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Abstract

In the present work the reflection and transmission through the chamber cavities

including liners are analyzed. To explain the mechanism of Multi-modal tech-

nique two prototype problems are discussed. These physical problems include

rigid-rigid and rigid-impedance type boundary conditions and are radiated by a

plane piston. The governing boundary value problems are solved via Multi-modal

and Mode-matching techniques. It is found that by changing the velocity of the

piston a variation in scattering amplitudes is found. Moreover, there exists an

excellent agreement between the Multi-modal and Mode-matching results. Fur-

thermore, a physical problem including liner cavities in the expansion chamber

is formulated, and is solved by using the Multi-modal approach. The envisaged

problem comprises excitation from the inlet and the transmission from the outlet

after interaction with liner cavities. The inlet region also contain reflection of ra-

diated waves. The absolute value of fundamental reflected and transmitted mode

amplitudes are plotted against frequency. It is found that by changing the depth

and length of the chamber cavities a variation in passing and stopping bands in

found.
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Chapter 1

Introduction

Acoustic liners [1] are used to reduce the noise emitting from Heating Ventila-

tion and Air Conditioning (HVAC) systems of buildings, chimney stacks, power

stations, vehicles and aeroplanes. The frequently used acoustic liners are bulk

reacting liners and locally reacting liners. Generally the locally reacting liners are

constructed by the perforated sheet of honeycomb layers that allow the propa-

gation of waves normal to the duct wall. Locally reacting liners have the good

absorption quality for small frequency range of noises. The main control of these

liners are their validity and high potential of resistance. On the other hand, bulk

reacting liners have broad absorption quality. These liners are composed of porous

material and show less efficiency at lower frequency regime as compared with lo-

cally reacting liners. To control the low frequency range of noises, is infact a

challenging issue.

The current work is related to the reflection and transmission of acoustic waves

in the channel containing reacting liners. The Multi-modal scheme is adopted to

analyze the scattering behavior of incoming propagative modes in the presence of

locally reacting liners. The propagation of modes is linked with the eigenvalues

and eigenvectors of transformed system. To ensure the accuracy of collected modes

two simple duct problems are considered. First problem is bounded by rigid walls

and is excited with a plane piston along the wall, whereas, in the later problem the

upper rigid wall is replaced with impedance surface. Both of these problems are

1



Introduction 2

solved with Multi-modal and Mode-matching schemes. To confirm the accuracy

of Multi-modal method the model coefficients are compared for different velocities

of moving piston. The worked is stated comprehensively in Chapter 3. However

the modeling of locally reacting liners of the cavities is discussed in Chapter 4.

By considering the locally reacting liners as a component of reactive silencer the

Multi-modal scheme is developed.

1.1 Literature Review and Background

Propagation of sound waves in lined ducts having rigid walls have been discussed

by many authors for instance see [2]-[3]. Various methods were preferred to study

the propagation of sound waves in duct lined with locally reacting liners by using

impedance condition. These methods include; Mode-matching method [4], Finite

element method [5] and Point matching method [6]. Each approach has strength

and limitation depending upon the considered model and the aims of investiga-

tions. Felix [7] assumed adiabatic lossy medium lined with reacting liners. In his

paper he considered the circular curved duct system and with the aid of Multi-

modal approach the velocity and pressure components are calculated by using

impedance conditions.

Likewise, Pagneux and Auregan [8] assumed a circular rigid duct lined with a

non-uniform reacting liners. The impedance condition assumed to be piece-wise

constant across the duct boundary and the Multi-modal method was used to sort

the solution of the problem. They found that duct modes with rigid walls are linked

with the eigenvalues and eigenfunctions of transformed system. The method fits

well to analyze the vibrations having low, mid and high frequencies. The numerical

results showed that the non-uniform liners have minor effects on the efficiency of

the devise.

Kirby [9] considered two different silencers of an exhaust system radiated from inlet

pipe. He equiped the device with reactive and dissipative tools and concluded that

the acoustic behavior of energy in silencers can be improved for higher frequency
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modes by reactive and dissipative materials. The Mode-matching technique has

been used by many researchers to analyze the scattering of energy in active and

passive liners for instance, see [10–20]. The present thesis focuses on the scattering

of acoustic waves in reactive chamber silencer containing acoustic reacting liners.

The Multi-modal method is applied here to find the solution of physical problems.

To confirm the accuracy of performed scheme first two prototype problems are

discussed by using of Multi-modal and Mode-matching schemes. Result obtained

by these schemes are compared in Chapter 3. However in Chapter 4 only the

Multi-modal solution is presented. The thesis is organized as follows. Chapter 3

contain basic transformation. In Chapter 4 scattering of acoustic waves has been

discussed in a rigid duct having three channels, in which central part of the duct is

lined through locally reacting liners. The eigen functions satisfy the orthogonality

relation. The transmission and reflection coefficients are then calculated. The

results and consequences are discussed at the end of the each Chapter.



Chapter 2

Preliminaries

This thesis contains physical problems that are relevant to the reflection, transmis-

sion and absorption of acoustic waves propagating in rectangular ducts or chan-

nels. The purpose of present chapter is to discuss some basic terminologies which

are useful in understanding the mathematical modeling and associated physical

characteristics of the work presented in rest of the chapters.

2.1 What is Wave?

Wave is the disturbance in the medium which causes the particles of that medium

to vibrate from one place to another to transfer the energy. It is important to know

that waves transfer energy of the matter without transferring matter. Typical

examples include light waves and sound waves etc.

2.2 Types of Waves

There are three types of waves based on the medium characteristics and energy

propagation. These types include:

1) Mechanical waves.

4



Preliminaries 5

2) Electromagnetic waves.

3) Matter waves.

2.2.1 Mechanical Waves

Mechanical waves are the type of waves in which energy is transferred through

the oscillations produced in a material medium. Waves produced on the strings

and springs, waves produce on the water surface are some common examples.

Mechanical waves are classified into longitudinal waves and transverse waves de-

pending upon their direction of motion of propagating waves and the vibration of

the particles of medium.

Longitudinal Waves

Longitudinal waves are the waves in which direction of particles of medium are

parallel to the direction of propagation of waves. Sound waves and pressure waves

are some common examples of longitudinal waves.

Transverse Waves

If the direction of particles of medium are perpendicular to the direction of prop-

agating waves then this type of waves are known as transverse waves. Examples

of transverse waves are waves produce on slinky spring, electromagnetic waves.

2.2.2 Electromagnetic Waves

The waves which are created when electric and magnetic fields oscillate perpendic-

ular to each other are known as electromagnetic waves. These are the only waves

that do not need any material medium for the transfer of energy. These waves

travel in a vacuum with the same speed. The X rays, microwaves and radiowaves

are some common examples of electromagnetic waves.
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2.2.3 Matter Waves

Light has both the natures, sometimes it act as radiation and sometimes it acts as

material which has momentum and which can strike with a force. The dual nature

of light to exist as both material and in wave form is known as matter waves.

2.3 Properties of Waves

For further explanation about waves, it is appropriate to know about basic prop-

erties of waves.

Time Period

The time taken by a vibrating body to complete one vibration is called time period.

It is denoted as T.

Frequency

The number of vibrations of a vibrating body completed in unit time is called its

frequency. It is represented as f and is measured in Hertz (Hz).

Amplitude

The maximum displacement of vibrating body from its mean position is called

amplitude.

Wavelength

The distance between two consecutive crests or troughs is called the wavelength

of the wave. It is represented as λ.

