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Abstract

Electric vehicles (EVs) will have major influence on the power grid due to increase

in consumption of electricity. An intelligent scheduling scheme is required for EVs

charging. Whereas EVs are the main solution for green transport and control en-

vironmental challenges. Firstly, it is difficult to find optimal scheduling solution

which can minimize the cost of EVs charging. Considering an optimization prob-

lem, in which the charging powers of EVs are optimized to reduce the total cost

for all EVs charging. However, the scheduling scheme required the information of

future base load. Hence charging cost is modeled as linear function of total load

in respective interval. Forecasting models are used to predict base load for day

ahead, weekly and monthly. The load forecasting model used the temperature

information and electric load history of the region. In this thesis linear regression,

bagged tree regression and artificial neural network is used to predict the elec-

tric load. These forecasting models are compared to find the prediction accuracy.

Mean absolute percent error (MAPE) is 1.24%, 3.2%, 5.14% of artificial neural

network, bagged tree regression and linear regression respectively for daily fore-

casted load. MAPE is 1.04%, 3.0%, 5.02% of artificial neural network, bagged tree

regression and linear regression respectively for weekly forecasted load. MAPE is

0.94%, 2.01%, 4.53% of artificial neural network, bagged tree regression and linear

regression respectively for monthly forecasted load.

Secondly, traffic jam, driver nature and vehicular density on the road effect the

energy consumption of EVs. In this thesis scheduling of EVs to charging station is

modeled as linear programming problem. The assignment of EVs related charging

stations should satisfy all constraint. The results show that the energy consump-

tion is not only proportional to distance between EVs and related charging station

but depends on traffic conditions as well.
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Chapter 1

Introduction

In this chapter, the overall introduction about the electric vehicles (EVs) along

with their advantages over internal combustion engines (ICE) vehicles are pre-

sented. Later, the characteristics of charging station (CS) demand, load forecast

for charge facilities, and load forecasting models for optimized charging are dis-

cussed in detail. Towards the end of the chapter, thesis motivation, thesis objec-

tive, and the organization of the thesis are presented.

1.1 Overview

At the conference of Paris climate in December 2015, more than 180 countries

have signed the first ever universal environmental vary agreement [1]. In this

agreement, a general activity plan is made to put mankind on track and to re-

strict a dangerous atmospheric deviation to well underneath 2C to cover the levels

of pre industrial. This plan needs a critical reduction in emission of greenhouse gas

(GHG) by starting 2020. As demonstrated by the International Energy Agency

(IEA), the concentration of GHG in the climate for long period must be restricted

to around 400 areas for each million of carbon dioxide equivalent [2].

With worldwide energy crisis and increased pollution of the environment, EV has

1
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picked up opportunities for advancement lately, in light of the fact that it has var-

ious favorable circumstances, for example, low energy utilization, less pollution,

etc. [3]. The advancement of EV depends on the establishment of infrastructures,

for example, CS as shown in Fig 1.1, which is the most significant component of

the misusing market for EV.

Figure 1.1: Charging of EVs [3].

On the other hand the developed countries are investing heavily in fully EV in

order to minimize the Carbon emissions which cause different diseases and mainly

to free themselves from oil reliance in recent automobiles industry. As they spend

a lot of money to import oil. Hence the EV will have large impact on the electric

power grids due to high consumption of electric power. The whole load profile

of electric grid system will be different after the addition of EV charging. An

efficient charging and scheduling scheme is required to overcome the impact on

power grid after the inclusion of EV. At present, a massive part of discharged

GHG originates from the ICE of automobiles. As indicated by [4], automobiles

make a contribution of about 16% of the worldwide guy made carbon dioxide

discharges. Additionally, the GHG, with the aid of burning fossil fuel, ICE launch

dangerous pollutants that may obviously degrade the air of high quality. This

dangerous pollution and GHG emissions can be appreciably decreased if the use

of the ICE might be avoided. In this regard, EV offers a solution. Every EV

is equipped with a battery-driven engine and ICE, therefore, it can essentially

diminish its reliance on the environment polluting the combustion engine [5].
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In previous years, the renewable energy has become an emerging technology and

worldwide acceptance due to lack of fossil fuel, i.e., global warming because of

exaggerated carbon emissions, and petroleum [6]. The efficient way to overcome

the problem of shortage of fossil fuel and to reduce the pollution of the environment

by popularizing the EVs to replace ICE based vehicles. The EVs are charged

through electricity [7], which extremely decreases the utilization of oil usage and

doesn’t produce any harmful gases related to environmental pollution during the

complete cycles of life. With the intense growth of the EV industry, it is necessary

to bring modifications to the power sector because of the huge capacity of the

battery and stochastic charging manners of the EV users.

