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Abstract

Due to technological advancements and the transfer of huge amounts of sensi-

tive data every day, biometric authentication has recently dominated the market.

In past access to certain data or services is typically gained via documents or

a password. However, these methods have proven unreliable over time. As an

alternative, biometric systems based on �ngerprint, iris, voice, face recognition,

or a combination of these can be used. A facial recognition algorithm identi�es

or veri�es a person in a still image or video by using a database of stored facial

images. There have been several advances in face recognition over the last two

decades. Consequently, face recognition systems have now achieved satisfactory

performance under controlled conditions. The systems are, however, hampered by

varying illumination, pose and expression.

In this study, we investigate how di�erent face recognition and veri�cation al-

gorithms based on deep learning techniques perform under a variety of adverse

conditions, such as pose e�ects, aging e�ects, resolution e�ects, cross-spectral

matching and ethnicity e�ects. Five pre-trained deep learning models including

FaceNET, VGGFace2, SphereFace, CosFace and ArcFace are evaluated. ArcFace

trained using angular margins, can be seen clearly outperforming the counterparts

in all of the scenarios. In addition to that a novel technique for direct cross spec-

tral matching has also been proposed and have shown some promising results by

increasing the recognition accuracy upto 7% to 8%.
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Chapter 1

Introduction

1.1 Background

In human beings, biometrics relate to physiological and behavioural characteristics

that are used to identify them automatically. During the last several decades, bio-

metric identi�cation systems based on biometric techniques such as the face, iris,

�ngerprint, and palm print have been admired in the industry. One of the most

vastly used biometric modalities is the human face, which is famous for its contact-

less acquisition, social acceptability, and suitability for usage in non-cooperative

circumstances.The �eld of machine-based face recognition has garnered a great

deal of interest in recent decades, particularly in the areas of biometrics, pattern

recognition, and computer vision research. In addition to primary and demanding

challenges in this domain, researchers are driven by everyday applications such as

those in �nancial services, forensics, authentication, and video surveillance, among

other areas. Now a days many commercial face recognition systems are in place,

and they are capable of meeting a wide range of requirements while also making

a positive contribution to society.

Every face, like a �ngerprint, is distinctive, even when identical twins appearances

are compared [1]. This means that a facial recognition system's accuracy should

be comparable to a �ngerprint scanner. Finding a proper balance between a facial

recognition technique's computing speed and accuracy is a big issue that requires

1
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more research. The system must be precise and accurate while being rapid enough

to be inconvenient.

Many commercial companies employ face recognition, such as Facebook, which

uses facial recognition to tag individuals in photos automatically. Sel�e Pay is

a payment system developed by Mastercard that uses face recognition. Facial

recognition has also been used to take school attendance automatically. Special-

ized facial recognition systems for video surveillance are designed to identify the

presence of certain persons across a dispersed network of video cameras under un-

controlled capture situations. Thus, detecting the faces of target people in such

an environment is a di�cult task since the look of faces �uctuates due to changes

in pose, size, lighting, occlusion, and blur, among other factors. This is a major

hurdle for modern computer systems when it comes to facial recognition.

Figure 1.1: 9 Di�erent images of same individual taken at di�erent ages

To illustrate how di�cult this challenge might be, Figure 1.1 shows multiple images

of the same subject. Regardless if they all belong to the same individual, even a

human is unlikely to recognise them as such. Computational complexity is also a

factor to consider, given the increasing number of cameras and the processing time

of cutting-edge face identi�cation, tracking, and matching algorithms. Meanwhile,

another �eld of research - arti�cial neural networks - was developing. This is

inspired by the human brain structure and has shown to be a game-changer for

several technical issues. Nowadays, one of the most frequently investigated ways
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for solving the face recognition issue is the deep neural network approach. Deep

Learning is at the frontier of what computers are capable of. It seems to perform

the best of all face recognition systems.

1.2 Identi�cation vs Veri�cation

Generally speaking, the word "facial recognition" relates to two basic scenarios:

one for veri�cation or authentication and another for identity or recognition. One's

biometric template is checked against the claimed identity solely in the context

of the veri�cation task. However, in the context of the identi�cation task, it is

matched against every template registered in the gallery as depicted in Figure 1.2.