Crest

The crest is the highest point of the particles of the wave in a medium from mean

position.
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Trough

The lowest point of the particles of vibrating body from the mean position is called

trough.

Compression

The region in the medium in which the particles of the medium are close together

is called compression.

Rarefaction

The region of the vibrating body where the particles of the medium are far apart

from each other is known as rarefaction.

2.4 Acoustics

Acoustics is the branch of science which deals with the propagation of mechanical

waves in matter. This branch covers how sound energy emits, reflects and trans-

mits through a medium. The term acoustics is derived from Greek word akoustikos

which means to hear. Normal human frequency range of hearing lies between 20

Hz to 20k Hz. The vibrations with frequency less than 20 Hz is known as infra

sound and above than 20k Hz is ultra sound.

2.5 Acoustic Wave Equation

The acoustic wave equation in terms of sound pressure can be derived on the basis

of following principles.

• Conservation of mass:
∂ρ

∂t
+∇ · (ρu) = 0. (2.1)
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• Conservation of momentum:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ ρg. (2.2)

• Equation of state by assuming the process is adiabatic:

P = βs, (2.3)

where acoustic pressure P can be expressed in terms of pressure perturbation form

as

P = p− p0 (2.4)

and condensation s in terms of density variation is represented as follows

s =
ρ− ρ0
ρ0

. (2.5)

On using (2.5) into (2.1), we get

∂s

∂t
+∇ · u = 0, (2.6)

which is known as linear continuity equation. Also, on using (2.4) with assuming

the dominant terms, we obtain linear Euler’s equation.

ρ0
∂u

∂t
= −∇P. (2.7)

On taking gradient of (2.7), which yields

∇ · ρ0
(
∂u

∂t

)
= −∇2P. (2.8)

Now by taking time derivative of (2.8), we get

ρ0
∂2s

∂t2
= −∇

(
ρ0
∂u

∂t

)
. (2.9)
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On comparing equation (2.8) and (2.9), we get

ρ0
∂2s

∂t2
= ∇2P. (2.10)

On using (2.3) into (2.10), that provides

1

c2
∂2P

∂t2
= ∇2P (2.11)

where c =
√

β
ρ0

is the speed of sound. Now the acoustic pressure and velocity in

terms of field potential form φ̄(x̄, ȳ, t̄) can be expressed as

P = −ρ0
∂φ̄

∂t
and u = Oφ̄. (2.12)

Hence we can write (2.12) in terms dimensional field potential φ̄(x̄, ȳ, t̄), that is

1

c2
∂2φ̄

∂t2
= O2φ̄. (2.13)

On using the transformations x = kx̄, y = kȳ and t = ω−1t̄ with harmonic time

dependence e−iωt, we will get the dimensionless field potential φ that satisfies

Helmholtz’s equation, that is

(
O2 + 1

)
φ = 0. (2.14)



Chapter 3

Acoustic Propagation in Ducts

Radiated by Plane Pistons

In this chapter the propagation of acoustic waves radiated by plane piston lying

along the vertical wall of duct is discussed. The boundary conditions of horizontal

walls are assumed to be rigid-rigid, rigid-impedance. The Multi-modal procedure

is adopted to determine the propagating modes in the duct region, which are

then compared with the eigen modes found through the separation of variable

method to verify the results. The boundary value problem involve Helmholtz’s

equation in accompanying with impedance and rigid type boundary conditions.

The mathematical formulation of waveguides is comprehensively discussed in each

problem to obtained the desired results. The solution methodologies includes

velocity condition. The numerical results are discussed at the end of the chapter.

3.1 Mathematical Formulation

Here we assume the wave propagation in two dimensional rectangular duct having

boundaries at y = 0 and y = h in xy-coordinates. The inside of the duct is filled

with compressible fluid of density ρ and sound speed c. The physical configuration

of the duct is as shown in Figure 3.1.

10
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Figure 3.1: The geometry of the physical configuration of duct

The wave propagation in the duct can be characterized by the wave equation

{
∂2

∂x2
+

∂2

∂y2

}
Φ(x, y, t) =

1

c2
∂2Φ

∂t2
(3.1)

where Φ(x, y, t) is the time dependent field potential. The acoustic pressure and

normal velocity vector are related to the field potential by the relations

p = −ρ∂Φ

∂t
(3.2)

and

v = 5Φ, (3.3)

respectively. Assuming the harmonic time dependence e−iωt in which ω is radiant

frequency, we write

Φ(x, y, t) = φ(x, y)e−iωt, (3.4)

where φ(x, y) is the time independent field potential. By using (3.4) into (3.1,) we

found {
∂2

∂x2
+

∂2

∂y2
+ k2

}
φ(x, y) = 0, (3.5)

where k = ω/c is the wave number. The boundary conditions of the duct are as-

sumed to contain two categories. These are explain in accompanying sub-sections.
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3.2 Rigid-Rigid

First we assume a semi-infinite duct radiated by plane piston at x = 0. All

the boundaries of semi-infinite duct are taken acoustically rigid. The physical

configuration of the duct is shown in Figure 3.2.

Figure 3.2: The physical configuration of semi-infinite duct

For acoustically rigid boundaries, the normal velocity is zero, that is

∂φ

∂y
= 0, y = 0, 0 < x <∞, (3.6)

∂φ

∂y
= 0, y = h, 0 < x <∞, (3.7)

∂φ

∂x
= 0, x = 0, 0 < y < h1, (3.8)

∂φ

∂x
= 0, x = 0, h1 < y < h. (3.9)

Consider the duct is radiated with a plane piston lying along vertical wall h1 ≤

y ≤ h2 at x = 0, moving with constant velocity U . The velocity condition at x = 0

can be stated as

∂φ

∂x
=


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

. (3.10)
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The propagating waveforms in the duct region is determined by Mode-matching

technique and Multi-modal technique. Both are discussed in the next sub-section.

• Mode-matching Solution

Here we apply the separation of variable technique to determine wave formulation

of propagating modes. For this we let

φ(x, y) = X(x)Y (y), (3.11)

which on using into (3.5) leads to

Y ′′

Y
+ k2 = −X

′′

X
= η2 (say). (3.12)

On solving (3.12), we obtain

X(x) = c1e
iηx + c2e

−iηx, (3.13)

and

Y (y) = c3 cos τy + c4 sin τy, (3.14)

where τ =
√
k2 − η2 and c1 − c4 are arbitrary constants. By using boundary

conditions (3.6)-(3.7), we found c4 = 0 and for non trivial form of solution

sin(τh) = 0.

It reveals eigenvalues τ = τn = nπ/h; n = 0, 1, 2, ... and the eigenfunction Yn =

cos(τny), n = 0, 1, 2, ...These eigenfunctions are orthogonal in nature and satisfy

∫ h

0

Ym(y)Yn(y) = 0, when m 6= n, (3.15)

∫ h

0

Ym(y)Yn(y) = h, when m = n = 0, (3.16)
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and ∫ h

0

Ym(y)Yn(y) =
h

2
, when m = n 6= 0. (3.17)

We can combine (3.15) to (3.17) to get the orthonormal relation

∫ h

0

ψm(y)ψn(y)dy = δmn, (3.18)

where

δmn =

1 m = n

0 m 6= 0

.

The orthonormal function ψm(y) defined by

ψm = Λmcos(τmy), (3.19)

in which

Λm =


1√
h
, m = 0,√
2
h
, m ≥ 1.