1.2 Why Electric Vehicle Over Internal

Combustion Engine Vehicle?

EVs are becoming a state of art nowadays for its various advantages over con-

ventional vehicle engines. Some of the major advantages of EVs are described

below:

• EVs are preferred over ICE vehicles and can possibly significantly reduce the

pollution from non-renewable energy sources like fossil fuels. Normally EV

utilizes approximately ten kWh for each fifty to sixty miles it drives. As of

now, there are roughly 3.2 million EVs on roads around the globe. 750,000

of these are in America. So, around 7,500,000 kWh power is utilized each

time the aggregate of EVs in America travels 50-60 miles. As EV adoption

keeps on rising, so will the interest on the grid [8].

• Fueling with power offers advantages not accessible in ICE vehicles. Since

electric motors react quickly, EVs are especially responsive and have gener-

ally excellent torque. EVs are much of the time more digitally related than

ICE vehicles, with different EV CS giving the choice to control charging from

the application of mobile [9].
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• EVs can lessen the emissions that add to the environmental change, im-

proving the health of the public, and reducing the ecological harm when

compared to ICE vehicles. Charging the EV on the maintainable power

source, for instance, sunlight based or wind lessens these emissions funda-

mentally more [8, 10]. The difference between the emissions of ICE vehicles

and an EV is shown in Fig 1.1.

Figure 1.2: Emissions of ICE Vehicles and EV [8].

• With progressively strict necessities of the economic improvement and the

protection of the environment, EVs, with the benefit of energy protection

and decline of outflow, have become essential for new energy resources ad-

vancement, such as the consequence of which, the utilization of EVs at large

scale has become an certain development. The facilities of charging demand

forecast is the foundation of its appropriate development and define the

accessibility and effectiveness of financial development. Hence, it is more

significant to predict the charging facility demands and afterwards find the

number of facilities [8, 11].

• EVs produce very less GHG emissions than gas-fueled vehicles as shown in

Fig 1.2. This is true when considering the vehicle’s whole life cycle, from

removing the resources used to make it to rejecting it toward the finish of

its life. With an EV, the greatest environmental effect is delivered during

manufacturing. With an ICE vehicle, the best effect is created during the

stage of utilization [9, 10].

• Furthermore, EV is a sophisticated mixture of the traditional hybrid electric-

powered vehicle (HEV) and EV. Both have an electric powered motor similar
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Figure 1.3: Emissions of ICE Vehicles and EV.

to the ICE. Model primarily based load forecasting methods encompass sta-

tistical models using recursive and traditional mathematical tools [12, 13],

and artificial intelligence models including various state-of-the-art machine

learning approaches [14, 15]. Traditional forecasting methods are usually

straightforward and making use of explainable presentations in the model

composition, while artificial intelligence techniques produce grey models in

producing the forecasting outcomes. Due to the sturdy adaptive getting to

know and generalization ability, artificial neural network(ANN) has come to

be a hit in delivering load forecasting responsibilities [16].

1.3 The Characteristics of Charging Station

Demand

The charging procedure of EVs has incredible uncertainty, which decreases the

charging time frame uncertainty, and the state of charging when the EVs gain

contact to the electric grid network [17]. The above mentioned variables create

difficulty in charging facilities arrangements. A few characteristics of CS load are

the following:

• Different Modes of Charging.

• EV Population.
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• Users’ behavior habits.

1.3.1 Different Modes of Charging

On the basis of various requests of clients, the approaches for EVs charging are

classified into three different kinds, and the various methods of charging decide

the various qualities of CS load. Following are the different modes of charging:

Figure 1.4: Charging Modes.

