: end do

Figure A1: Pseudo-Code of MCT Scheduling Scheme

82



Appendix B

Pseudo-Code of Min-Min Scheduling Scheme

1: for all tasks T i in meta− task Mv do
2: for all machines mj do
3: ci j=ei j + rj
4: end for
5: end for
6: do until all tasks in Mv are mapped
7: for each task in Mv find the earliest completion time obtained by machine
8: find the task Tk with the minimum earliest completion time
9: assign task Tk to the machineml that gives the earliest completion time

10: delete task Tk fromMv

11: update rl
12: update ci j for all i
13: end do

Figure B1: Pseudo-Code of Min-Min Scheduling Scheme

83



Appendix C

Pseudo-Code of Sufferage Scheduling Scheme

1: for all tasks T i in meta− task Mv do
2: for all machines mj do
3: ci j=ei j + rj
4: end for
5: end for
6: do until all tasks in Mv are mapped
7: mark all machines as unassigned
8: for each task Tk in Mv

9: find machine mj that gives the earliest completion time
10: sufferage value = second earliest completion time −

earliest completion time
11: if machine mj is unassigned
12: assign task Tk to the machine mj, delete Tk fromMv,

mark mj assigned
13: else
14: if sufferage value of task Ti already assigned to mj is less than

the sufferage value of task Tk

15: unassign Ti, add Ti back to Mv, assign Tk to the machine mj,
delete Tk fromMv

16: end for
17: update rj
18: update ci j for all i
19: end do

Figure C1: Pseudo-Code of Sufferage Scheduling Scheme

84



Appendix D

Pseudo-Code of RASA Scheduling Scheme

1: for all tasks T i in meta− task Mv do
2: for all machines mj do
3: ci j=ei j + rj
4: end for
5: end for
6: do until all tasks in Mv are mapped
7: if the number of resources is even then
8: for each task Tk in Mv

9: find the earliest completion time obtained by machine
10: find the task Tk with the maximum earliest completion time
11: assign task Tk to machine ml that gives the earliest completion time
12: delete task Tk fromMv

13: update rj
14: update ci j for all i
15: end for
16: else
17: for each task Tk in Mv

18: find the earliest completion time obtained by machine
19: find the task Tk with the minimum earliest completion time
20: assign task Tk to machine mj that gives the earliest completion time
21: delete task Tk fromMv

22: update rj
23: update ci j for all i
24: end for
25: end if
26: end do

Figure D1: Pseudo-Code of RASA Scheduling Scheme

85



Appendix E

Pseudo-Code of TASA Scheduling Scheme

1: for all tasks T i in meta− task Mv do
2: for all machines mj do
3: ci j=ei j + rj
4: end for
5: end for
6: do until all tasks in Mv are mapped
7: if the number of resources is even then
8: for each task Tk in Mv

9: find the earliest completion time obtained by machine
10: sufferage value = second earliest completion time −

earliest completion time
11: find the task Tk with the maximum sufferage value
12: assign task Tk to machine ml that gives the earliest completion time
13: delete task Tk fromMv

14: update rj
15: update ci j for all i
16: end for
17: else
18: for each task Tk in Mv

19: find the earliest completion time obtained by machine
20: find the task Tk with the minimum earliest completion time
21: assign task Tk to machine ml that gives the earliest completion time
22: delete task Tk fromMv

23: update rj
24: update ci j for all i
25: end for
26: end if
27: end do

Figure E1: Pseudo-Code of TASA Scheduling Scheme

86



Appendix F

Pseudo-Code of RALBA Scheduling Scheme

Input: vmCrMap −set of VMs with computation ratio,
cloudletList− list of cloudlets c1, c2, . . . . . . . . . , cn

Output: cloudletV mMap –set of cloudlets to V Ms mapping
1: cloudletV mMap = Null
2: cloudletV mMap = FillScheduler(vmCrMap, cloudletList)
3: vmList = getV mList(vmCrMap)
4: if cloudletList.size() ≥ 1 then
5: cloudletV mMap = SpillScheduler(vmList, cloudletList, cloudletV mMap)
6: end if
7: return cloudletV mMap

SPLL SCHEDULER

Input: cloudletList− list of cloudletsc1, c2, . . . . . . . . . , cn,
vmList− list of VMs v1, v2, . . . . . . . . . , vm,
cloudletV mMap–set of cloudlets to V Ms mapping by F ill Scheduler