(3.20)

Therefore, the propagating wave in positive x−direction can be given as

φ(x, y) =
∞∑
n=0

Anψn(y)eiηnx, (3.21)

where ηn =
√
k2 − τ 2n, is the nth mode wave number propagating in positive

direction and An is the amplitude of nth mode which is unknown. To determine

An, we match the normal velocity modes with executing modes at x = 0. Thus,

on using (3.21) into (3.10), we obtain

i
∞∑
n=0

Anψn(y)ηn =


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

. (3.22)
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On multiplying (3.22) with ψm(y) and integrating from 0 to h, we get

i

∞∑
m=0

Anηn

∫ h

0

ψn(y)ψm(y)dy = U

∫ h2

h1

ψm(y)dy. (3.23)

By invoking orthonormal relation (3.18), (3.23) leads to

∞∑
m=0

Anηnδmn = −iU
∫ h2

h1

ψm(y)dy (3.24)

or

Am =
−iU
ηm

Qm, (3.25)

where

Qm =

∫ h2

h1

ψm(y)dy

=


h2−h1√

h
, m = 0,√

2
h

2
mπ

{
sin(h2π

h
)− sin(h1π

h
)
}
, m ≥ 1.

(3.26)

• Multi-modal Approach

Now we formulate the travelling waveforms by using the Multi-modal approach.

For this, we assume the insatz

φ(x, y) =
∞∑
n=0

AnZn(y)eisnx. (3.27)

By using (3.27) into (3.5) and invoking the boundary conditions (3.6)-(3.7), we

respectively found
d2Zn
dy2

+ γ2nZn = 0 (3.28)

and

Z ′n(0) = 0 (3.29)

Z ′n(h) = 0 (3.30)
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where γ2n =
√
k2 − s2n and prime shows the differentiation with respect to involved

variable. Note that in (3.27), An, Zn and sn are unknowns. To determine these

unknowns we establish here the associated eigenvalue problem.

• Eigenvalue Problem

d2ξn(y)

dy2
+ α2

nξn(y) = 0, (3.31)

ξ′n(0) = 0, (3.32)

ξ′n(h) = 0. (3.33)

By solving (3.31) with the aid of (3.32) and (3.33), we get the orthonormal form

of ξn(y) as

ξn = Λn cos(αny) (3.34)

where

αn =
nπ

h
, (3.35)

and ∫ h

0

ξn(y)ξm(y) = δmn. (3.36)

Let us assume Zn(y) as the linear combination of ξm as

Zn(y) =
∞∑
m=0

Bnmξnm(y) = ξtnBn (3.37)

where

ξtn =
[
ξn0 ξn1 . . . ξnm . . .

]
, (3.38)

and

Bt
n =

[
Bn0 Bn1 . . . Bnm . . .

]
. (3.39)

Note that super script t denotes the transpose of a vector. On multiplying (3.28)

with ξn and integrating over y from 0 to h, we get

∫ h

0

ξn
d2Zn
dy2

dy + γ2n

∫ h

0

ξnZndy = 0. (3.40)



Acoustic Propagation in Ducts Radiated by Plane Pistons 17

On performing the integration by parts, the first term on the left hand side of

(3.40) can be written as

∫ h

0

ξn
d2Zn
dy2

dy =

(
ξn(y)

dZn
dy

)∣∣∣∣∣
h

0

−
(
dξn
dy

Zn

)∣∣∣∣∣
h

0

+

∫ h

0

Zn
d2ξn
dy2

dy. (3.41)

By substituting the boundary conditions (3.29)-(3.30) and (3.32)-(3.33), we get

∫ h

0

ξn
d2Zn
dy2

dy =

∫ h

0

Zn
d2ξn
dy2

dy. (3.42)

Therefore, (3.40) takes the form

∫ h

0

Zn
d2ξn
dy2

dy + γ2n

∫ h

0

ξnZndy = 0. (3.43)

But from (3.34), we know

(ξn)m = ξnm = Λm cos(
mπ

h
); m = 0, 1, 2, ... (3.44)

Thus, (3.43) can be replaced as

∫ h

0

(
mπ

h
)
2

ξnmZndy + γ2n

∫ h

0

ξnmZndy = 0. m = 0, 1, 2, ... (3.45)

Now from (3.37), we have

Zn =
∞∑
p=0

Bnpξnp,

which on using into (3.45) leads to

∫ h

0

∞∑
p=0

(
mπ

h
)
2

Bnpξnpξnmdy + γ2n

∫ h

0

∞∑
p=0

Bnpξnpξnmdy. (3.46)

On using the (3.36), we arrive at

∞∑
p=0

(
mπ

h
)
2

Bnpδpm + γ2n

∞∑
p=0

Bnpδpm = 0, m = 0, 1, 2, ... (3.47)
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In matrix form, (3.47) can be written as

N1B + γ2nIB = 0, (3.48)

where

N1 =



0 0 0 . . . 0 . . .

0 π2

h2
0 . . . 0 . . .

...
...

...
...

...
...

0 0 0 0 m2π2

h2
. . .

...
...

...
...

...
...


. (3.49)

But since γ2n = k2 − s2n, therefore we may write

s2nB = NB (3.50)

where

N = k2I +N1.

Note that N is a known matrix whose eigenvalues are equal to s2n n = 0, 1, 2, ...

and eigenvectors are X. The resulting field potential takes the form

φ(x, y) = ξtXD(x)A (3.51)

where

D(x) =



eis0x 0 0 . . . 0 . . .

0 eis1x 0 . . . 0 . . .
...

... eis2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 eisnx . . .
...

...
...

...
...

...


(3.52)

and

At =
[
A0 A1 . . . An . . .

]
. (3.53)
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On differentiating (3.51) with respect to x

φx = ξtX
d

dx
D(x)A. (3.54)

By matching the propagating modes with executing modes

ξtX
d

dx
D(x)

∣∣∣∣∣
x=0

A =


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

, (3.55)

where

d

dx
D(x) =



is0e
is0x 0 0 . . . 0 . . .

0 is1e
is1x 0 . . . 0 . . .

...
... is2e

is2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 isne
isnx . . .

...
...

...
...

...
...


. (3.56)

On multiplying (3.55) with ξ and integrating from 0 to h

∫ h

0

ξξtdyX
d

dx
D(x)

∣∣∣∣∣
x=0

A = U

∫ h2

h1

ξ(y)dy, (3.57)

or

iX
d

dx
D(x)

∣∣∣∣∣
x=0

A = UQ, (3.58)

where

Q =

∫ h2

h1

ξ(y)dy. (3.59)

From (3.58), the unknown A can be evaluated as

A = iD−10 X−1QU (3.60)
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where

D0 =



s0 0 0 . . . 0 . . .

0 s1 0 . . . 0 . . .
...

... s2 0 0 . . .
...

...
...

...
...

...

0 0 0 0 sn . . .
...

...
...

...
...

...


. (3.61)

3.3 Rigid-Impedance

In this case one wall at y = 0 is acoustically rigid while the surface at y = h is

impedance. The boundary conditions for this semi-infinite duct are

∂φ

∂y
= 0, y = 0, 0 < x <∞, (3.62)

φ+
∂φ

∂y
= 0, y = h, 0 < x <∞. (3.63)

Using the physical configuration of the duct having impedance and rigid bound-

aries is shown in Figure 3.3.

Figure 3.3: The geometry of the duct having rigid and impedance walls

Consider the duct is radiated with a plane piston lying along vertical wall h1 ≤

y ≤ h2 at x = 0, moving with constant velocity U . The velocity condition at x = 0
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can be stated as

∂φ

∂x
=


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

. (3.64)

Propagation of waveforms in duct region can be determined through Mode-matching

and Multi-model techniques which are comprehensively discussed in the next sub-

sections.