1.3.1.1 Fast Charging Mode

In this mode, the CS is commonly arrange the EV lines unoccupied for emergency

charging of EV at corner store. In this mode of EV charging the battery of EV can

reach about over 90% in matter of moments with the surprising charging current.

Regardless of the way this charging mode really debilitates the framework nature

of intensity supply, it can extraordinarily diminish the usage of charging times and

convey comfort to customers [18].

1.3.1.2 Slow Charging Mode

The following method of CS is mostly functional at residential locations such

homes, office parking and shopping malls, where EV charge with little amount of

current to utilize the free time. As indicated by the everyday behaviors of the

client, the highest demand of a typical CS usually begins in the time off duty and
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keeps going to midnight. With the improvement of EV, the development of the

typical CS in areas of residential will be a significant primary work [16, 18].

1.3.1.3 The Fast Change of Battery Mode

In following method, the battery of EVs which has use down will be swapped

to full charge battery in a definite CS. Following approach is an effective way to

increase the shortcoming of the little durability of EV. As the speedy variation in

mode of battery, EV can recharge battery at the CS in a brief time. These de-

pleted batteries are charged when they are swapped from EV or at a specific time

at the CS the batteries are charged together which are depending on the various

requests. Due to the helpful administration, following mode of charge is opera-

tional in transports operations in various cities, for example, Beijing, Shanghai,

and Guangzhou, etc. [17].

1.3.2 Electric Vehicle Population

The international population of EVs is going on rise with the improvement of the

low-cost and advancement of EVs strategy. Consistently, the amount of charging

capability determined by the proportion of loads and vehicles, is increasing. To

predict the load of an EV, the researchers typically fitted the vehicle tendency

sales information or GDP (Gross Domestic Product) development information,

and afterward determined the proportion of loads and vehicles by visit out to the

distribution of traffic to predict the demand of the charging facilities [19].

1.3.3 Users’ Behavior Habits

The variables such as starting point of charge, the time of charge, a location of

EV, distance of EV from CS and sorts of EVs are determining the behavior of EV

user. The initial SOC is determine by the beginning point of charge; the electric

system load is affected by the distinction of charging period, which lastly impacts
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the charging power; charging power demand is affected by a distance of driving

and daily rated charging limit of CS, on which the amount of charging facility has

been decided.

1.4 Load Forecast for Charge Facilities

Load forecasting for charging facilities can be divided into the following two types:

Figure 1.5: Different types of Load Forecast for Charge Facilities.

1.4.1 Load Forecasting for Charging Facility Based on

Electric Vehicle Users’ Behavior Habits

• Firstly, it emphasized the examination of clients’ demand for travel.

• Secondly, decide the suitable loads as indicated by the degree of clients’

acceptance to the initial SOC so the likelihood delivery of charging necessity

can be resolved.

• Lastly, on the basis of the delivery of probability, the proportion of loads

and vehicles can be permanent and a load of the CS can be forecast. At

present, the gauge model dependent on the clients’ movement practices has

been full-grown, yet the thought of affecting elements isn’t favorable. Most

of the study accepted that the clients simply charge their battery once in a
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day and haven’t considered for multi charging and discontinuous charging

in a day. Likewise, the ongoing examines chiefly center around the interest

estimate of charge control, scarcely considering the connection between the

charge control and the amount of charge office.

1.4.2 Load Forecasting for Charging Facility Based on the

Electric Vehicles Population

The strategy depends on the forecast of a population of the EV and, joined with the

influencing terms, determined the charging power and limit of charging facilities.

At last, with a permanent proportion of piles and cars, the demand for the load

can be resolved. Estimate the number of EVs in both short-term and long-term

respectively with the elastic coefficient technique.

1.5 Load Forecasting Models for Optimized

Charging

The day by day demand of EV CSs are complicated and the algorithms of con-

ventional load forecasting (CLF), for example, regression analysis and linear time

series hardly have the capacity to simulate the complex electric load of power.

Instead of the CLF techniques, the modern way of load forecasting, machine learn-

ing techniques can self-learn and perform nonlinear modeling and adaptation [20].