Output: cloudletV mMap –set of cloudlets to V Ms mapping
1: while cloudletList.size() ≥ 1
2: cloudlet = getMaxCloudletV m(cloudletList)
3: v = getV mWithEFT (cloudlet, vmList)
4: cloudletV mMap.add(cloudlet, v)
5: cloudletList.remove(cloudlet)
6: end while
7: return cloudletV mMap

87



Appendices 88

FILL SCHEDULER

Input: vmCrMap −set of VMs with computation ratio,
cloudletList− list of cloudlets c1, c2, . . . . . . . . . , cn

Output: cloudletV mMap –set of cloudlets to V Ms mapping
1: totalLength = 0
2: newV Share = 0
3: cloudletV mMap = Null
4: vmList = getV mList(vmCrMap)
5: vShareMap < v, share >= Null
6: for all cloudlet in cloudletList do
7: totalLength = totalLength + cloudlet.getCloudletLength()
8: end for
9: for all v in vmList do

10: vShareMapv = totalLength ∗ vmCrMapv
11: end for
12: while getMinCloudlet(cloudletList) ≥ getLargeShare(vShareMap)
13: v = getLargeShareV m(vShareMap)
14: cloudlet = getMaxPCloudletV m(v.cloudletList)
15: cloudletV mMap.add(cloudlet, v)
16: newV Share = vShareMap.get(v) − cloudlet.getCloudletLength()
17: vShareMap.modify(v.newV Share)
18: cloudletList.remove(cloudlet)
19: end while
20: return cloudletV mMap

Figure F1: Pseudo-Code of RALBA Scheduling Scheme


	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background
	1.2 Task Scheduling Model
	1.3 A Motivational Scheduling Scenario
	1.4 Scope
	1.5 Problem Statement
	1.6 Research Questions
	1.7 Research Methodology
	1.8 Thesis Organization

	2 Literature Review
	2.1 Task Scheduling Schemes
	2.1.1 MCT Algorithm 18
	2.1.2 Min-Min Algorithm 24
	2.1.3 Max-Min Algorithm 24
	2.1.4 Sufferage Algorithm 24
	2.1.5 RASA 26
	2.1.6 TASA 25
	2.1.7 RALBA 9
	2.1.8 OLB 23
	2.1.9 RS 21
	2.1.10 FCFS 20
	2.1.11 SJF 22

	2.2 Survey Papers
	2.2.1 Survey No 1
	2.2.2 Survey No 2
	2.2.3 Survey No 3
	2.2.4 Survey No 4
	2.2.5 Survey No 5
	2.2.6 Survey No 6
	2.2.7 Survey No 7
	2.2.8 Survey No 8
	2.2.9 Survey No 9
	2.2.10 Survey No 10
	2.2.11 Survey No 11
	2.2.12 Survey No 12
	2.2.13 Survey No 13
	2.2.14 Survey No 14
	2.2.15 Survey No 15
	2.2.16 Survey No 16
	2.2.17 Survey No 17
	2.2.18 Survey No 18
	2.2.19 Survey No 19


	3 Thorough Definitions of Performance Measures
	3.1 Makespan
	3.2 Throughput
	3.3 Resource Utilization

	4 Dataset and Workload Compositions
	4.1 Dataset
	4.1.1 GoCJ Dataset
	4.1.2 RanDS


	5 Simulation and Results
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Makespan-Based Results
	5.4 Throughput-Based Results
	5.5 Resource Utilization-Based Results
	5.6 ARUR-Based Results
	5.7 PU-Based Results
	5.8 Analysis of Best Performing Scheme
	5.8.1 Scenario A
	5.8.2 Scenario A: Resource Utilization of RALBA for 100 Cloudlets
	5.8.3 Scenario A: Resource Utilization of RALBA for 500 Cloudlets
	5.8.4 Scenario A: Resource Utilization of RALBA for 1000 Cloudlets
	5.8.5 Scenario B
	5.8.6 Scenario B: Resource Utilization of RALBA for 100 Cloudlets
	5.8.7 Scenario B: Resource Utilization of RALBA for 500 Cloudlets
	5.8.8 Scenario B: Resource Utilization of RALBA for 1000 Cloudlets


	6 Analysis and Discussion
	6.1 Makespan-Based Analysis
	6.2 Throughput-Based Analysis
	6.3 Resource Utilization-Based Analysis

	7 Conclusion and Future Direction
	7.1 Conclusion
	7.2 Future Direction

	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