• Mode-matching Solution

The wave formulation of propagating modes can be reveals by using separation of

variable method, for this we assume

φ(x, y) = X(x)Y (y), (3.65)

which on using into (3.5) leads to

Y ′′

Y
+ k2 = −X

′′

X
= η2 (say). (3.66)

On solving (3.66), we obtain

X(x) = c5e
iηx + c6e

−iηx, (3.67)

and

Y (y) = c7 cos τy + c8 sin τy, (3.68)

where τ =
√
k2 − η2 and c1 − c4 are arbitrary constants. Boundary condition

(3.62) implies that c8 = 0 and to obtain non trivial form of solution from (3.63)

we conclude τ are the roots of characteristics equation

cos(τh)− ατ sin(τh) = 0. (3.69)
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There are infinite many τn for which (3.69) holds. These roots can be found

numerically by using Newton Raphson or secant method. Eigenfunctions obtained

from Yn = cos(τny), n = 0, 1, 2, ... are orthogonal in nature and satisfy

∫ h

0

Ym(y)Yn(y) = 0, when m 6= n, (3.70)

and ∫ h

0

Ym(y)Yn(y) =
h

2
, when m = n. (3.71)

We can combine (3.70) to (3.71) to get the orthonormal relation

∫ h

0

ψm(y)ψn(y)dy = δmn, (3.72)

where ψm(y) are orthonormal function defined by

ψm =

√
2

h
cos(τmy), (3.73)

Therefore, the propagating wave in positive x−direction can be given as

φ(x, y) =
∞∑
n=0

Anψn(y)eiηnx, (3.74)

where ηn =
√
k2 − τ 2n, represents the nth mode wave number. An is the amplitude

of nth mode which is unknown. To find An, we coincide here the executing modes

with the normal velocity modes at x = 0. On using (3.74) into (3.64), we obtain

i
∞∑
n=0

Anψn(y)ηn =


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

. (3.75)

On multiplying (3.75) with ψm(y) and integrating from 0 to h, we get

i
∞∑
m=0

Anηn

∫ h

0

ψn(y)ψm(y)dy = U

∫ h2

h1

ψm(y)dy. (3.76)
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By invoking orthonormal relation (3.72), (3.76 ) leads to

∞∑
m=0

Anηnδmn = iU

∫ h2

h1

ψm(y)dy (3.77)

or

Am =
−iU
ηm

Qm, (3.78)

where

Qm =

∫ h2

h1

ψm(y)dy

=

√
2

h
{sin(τmh2)− sin(τmh1)} .

(3.79)

• Multi-modal Approach

Now to find the solution of our problem with the aid of Multi-modal approach, we

assume insatz

φ(x, y) =
∞∑
n=0

AnZn(y)eisnx. (3.80)

By using (3.80) into (3.5) and on using boundary conditions (3.62)-(3.63), we

respectively found
d2Zn
dy2

+ γ2nZn = 0 (3.81)

and

Z ′n(0) = 0 (3.82)

Zn(h) + αZn
′(h) = 0 (3.83)

where γn =
√
k2 − s2n, prime on involved variable shows the differentiation. We

construct here an eigenvalue problem to determine the unknowns An, Zn and sn.

• Eigenvalue Problem

d2ξn(y)

dy2
+ α2

nξn(y) = 0, (3.84)

ξ′n(0) = 0, (3.85)
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ξ′n(h) = 0. (3.86)

By the aid of (3.85) and (3.86), we solve (3.84) to get the orthonormal form of

ξn(y) as

ξn = Λn cos(αny) (3.87)

where

αn =
nπ

h
, (3.88)

and ∫ h

0

ξn(y)ξm(y) = δmn. (3.89)

Let we assume Zn(y) as the linear combination of ξm as

Zn(y) =
∞∑
m=0

Bnmξnm(y) = ξtnBn (3.90)

where

ξtn =
[
ξn0 ξn1 . . . ξnm . . .

]
, (3.91)

and

Bt
n =

[
Bn0 Bn1 . . . Bnm . . .

]
. (3.92)

Note that t on super script of ξn and Bn represents the transpose of a vector. On

multiplying (3.81) with ξn and integrating over y from 0 to h, we get

∫ h

0

ξn
d2Zn
dy2

dy + γ2n

∫ h

0

ξnZndy = 0. (3.93)

The solution of second integral of (3.93) can be obtained by performing integration

by parts as

∫ h

0

ξn
d2Zn
dy2

dy =

(
ξn(y)

dZn
dy

)∣∣∣∣∣
h

0

−
(
dξn
dy

Zn

)∣∣∣∣∣
h

0

+

∫ h

0

Zn
d2ξn
dy2

dy. (3.94)

On using boundary conditions (3.82)-(3.83) and (3.85)-(3.86), we get
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∫ h

0

ξn
d2Zn
dy2

dy = − 1

α
ξn(h)Zn(h) +

∫ h

0

Zn
d2ξn
dy2

dy. (3.95)

Therefore, (3.93) takes the form

− 1

α
ξn(h)Zn(h) +

∫ h

0

Zn
d2ξn
dy2

dy + γ2n

∫ h

0

ξnZndy = 0. (3.96)

From (3.87), we can write

(ξn)m = ξnm = Λm cos(
mπ

h
); m = 0, 1, 2, ... (3.97)

On using (3.97) into (3.96), we obtain

− 1

α
ξn(h)Zn(h)−

∫ h

0

(
mπ

h
)2ξnZndy + γ2n

∫ h

0

ξnZndy = 0, (3.98)

or

− 1

α
ξnm(h)Zn(h)−

∫ h

0

(
mπ

h
)
2

ξnmZndy + γ2n

∫ h

0

ξnmZndy = 0. (3.99)

As

Zn =
∞∑
p=0

Bnpξnp

therefore, (3.99) can be formulated as

− 1

α

∞∑
p=0

Bnpξnpξnm−
∫ h

0

∞∑
p=0

(
mπ

h
)
2

Bnpξnpξnmdy+γ2n

∫ h

0

∞∑
p=0

Bnpξnpξnmdy (3.100)

or

− 1

α

∞∑
p=0

Bnp(h)ξnp(h)ξnm(h)−
∞∑
p=0

(
mπ

h
)
2

Bnpδpm + γ2n

∞∑
p=0

Bnpδpm = 0. (3.101)

Equation (3.101) in a matrix form can be written as

− 1

α
N1B −N2IB + γ2nIB = 0, (3.102)
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where

N1 =



ξ0n(h)ξ0n(h) ξ0n(h)ξ1n(h) ξ0n(h)ξ2n(h) . . . ξ0n(h)ξmn(h) . . .

ξ1n(h)ξ0n(h) ξ1n(h)ξ1n(h) ξ1n(h)ξ2n(h) . . . ξ1n(h)ξmn(h) . . .

ξ2n(h)ξ0n(h) ξ2n(h)ξ1n(h) ξ2n(h)ξ2n(h) . . . ξ2n(h)ξmn(h) . . .
...

...
...

...
...

...

ξpn(h)ξ0n(h) ξpn(h)ξ1n(h) ξpn(h)ξ2n(h) . . . ξpn(h)ξmn(h) . . .
...

...
...

...
...

...


(3.103)

and

N2 =



0 0 0 . . . 0

0 π2

h2
...

...
...

...
...

...
...

...

0 0 0 m2π2

h2
...

...
...

...
...

...