The following some load forecasting techniques used for optimized charging are

presented:

• Back-Propagation (BP) neural network model

• Radial basis function (RBF) neural network model

• Grey model (GM)(1,1) model

• Linear Regression Technique
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• Regression Trees Technique

• Artificial Neural Network (ANN)

• Recurrent Neural Networks (RNN), etc.

1.5.1 Back-Propagation Neural Network

For load forecasting in electric power system the BP neural network is used which is

an artificial neural network. The BP neural network consists of input layer, hidden

layer and output layer as shown in Fig 1.6 which has the ability of self-learning.

There are neurons in each layer which has the ability of processing individually.

Afterwards a nonlinear or linear function is applied to the weighted sum from

the input neurons which resulting to decide the output. The stopping criteria of

BP neural network is whether a threshold value is set to bring error below that

value or the preset time of learning is accomplished. The performance of following

algorithm is determined by the structure of neural network which plays important

role in evaluation of algorithm performance [21].

Figure 1.6: Structure of BP Neural Network [21].

1.5.2 Radial Basis Function Neural Network

RBF as one significant approach of neural networks, has the capacity to estimate

and show finest overall results. The utilization of training time in RBF neural

network is extremely decreased as compared with the BP neural network but
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cause over fitting or under fitting of data. Due to the benefits of the RBF neural

network, it has been broadly used in a non-linear time series forecast. RBF neural

network consist of three layers forward network as shown in Fig 1.7. The first is

the input layer, second is the hidden layer, and the third one is the output layer,

which gives the results on the basis of input pattern [22].

Figure 1.7: Structure of RBF Neural Network [22].

1.5.3 Grey(1,1) Model

Grey model which is widely used for the load forecasting in electric power sys-

tem is based on grey system theories. GM (1,1) is one of the famous or widely

used model among grey models, which contain first-order differential equations as

system variables. The ultimate advantage of the GM (1,1) model is to effort on

system forecasting with poor, partial, or undefined messages. The utilization of

training time in grey model is extremely decreased as compared with the BP neural

network but cause over fitting or under fitting of data.Most of the study accepted

that the clients simply charge their battery once in a day and haven’t considered

for multi charging and discontinuous charging in a day. Likewise, the ongoing

examines chiefly center around the interest estimate of charge control, scarcely

considering the connection between the charge control and the amount of charge

office. The GM (1,1) model has more preferences over those traditional forecast
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methods since it doesn’t have to know whether the forecast factors obey normal

distribution, and furthermore doesn’t need an excessive amount of measurement

test [23].

1.5.4 Artificial Neural Network

An ANN is a mathematical model that is utilized to simulate the functionalities

and structure of neural networks. The strategy depends on the forecast of a pop-

ulation of the EV and, joined with the influencing terms, determined the charging

power and limit of charging facilities. The major block of each ANN is artificial

neuron, which is a basic mathematical model. ANN has three fundamental stan-

dards, i.e., Summation, multiplication, and initiation. Towards the beginning of

artificial neuron the inputs are weighted what implies that each input information

value is multiplied with single individual weight. A little change in input data

results in changed output. Each connection between layers have own significance

and define the strength of every neuron’s effect on another neuron. In the middle

of artificial neuron, there is an aggregate function that sum all the input weights

and bias. Lastly the artificial neuron, the sum of previously weighted inputs and

bias goes through the activation function which is also known as transfer function

or propagation function.. While the functioning principles and basic guidelines

of ANN looks like nothing special, the main purpose and calculation command

of these models come to life when we start to interconnect them into ANN (Fig

1.8) [24].

Figure 1.8: Structure of simple ANN [24].
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1.5.5 Linear Regression Technique

The regression technique is a statistical technique that is used to define the rela-

tionships among different variables .The models are achieved by multiple regress

the data information space and fitting a simple forecast model inside each divided

part. The easiest scenario to analyze is about a variable Y mentioned to as the

dependent or the target variable, might be identified with one variable X, called

an independent variable, or basically a regressor. If there is a linear connection

between X and Y, then the following equation can be used for a line:

γ = β1 + β2X (1.1)

where β1 denotes the intercept term and β2 represents the slope coefficient. In

simplest terms, the main determination of regression is to try to discover the finest

fit line or equation that states the correlation between Y and X. Linear regression

is a basic method to supervised learning. The dependence of Y on X1, X2, . .