Figure 1.2: An Example of Veri�cation vs Identi�cation

1.2.1 Performance Metric : ROC vs CMC Curve

It is possible to examine the outcomes of veri�cation trials in terms of the Receiver

Operating Characteristic (ROC) Curve, which illustrates the Veri�cation or True

Acceptance Rate (TAR) as a trade-o� against the False Acceptance Rate (FAR)

(FAR). The Veri�cation Rate is the proportion of a set of probe face images that

is correctly accepted. At the same time, the False Acceptance Rate re�ects the

percentage of a group of probe face photos that is erroneously accepted. The
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Veri�cation Rate (TAR) of 0.1 % is the most usually quoted single value from the

ROC curve.

Figure 1.3: An Example Illustrating ROC vs CMC Curve [2]

The e�ciency of face recognition algorithms can be perceived using the Cumula-

tive Match Characteristic (CMC) curve. The Cumulative Match Curve (CMC)

is a performance indicator for 1:N identi�cation systems that is used to compare

two sample facial images. ROC curves of veri�cation systems, on the other hand,

are used to indicate the quality of a 1:1 matching systems. The Rank-1 recogni-

tion/identi�cation rate or accuracy is the most usually quoted single metric from

the CMC curve since it is the most straightforward to calculate. Figure 1.3 shows

an example of both a ROC and a CMC curve.

1.3 Common Terminologies in Face Recognition

As the �eld of Face Recognition has developed recently, Some new terms are

introduced to gauge the performance of FR algorithms. Following are some of the

important terminologies one must understand in detail while working with face

recognition algorithms:

1. HR vs LR FR Problem

2. Gallery vs Probe Set
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3. Open vs Close Set

1.3.1 High Resolution vs Low Resolution Face Recognition

Problem

The literature lacks a clear de�nition of what constitutes a high-resolution image

and what de�nes a low-resolution image. Typically, images recorded with still

high-resolution cameras in constrained scenarios are referred to as high resolu-

tion images, and face recognition tasks involving both gallery and probe images

with a high resolution are classi�ed as high resolution face recognition problems.

Numerous studies have been conducted on HR human face recognition, and state-

of-the-art algorithms now outperform humans in terms of recognition accuracy.

Figure 1.4: Coloumn (1-2) : High Resolution Gallery and Probe images from
MegaFace Database Coloumn (3-4) : Low Resolution Gallery and Probe images

from SCFace Database

Facial images that are relatively low in resolution i.e below 32x32 pixels, are rec-

ognized as low resolution images and are the possible cause of degradation in

the performance of face recognition algorithms. Challenges that speci�cally a low

resolution in facial images brings include degradation because of camera noise,

Occlusion, Scale variation, motion blur and out of focus blur. So, with the afore-

mentioned degradation's in facial images it is a challenge to match a low resolution
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probe image with a high resolution gallery image. LR face recognition is an un-

der researched topic as compared to its counter part. Some of the most popular

approaches in LR face recognition involves resolution invariant facial models and

super-resolution based techniques. An Example of Set of facial images involved in

both high resolution and low resolution face recognition is depicted in Figure 1.4

1.3.2 Gallery Set vs Probe Set

In literature gallery set is the collection of high de�nition still frontal images

against whom the test images are matched. These images are the representative

of template images that would be enrolled in a real-world facial recognition system

for its deployment. Generally gallery images with neutral expression, frontal pose

and even illumination levels are considered as the best gallery image.

A probe set is a collection of probe/under-test images of unknown individuals

that need to be recognized or matched against the gallery or template image.For

example in real world surveillance scenarios, the stream of images via cameras

are captured and frame by frame facial images (probe images) are detected and

matched against the gallery set.

1.3.3 Open-Set vs Closed-Set Problem

Face recognition systems can be assessed in closed-set or open-set environments,

as seen in Figure 1.5 All testing identities are speci�ed in the training set for the

closed-set approach. It is natural for testing facial image to be classi�ed according

to their allotted labels. In these circumstances, Face veri�cation is equal to perform

identi�cation on a pair of facial images as seen in the left hand side of Figure 1.5.

As a result, closed set FR may be e�ectively treated as a classi�cation problem

having separable features.

In Contrast the test images identities are often isolated from the training identity

in open-set protocols, which makes FR more demanding but close to practise. Due

to the impracticality of classifying faces according to their known identities in the
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