. (3.104)

As γ2n = k2 − s2n, therefore (3.102) can be written as

s2nB = NB (3.105)

where

N = Ik2 − 1

α
N1 −N2I. (3.106)

Note that the matrix N contain the eigenvalues s2n; n = 0, 1, 2, ... and eigenvectors

X. Being aware of eigenvalues and eigenvectors the resulting field potential in

semi infinite duct can be written as

φ(x, y) = ξtXD(x)A (3.107)
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where

D(x) =



eis0x 0 0 . . . 0 . . .

0 eis1x 0 . . . 0 . . .
...

... eis2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 eisnx . . .
...

...
...

...
...

...


(3.108)

and

At =
[
A0 A1 . . . An . . .

]
. (3.109)

On differentiating (3.107) with respect to x

φx = ξtX
d

dx
D(x)A (3.110)

By comparing the propagating and executing modes

ξtX
d

dx
D(x)

∣∣∣∣∣
x=0

A =


0, 0 ≤ y < h1

U, h1 ≤ y ≤ h2

0, h2 < y ≤ h

, (3.111)

where

d

dx
D(x) =



is0e
is0x 0 0 . . . 0 . . .

0 is1e
is1x 0 . . . 0 . . .

...
... is2e

is2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 isne
isnx . . .

...
...

...
...

...
...


. (3.112)

On multiplying (3.111) with ξ and integrating from 0 to h
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∫ h

0

ξξtdyX
d

dx
D(x)

∣∣∣∣∣
x=0

A = U

∫ h2

h1

ξ(y)dy, (3.113)

or

iX
d

dx
D(x)

∣∣∣∣∣
x=0

A = UQ, (3.114)

where

Q =

∫ h2

h1

ξ(y)dy. (3.115)

From (3.114), the unknown A can be evaluated as

A = iD−10 X−1QU (3.116)

where

D0 =



s0 0 0 . . . 0 . . .

0 s1 0 . . . 0 . . .
...

... s2 0 0 . . .
...

...
...

...
...

...

0 0 0 0 sn . . .
...

...
...

...
...

...


. (3.117)

3.4 Numerical Results

Here the numerical results are shown. As the modelled problems having excitation

from the plane piston are solved by using Mode-matching technique and Multi-

modal technique. For numerical computation the dimensional heights h, h1 and

h2 are taken to be 0.2m, 0.05m and 0.1m, respectively. The speed of sound c =

343.5m/s and k = 2πf/c, where f is frequency measured in Hertz. The velocity

U of the piston is taken 10m/s, 80m/s and 180m/s and the absolute value of

fundamental mode |A0| and the absolute secondary mode |A1| are plotted against

frequency f . From Figs. 3.4 and 3.5 it can be seen that by changing the velocity

of the piston and magnitude of amplitudes of propagating waves are changed.

Moreover, a good agreement between Mode-matching results (shown with solid
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lines in Figs 3.4 and 3.5) and Multi-modal results (shown with dashed lines) is

found.
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Figure 3.4: The absolute value of fundamental mode |A0| against frequency.
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Figure 3.5: The absolute value of secondary mode |A1| against frequency.

Similarly the graphs plotted against frequency and amplitudes of the problem

discussed section 3.3. are shown in Figs. 3.6 and 3.7. The numericals results are

obtained by using Mode-matching and Multi-modal techniques. For the solution

the heights of vertical wall of geometry are respectively taken as h = 0.2m, h1 =
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0.05m, h2 = 0.1m and k = 2πf/c, where c = 343.5m/s, and f is the frequency

and is measured in Hertz.
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Figure 3.6: The absolute value of fundamental mode |A0| against frequency.
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Figure 3.7: The absolute value of secondary mode |A1| against frequency.

The graphs are plotted against frequency f and amplitudes |A0| and |A1|. These

modes are produced by plane piston of velocity U taken as 10m/s, 80m/s and

180m/s. It can be clearly seen from Figs. 3.6 and 3.7 that absolute values of |A0|

and |A1| are increasing by increasing the velocity of the plane piston. The results
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obtained from Mode-matching (shown with solid lines) and Multi-modal (shown

with dashed lines) are supported well.



Chapter 4

Acoustic Propagation and

Scattering through the Lined

Cavities

In this chapter, we consider here a waveguide having absorbing lining in central

region. The geometry of propagating waves in lined duct having impedance and

rigid boundaries is shown in figure 4.1. The mathematical formulation of the

problem is described in section 4.1. The propagation of waves in double cavity

of honey comb layers is discussed in 4.1.1. The impedance boundary conditions

are formulated with the aid of field potential and by using velocity conditions.

The Multi-modal method is used to solve the governing BVP. In section 4.2 the

propagation and scattering of travelling waveforms in inlet and outlet regions are

described. The propagating modes in central region is discussed in 4.2.2. The

eigenmodes of central region containing liner cavities are determined by Multi-

modal approach. The field potential in duct regions is written as sum of transverse

modes then reflection and transmission coefficients are obtained by using pressure

and velocity conditions at interfaces. The numerical results are provided at the

end of the Chapter.

32
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4.1 Mathematical Formulation

Consider an acoustic plane wave propagating form negative x-direction towards

x = 0, in an infinite waveguide. At x = 0, it will spread into different directions

of infinite reflected and transmitted modes. The waveguide is divided into three

regions. First inlet; having incident and reflected fields and third outlet; which

contains outgoing field, whereas the second region is lined through locally reacting

liners where in attenuation take place. The inside of the waveguide is filled with

compressible fluid of density ρ and sound speed c. The physical configuration of

the waveguide is as shown in Figure 4.1.

Figure 4.1: The geometrical configuration of the waveguide.

The acoustic pressure p and velocity vector v in the waveguide regions are

p = −ρ∂Φ

∂t
(4.1)

and

v = OΦ (4.2)
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respectively. Here Φ(x, y, t) represents the field potential in the waveguide and

satisfies the wave equation

∂2Φ

∂x2
+
∂2Φ

∂y2
=

1

c2
∂2Φ

∂t2
. (4.3)

Assuming the harmonic time dependence e−iωt having radial frequency ω, we may

write

Φ(x, y, t) = φ(x, y)e−iωt, (4.4)

where φ(x, y) stands for the time independent field potential in the waveguide. By

using (4.4) into (4.3), we get Helmholtz’s equation

∂2φ

∂x2
+
∂2φ

∂y2
+ k2φ = 0, (4.5)

where k = ω/c be the wave number. For convenience we divide the field potential

φ(x, y) are

φ(x, y) =


φ1(x, y), −∞ < x < −L, −h < y < h,

φ2(x, y), −L < x < L, −h < y < h,

φ3(x, y), L < x <∞, −h < y < h

. (4.6)

As the boundaries of the waveguide of first and third regions are acoustically rigid

i.e.
∂φ1

∂y
= 0, y = ±h, −∞ < x < 0, (4.7)

∂φ3

∂y
= 0, y = ±h, L < x <∞. (4.8)

4.1.1 Conditions for Liner

Now to derive the condition associated with the reacting liners used in the second

region of waveguide, the impedance formulation is [1]

Z(y) =
p

v.n
, (4.9)
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where n is inward directed normal vector. Therefore in terms of fluid velocity

potential φ, the impedance condition takes the form

Z(y) =
iρωφ

Oφ.n
, (4.10)

or

Z(y) =
iρωφ
∂φ
∂y

. (4.11)

To determine the impedance condition at y = ±h, we consider a single honeycomb

layer of reacting liners as shown in Figure 4.2.