. XP is linear to be assumed. The actual function of regression is never linear

as shown in Fig 1.9. while it may appears overly basic, linear regression is very

valuable both conceptually and practically [25].

Figure 1.9: Linear and Non-Linear function [25].
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1.5.6 Regression Tree Technique

Regression trees is one of machine learning strategies for developing forecast mod-

els from the information. The models are achieved by recursively splitting the

data information space and fitting a simple forecast model inside each divided

part. Accordingly, the splitting can be graphically represented as a decision tree

as shown in Fig 1.10. In a regression tree strategy, the Y variable takes ordered

values and a regression model is fitted to every node to provide the forecasted

values of Y [26].

Figure 1.10: Structure of Regression Trees [26].

1.5.7 Recurrent Neural Network

RNN is a kind of neural network in which the output from a recent step is feds

input to the present step. In conventional neural networks, every input and output

is independent of each other, yet in scenarios like when it is necessary to estimate

the next word of the sentence, the recent words are needed and hence there is a

need to remember the previous words. Hence, RNN came into existence, which

solved this issue with the addition of a hidden layer as shown in Fig 1.11. The basic

and most significant element of RNN is a hidden layer, which remembers some data

about a sequence. RNN has a memory that remembers all data about what has
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been determined. It utilizes similar parameters for each input as it performs the

same task on every input or hidden layer to produce the output. This decreases

the complexity of parameters, in contrast to other neural systems [27].

Figure 1.11: Structure of RNN [27].

1.6 Thesis Motivation

The motivation of this work came from various research papers in which many

researchers managed the charging of EVs. In various countries, EVs are preferred

over ICE vehicles and can significantly reduce pollution from non-renewable energy

sources like fossil fuels. EVs can diminish the emissions that add to environmental

change and smog, improving the public health and decreasing ecological harm

when compared to ICE vehicles. Charging your EV on the sustainable power

source, for example, sunlight based or wind reduces these emissions significantly

more. Due to its various advantages over conventional vehicle engines as discussed
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earlier, the EVs have been a topic of interest for the researchers over the last

three/four decades.

1.7 Thesis Objective

This thesis is aimed to optimize the charging management of EVs. In this re-

gard, optimization algorithms are used for the optimal assignment of EVs to CSs

and minimizing the entire cost of all EVs which perform charging. Moreover, the

load forecasting is done through three techniques such as linear regression, tree

regression, and neural network. The advantages and disadvantages of these load

forecasting techniques have been discussed in detail. A comparative study is con-

ducted between these three forecasted models on the basis of mean square error.

The model with the least mean square error is chosen to minimize the cost of EV

charging.

Furthermore, the objective function is made for a small geographic area with a

finite number of EVs and CSs. The objective function is modeled as linear with

the parameters such as constraints of vehicles, CSs and the traffic situation on the

roads. With the suggested solution EVs keep the state of charge (SOC) of battery

to its maximum level while reaching the assigned CS.

1.8 Thesis Organization

Organization of the complete thesis is in the following order;

Chapter 1: Introduction

In this chapter, the overall introduction about the EVs along with their advan-

tages over ICE vehicles are presented. Later, the characteristics of CS demand,

load forecast for charge facilities, and load forecasting models for optimized charg-

ing are discussed in detail. Towards the end of the chapter, thesis motivation,

thesis objective, and the organization of the thesis are presented.
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Chapter 2: Literature Review and Problem Formulation

This chapter presents a literature survey on the topics of various techniques of

EV charging load forecasting, schemes of charging management, limitations and

challanges in the charging of EVs, and classification of EV charging schemes. The

literature survey is the accompanied by a critical gap analysis of the research where

the research gap is identified. This gap analysis then proceeds towards problem

formulation. At the end of the chapter, research methodology and thesis contri-

butions are presented.

Chapter 3: Load Forecasting Models

In this chapter, different load forecasting approaches and the significance of load

forecasting for EVs charging scheduling are presented. Furthermore, load forecast-

ing models are also discussed in detail.