Figure 4.2: The geometry of single honeycomb layer
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In the single reactive honeycomb layer backed by rigid wall, the field potential in

one dimensional form satisfies the wave equation

d2ϕ

dy2
+ k2ϕ(y) = 0. − b ≤ y ≤ −h and h ≤ y ≤ b (4.12)

On solving (4.12), we found

ϕ(y) = c1 cos(ky) + c2 sin(ky), (4.13)

which respectively corresponds the pressure p and velocity v as

p = ρiω {c1 cos(ky) + c2 sin(ky)} (4.14)

and

v = k {−c1 sin(ky) + c2 cos(ky)} . (4.15)

Therefore, the impedance of the liner

Z(y) =
iωρ {c1 cos(ky) + c2 sin(ky)}
k {−c1 sin(ky) + c2 cos(ky}

(4.16)

or

Z(y) =
iωρ

{
c1
c2

cos(ky) + sin(ky)
}

k
{
− c1
c2

sin(ky) + cos(ky
} . (4.17)

Since the reactive liner is backed by rigid wall at y = ±b, therefore

{−c1 sin(kb) + c2 cos(kb)} = 0 (4.18)

and

{−c1 sin(−kb) + c2 cos(−kb)} = 0. (4.19)

From (4.18)
c1
c2

=
cos(kb)

sin(kb)
(4.20)

and from (4.19), we get
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c1
c2

= −cos(kb)

sin(kb)
. (4.21)

By using (4.20) and (4.21) into (4.17), we find

Z(y) = −iωρ
k

cos[k(y − b)]
sin[k(y − b)]

, for h ≤ y ≤ b, (4.22)

and

Z(y) = −iωρ
k

cos[k(y + b)]

sin[k(y + b)]
for − b ≤ y ≤ −h. (4.23)

Thus, for y = ±h, from (4.22) and (4.23), we get

Z(±h) = ± iωρ

k tan[k(b− h)]
. (4.24)

Now from (4.11), we may write

∂φ

∂y
− iωρ

Z(y)
φ = 0, (4.25)

which at y = −h
∂φ

∂y
+ ξ(k)φ = 0, 0 ≤ x ≤ L (4.26)

and at y = +h
∂φ

∂y
− ξ(k)φ = 0, 0 ≤ x ≤ L (4.27)

where

ξ(k) = k tan[k(b− h)]

is known the normalize impedance.

4.2 Travelling Waveforms in Waveguide

Here we determine the formulation of propagating modes in inlet/outlet and cen-

tral region.
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4.2.1 Propagating Modes in inlet/outlet

The formulation of propagating modes in the inlet/outlet subjected to rigid bound-

aries can be determined by using the separation of variable technique. For this we

let

φ(x, y) = X(x)Y (y), (4.28)

which on using into (4.5) leads to

Y ′′

Y
+ k2 = −X

′′

X
= η2 (say). (4.29)

By solving (4.29), we obtain

X(x) = c3e
iηx + c4e

−iηx (4.30)

and

Y (y) = c5 cos τy + c6 sin τy, (4.31)

where τ =
√
k2 − η2 and c3 − c6 are arbitrary constants. As we have assumed

rigid boundary conditions (4.7) and (4.8) which result eigenvalues τn = (nπ/2h) ,

n = 0, 1, 2, ... and the corresponding eigenfunction Yn(y) = cos (τny), n = 0, 1, 2, ...

These eigenfunctions are orthogonal in nature and satisfy the orthogonality rela-

tion. For n ≥ 1, m ≥ 1

∫ h

−h
Yn(y)Ym(y)dy = hδmn, (4.32)

whereas, for m = n = 0 ∫ h

−h
Y0(y)Y0(y)dy = 2h. (4.33)

Therefore for all n, we may write the orthonormal form as

ψn = Λncos(τny) (4.34)
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where

Λn =


1√
2h
, n = 0,√

1
h
, n ≥ 1

. (4.35)

The orthonormal relation is

∫ h

−h
ψm(y)ψn(y) = δmn (4.36)

where

δmn =

1 m = n

0 m 6= 0

.

Now, the propagation of waves in first and third regions having rigid boundary

conditions can be defined as

φ1(x, y) =
∞∑
n=0

A1nψn(y)eiηnx +
∞∑
n=0

B1nψn(y)e−iηnx, (4.37)

φ3(x, y) =
∞∑
n=0

A3nψn(y)eiηn(x−L) +
∞∑
n=0

B3nψn(y)e−iηn(x−L), (4.38)

where {A1n, B1n} and {A3n, B3n} are the amplitudes of nth propagating modes in

first and third regions and are unknowns. Note that the positive sign in exponent

indicates the propagation of waves in positive x-direction and negative sign indi-

cates the waves propagating in negative x-direction. Above equations (4.37) and

(4.38) in matrix form can be written as

φ1 = ψtD1(x)A1 +ψtD1(−x)B1, (4.39)

φ3 = ψtD1(x− L)A3 +ψtD1(L− x)B3. (4.40)

where t on superscript denotes transpose of matrix.
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Here D1(x) is the diagonal matrix containing the elements eiηnx as follows

D1(x) =



eiη0x 0 0 . . . 0 . . .

0 eiη1x 0 . . . 0 . . .
...

... eiη2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 eiηnx . . .
...

...
...

...
...

...


, (4.41)

and A, B are vectors such as

At =
[
A0 A1 . . . An . . .

]
, (4.42)

Bt =
[
B0 B1 . . . Bn . . .

]
. (4.43)

On differentiating (4.39) and (4.40) with respect to x, we will obtain

∂φ1

∂x
= ψt d

dx
D1(x)A1 +ψt d

dx
D1(−x)B1 (4.44)

and
∂φ3

∂x
= ψt d

dx
D1(x− L)A3 +ψt d

dx
D1(L− x)B3. (4.45)

4.2.2 Propagating Modes in Central Region

The central region involves reactive liners occupying the regions −b ≤ y < −h

and h < y < b whereas, the region at −h ≤ y ≤ h is liner free region in which

attenuation take place. To determine the eigenmodes of central region and to

analyze the acoustic scattering in expansion chamber having two liner cavities, we

use Multi-modal formulation.
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Multi-modal Method

To determine the eigenmodes subject to liner conditions at y = ±h, we assume

insatz

φ2(x, y) =
∞∑
n=0

A2nZn(y)eisnx. (4.46)

By using (4.46) into (4.5) and from (4.26)-(4.27), we obtain

d2Zn
dy2

+ γ2nZn(y) = 0, (4.47)

subject to boundary conditions

dZn
dy

+ ξ(k)Zn = 0, at y = −h, (4.48)

dZn
dy
− ξ(k)Zn = 0, at y = +h, (4.49)

where

γn =
√
k2 − s2n.

Note that γn and Zn are unknowns. To determine these we define the related

eigenvalue problem as follow.

d2

dy2
ψn(y) + α2

nψn(y) = 0 (4.50)

d

dy
ψ(y) = 0 y = −h (4.51)

d

dy
ψ(y) = 0 y = h. (4.52)

By solving (4.50) with the aid of (4.51) and (4.52), we get the orthonormal form

of ψn(y) as

ψn = Λn cos[αn(y − h)] (4.53)
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which satisfies orthonormal relation

∫ h

−h
ψn(y)ψm(y)dy = δmn (4.54)

where

αn =
nπ

2h
; n = 0, 1, 2, ...

Let we denote Zn(y) as liner combination of ψm as

Zn(y) =
∞∑
m=0

Amnψmn(y) = ψt
nAn (4.55)

where ψn and An are column vectors defined by

ψn =



ψon

ψ1n

...

ψmn
...


and An =



A0n

A1n

...

Amn
...


. (4.56)

Note that Amn;m = 0, 1, 2, ... are unknowns; On multiplying ψn with both sides

of equation (4.47), and integrate over y, we obtain also

∫ h

−h
ψn

d2Zn
dy2

dy + γ2n

∫ h

−h
ψnZndy = 0. (4.57)

By performing the integration by parts, the first term on the left hand side of

(4.57) can be written as

∫ h

−h
ψn

d2Zn
dy2

dy =

(
ψn(y)

dZn
dy

)∣∣∣∣∣
h

−h

−
(
dψn

dy
Zn

)∣∣∣∣∣
h

−h

+

∫ h

−h
Zn
d2ψn

dy2
dy. (4.58)

By substituting the boundary conditions (4.48)-(4.49) and (4.51)-(4.52), we get

∫ h

−h
ψn

d2Zn
dy2

dy = ξψn(h)Zn(h) + ξψn(−h)Zn(−h) +

∫ h

−h
Zn
d2ψn

dy2
dy. (4.59)
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By putting (4.59) into (4.57), we find

ξψn(h)Zn(h) + ξψn(−h)Zn(−h) +

∫ h

−h
Zn
d2ψn

dy2
dy + γ2n

∫ h

−h
ψnZndy = 0. (4.60)

But we know that

ψn(y) = ψnm(y) = Λm cos(
mπ

2h
y), m = 0, 1, 2, ... (4.61)

Therefore (4.60) can be written as

ξψn(h)Zn(h)+ξψn(−h)Zn(−h)−
∫ h

−h
(
mπ

2h
)2ψnZndy+γ2n

∫ h

−h
ψnZndy = 0, (4.62)

or

ξψnmZn(h) + ξψnmZn(−h)−
∫ h

−h
(
mπ

2h
)
2

ψnmZndy + γ2n

∫ h

−h
ψnmZndy = 0. (4.63)

Also, we have Zn =
∑∞

p=0Anpψnp, which on using into (4.63), leads to

ξ
∞∑
p=0

Anp(h)ψnp(h)ψnm(h) + ξ
∞∑
p=0

Anp(−h)ψnp(−h)ψnm(−h)

−
∫ h

−h

∞∑
p=0

(
mπ

2h
)
2

Anpψnpψnmdy + γ2n

∫ h

−h

∞∑
p=0

Anpψnpψnmdy = 0,

(4.64)

or

ξ

∞∑
p=0

Anp(h)ξnp(h)ψnm(h) + ξ

∞∑
p=0

Anp(−h)ψnp(−h)ψnm(−h)

−
∞∑
p=0

(
mπ

2h
)
2

Anpδpm + γ2n

∞∑
p=0

Anpδpm = 0.

(4.65)

Note that
∞∑
p=0

Anp(h)ψnp(h)ψnm(h) = N1A (4.66)
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and
∞∑
p=0

Anp(−h)ψnp(−h)ψnm(h) = N2A (4.67)

where

N1 =



ψ0n(h)ψ0n(h) ψ0n(h)ψ1n(h) ψ0n(h)ψ2n(h) . . . ψ0n(h)ψmn(h) . . .

ψ1n(h)ψ0n(h) ψ1n(h)ψ1n(h) ψ1n(h)ψ2n(h) . . . ψ1n(h)ψmn(h) . . .

ψ2n(h)ψ0n(h) ψ2n(h)ψ1n(h) ψ2n(h)ψ2n(h) . . . ψ2n(h)ψmn(h) . . .
...

...
...

...
...

...

ψpn(h)ψ0n(h) ψpn(h)ψ1n(h) ψpn(h)ψ2n(h) . . . ψpn(h)ψmn(h) . . .
...

...
...

...
...

...


(4.68)

N2 =



ψ0n(−h)ψ0n(−h) ψ0n(−h)ψ1n(−h) . . . ψ0n(−h)ψmn(−h) . . .

ψ1n(−h)ψ0n(−h) ψ1n(−h)ψ1n(−h) . . . ψ1n(−h)ψmn(−h) . . .

ψ2n(−h)ψ0n(−h) ψ2n(−h)ψ1n(−h) . . . ψ2n(−h)ψmn(−h) . . .
...

...
...

...
...

ψpn(−h)ψ0n(−h) ψpn(−h)ψ1n(−h) . . . ψpn(−h)ψmn(−h) . . .
...

...
...

...
...


(4.69)

and

N3 =



0 0 0 . . . 0

0 π2

4h2
...

...
...

0 0 2π2

4h2
...

...
...

...
...

...
...

0 0 0 m2π2

4h2
...

...
...

...
...

...


. (4.70)

Therefore, in matrix form (4.65) can be written as

ξN1A+ ξN2A−N3A+ γ2nIA = 0, (4.71)

since γ2n = k2 − s2n or

s2nA = NA (4.72)
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where N = (k2 −N3 + ξN1 + ξN2). The above equation (4.72) shows that s2n are

the eigenvalues of matrix N . These eigenvalues and the corresponding eigenvector

can be computed numerically through some software. Let we write the eigenvector

of (4.72) as X, then the field potential of liner region can be defined as

φ2 = ψtXD2(x)A2 +ψtXD2(−x− L)B2 (4.73)

where

D2(x) =



eis0x 0 0 . . . 0 . . .

0 eis1x 0 . . . 0 . . .
...

... eis2x 0 0 . . .
...

...
...

...
...

...

0 0 0 0 eisnx . . .
...

...
...

...
...

...


(4.74)

and

At
2 =

[
A0 A1 . . . An . . .

]
, (4.75)

Bt
2 =

[
B0 B1 . . . Bn . . .

]
. (4.76)

On differentiating (4.73) with respect to x

∂φ2

∂x
= ψtX

d

dx
D2(x)A2 +ψtX

d

dx
D2(−x− L)B2. (4.77)

Now the field potential in duct regions can be written as follows

φ1 = ψt [D1(x)A1 +D1(−x)B1] , (4.78)

φ2 = ψt [XD2(x)A2 +XD2(−x− L)B2] , (4.79)

φ3 = ψt [D1(x− L)A3 +D1(L− x)B3] . (4.80)

Note that {A1, A2, A3} and {B1, B2, B3} are unknowns. We assume B3 = 0 and

calculate rest of the unknowns through matching the pressure and normal velocities

at interfaces x = 0 and x = L.
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The continuity of pressure at x = 0 and x = L is defined as

φ1(0, y) = φ2(0, y) − h ≤ y ≤ h, (4.81)

φ2(L, y) = φ3(L, y) − h ≤ y ≤ h. (4.82)

Likewise the continuity of normal velocities at x = 0 and x = L can be given as

∂

∂x
φ1(0, y) =

∂

∂x
φ2(0, y) − h ≤ y ≤ h, (4.83)

∂

∂x
φ2(L, y) =

∂

∂x
φ3(L, y) − h ≤ y ≤ h. (4.84)

On using (4.78)-(4.80) into (4.81)-(4.84), we will obtain

ψt [D1(0)A1 +D1(0)B1] = ψt [XD2(0)A2 +D2(L)B2] , (4.85)

ψt [XD2(L)A2 +XD2(0)B2] = ψt [D1(0)A3 +D1(0)B3] , (4.86)

ψt [D1(0)kRA1 −D1(0)kRB1] = ψt [XkYD2(0)A2 −D2(L)kYB2] , (4.87)

ψt [XkYD2(L)A2 −XkYD2(0)B2] = ψt [D1(0)kRA3 −D1(0)kRB3] . (4.88)

Multiplying ψ from (4.85)-(4.88) and integrate over y = −h to y = h to obtain

the following equations

A1 +B1 = X(A2 +D2(L)B2) (4.89)

KR(A1 −B1) = XKy(A2 −D2(L)B2) (4.90)

A3 +B3 = X(D2(L)A2 +B2) (4.91)

KR(A3 −B3) = XKy(D2(L)A2 −B2) (4.92)
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where KR and KY are diagonal matrices containing the elements of axial wavenum-

ber respectively,

KR =



η0 0 0 . . . 0 . . .

0 η1 0 . . . 0 . . .
...

... η2 0 0 . . .
...

...
...

...
...

...

0 0 0 0 ηn . . .
...

...
...

...
...

...


(4.93)

and

KY =



s0 0 0 . . . 0 . . .

0 s1 0 . . . 0 . . .
...

... s2 0 0 . . .
...

...
...

...
...

...

0 0 0 0 sn . . .
...

...
...

...
...

...


. (4.94)

Considering B3 = 0, then comparing (4.91) and (4.92), implies that

XD2(L)(A2 +B2) = K−1R XKy(D2(L)A2 −B2) (4.95)

or

(X −K−1R XKy)D2(L)A2 + (X +K−1R XKy)D2(L)B2 = 0. (4.96)

We denote

F = X +K−1R XKy (4.97)

and

G = X −K−1R XKy (4.98)

implies that

B2 = −F−1GD2(L)A2. (4.99)
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Adding (4.91) and (4.92)

2A3 = FD2(L)A2 +GB2. (4.100)

On using (4.99) into (4.100)

2A3 = (FD2(L)−GF−1GD2(L))A2. (4.101)

Now adding (4.89) and (4.90)

2A1 = FA2 +GD2(L)B2, (4.102)

using value of B2, we will get

2A1 = (F −GD2(L)F−1GD2(L))A2. (4.103)

Subtracting (4.89) and (4.90)

2B1 = (G− FD2(L)F−1GD2(L))A2. (4.104)

Now to obtain the reflection and transmission coefficients by

T (t) = A3A1
−1 and R(r) = B1A1

−1, (4.105)

implies that

T (t) = (FD2(L)−GF−1GD2(L))(F −GD2(L)F−1GD2(L))−1 (4.106)

and

R(r) = (G− FD2(L)F−1GD2(L))(F −GD2(L)F−1GD2(L))−1. (4.107)
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4.3 Numerical Results

In this section the numerical results are presented. The problem is excited with the

fundamental duct mode of inlet region that scatters on interaction with the lined

chamber. The fundamental reflected mode in inlet and the fundamental transmit-

ted mode in outlet are plotted against frequency. These modes carry maximum

of the incident energy. For numerical computation the dimensional heights of in-

let/outlet h = 0.05m and length of the chamber l = 0.1m are taken whilst the

depth of the liner b − h is assumed different by considering b = 0.1m, 0.2m and

0.3m. The speed of sound c = 343.5m/s and k = 2πf/c, where f is frequency mea-

sured in Hertz. For b = 0.1m the absolute value of fundamental reflected mode in

inlet |R0| and the absolute value of transmitted mode in outlet |T0| plotted against

frequency f (Hz) are shown in Fig. 4.3 and Fig. 4.4, respectively.
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Figure 4.3: The absolute fundamental reflected mode against frequency for
b = 0.1m, where h = 0.05m and l = 0.1m

From Fig. 4.3 it can be seen that in start reflected amplitude is minimum which

vary on increasing frequency and the reaches to its maximum value about fre-

quency regime 1400Hz ≤ f ≤ 1700Hz whereas transmitted amplitude behave

inversely (see Fig. 4.4).
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Figure 4.4: The absolute fundamental transmitted mode against frequency for
b = 0.1m, where h = 0.05m and l = 0.1m

This variation is because of the occurrence of new propagating modes in the duct

regions and the change of eigenvalues from imaginary number to real number or

complex and vice versa.

Likewise for b = 0.2 the absolute value of fundamental reflected mode and the

absolute value of transmitted mode are shown in Fig. 4.5 and Fig. 4.6, respectively.

Accordingly, for b = 0.3 the absolute value of fundamental reflected mode and the

absolute value of transmitted mode are shown in Fig. 4.7 and Fig. 4.8, respectively.

From these graphs it is found that by increasing the depth of liner cavities different

narrow bands occur in chosen frequency domain instead of a single wider band as

revealed in Figs. 4.3 and 4.4.
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Figure 4.5: The absolute fundamental reflected mode against frequency for
b = 0.2m, where h = 0.05m and l = 0.1m.
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Figure 4.6: The absolute fundamental transmitted mode against frequency for
b = 0.2m, where h = 0.05m and l = 0.1m.
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Figure 4.7: The absolute fundamental reflected mode against frequency for
b = 0.3m, where h = 0.05m and l = 0.1m.
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Figure 4.8: The absolute fundamental transmitted mode against frequency for
b = 0.3m, where h = 0.05m and l = 0.1m.

Thus, the depth of the cavity affect significantly the scattering energies and by

changing the depth the devise can be made more operative. In Figs. 4.9-4.10 and

Figs. 4.11-4.12, the absolute value of fundamental reflected mode and the absolute

value of transmitted mode are shown by taking length of the cavities l = 0.2m
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and l = 0.3m, respectively, whereas h = 0.05m and b = 0.1m. It can be seen

that by changing the length of the chamber cavities the a variation in scattering

amplitudes is revealed.
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Figure 4.9: The absolute fundamental reflected mode against frequency for
l = 0.2m, where h = 0.05m and b = 0.1m.
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Figure 4.10: The absolute fundamental transmitted mode against frequency for
l = 0.2m, where h = 0.05m and b = 0.1m.
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Figure 4.11: The absolute fundamental reflected mode against frequency for
l = 0.3m, where h = 0.05m and b = 0.1m.
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Figure 4.12: The absolute fundamental transmitted mode against frequency for
l = 0.3m, where h = 0.05m and b = 0.1m.



Chapter 5

Discussion and Conclusion

The work presented in this thesis explore the Multi-Modal solution of the physi-

cal problem containing lined expansion chamber. The solution is sorted first for

two prototype problems exited by the plane pistons lying along the wall of duct.

The first problem is bounded by rigid walls whilst the second problem comprises

linings along the horizontal wall. These problems are governed with Helmholtz’s

equation and contain boundary conditions to be rigid-rigid and rigid-impedance.

The formulation of the envisaged boundary value problems and their solutions are

discussed in Chapter-3 of the thesis. Both of these problems are solved with the

Multi-modal and Mode-matching methods. The numerical results are presented to

show the effects of the velocity of the piston on scattering amplitudes. From these

results it is found that by changing the velocity of the moving piston a variation in

scattering of fundamental and secondary mode is obtained. Moreover, an excellent

agreement between Multi-modal and Mode-Matching solution is achieved.

Whereas, in Chapter-4 the scattering from an expansion chamber including two

cavity regions is discussed. The mathematical modeling of the liner cavity is ex-

plained. Then a physical problem containing an expansion chamber having two

liner cavities is modeled to analyze the acoustic scattering. The governing bound-

ary value problem is solved by using the Multi-modal method. For different values

of depth and width parameters of the chamber, the reflected and transmitted mode

amplitudes are plotted against frequency. From the numerical result, it is found

55
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that by changing the depth and width of the liner cavities a variation in passing

and stopping bands is found. This makes the device more operative for certain

frequency regimes.
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