Chapter 4: Mathematical Modeling for EV Charging Scheduling

This chapter presents the mathematical modeling for optimal EVs charging schedul-

ing. The modeling for optimizing energy consumption for EVs before charging and

problem constraint are presented. Furthermore, the modeling for optimizing the

charging cost during all day is also discussed in this chapter.

Chapter 5: Simulations and Results

In this chapter, results are presented for an optimal scheduling model for charging

of EVs is used which goals to minimize the total cost by optimizing the charging

power of EVs. A detailed comparison of performance of these forecasting mod-

els is offered. On the basis of these results, the goal of optimum scheduling for

EVs charging is achieved. Afterwards results for the second phase of this thesis is

presented which aims to reach the respective CS with less energy consumption by

considering the disturb conditions of traffic.

Chapter 6: Conclusion and Future Work

In this chapter, a brief conclusion of the thesis is presented. Moreover, some future

work is suggested for the researchers interested to work in the area of charging

management of EVs.



Chapter 2

Literature Review and Problem

Formulation

In this chapter, a literature survey is presented on the topics of various techniques

of EV charging load forecasting, schemes of charging management, limitations

and challenges in the charging of EVs, and classification of EV charging schemes.

The literature survey is the accompanied by a critical gap analysis of the research

where the research gap is identified. This gap analysis then proceeds towards

problem formulation. At the end of the chapter, research methodology and thesis

contributions are presented.

2.1 Background

Since the transformation of industry, the load of electricity is a fundamental con-

cern for managing the regular functioning of the current society. Forecasting of

load can be split in to three types; i.e., time interval [22], long term oriented fore-

cast load (1 year to 10 years ), medium term oriented forecast load (1 month to 12

months ahead), and a short term oriented forecast load (1 hour to 7 days ahead).

The strategy depends on the forecast of a population of the EV and, joined with

18
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the influencing terms, determined the charging power and limit of charging fa-

cilities. At last, with a permanent proportion of piles and cars, the demand for

the load can be resolved. Estimate the number of EVs in both short-term and

long-term respectively with the elastic coefficient technique.

In previous few years, the broad acceptance of sustainable power source has be-

come an emerging pathway because of absence of fossil fuel; i.e., global warming

because of exaggerated carbon emissions, and petroleum [7]. The efficient way

to overcome the problem of shortage of fossil fuel and to reduce the pollution of

the environment by popularizing the EVs to alter traditional vehicles based on

ICE. Electricity is used to powered the EVs [6], which extremely lessen the use

of petroleum assets and does not produce any gases related to environmental pol-

lution during the complete life cycles. Before the twenty-first century, because of

the robust adaptive, generalization capability of ANN, and self-studying, it had

grown to be a hot research matter for adopting the ANN techniques in forecasting

of load. The electrification of the transportation zone is visible as an effective

approach to reducing GHG emissions from the burning of fossil fuel. Other envi-

ronmental worries including city air high-quality and related health effects have

also brought about coverage makers and stakeholders to opt for the popularization

of EVs [23] in changing conventional ICE based automobiles.

EVs may be considered as zero-emissions automobile all through its operation

whilst power from renewable assets is used to rate them. However, the speedy

improvement of the EV industry is introducing new challenges to the existing en-

ergy device shape as a result of their huge battery potential [25] and tremendously

stochastic individual charging conduct.

Traditional forecasting methods are usually straightforward and making use of

explainable presentations in the model composition, while artificial intelligence

techniques produce grey models in producing the forecasting outcomes.

Due to the sturdy adaptive getting to know and generalization ability, ANN has

come to be a hit in delivering load forecasting responsibilities [14].
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2.2 Studies Related to Various Techniques of

Electric Vehicles Charging Load Forecasting

Different techniques have been used by different researchers which are as follows:

2.2.1 Time Series Input of Historical Data Technique

In the properties of load-based time measurement extension, the underlying re-

search on load estimating issue relies on the time series expectation strategy pro-

posed by the author [25] in 1976.

The technique has fewer input requirements for the load estimating model, which

just considers the time series input of historical information and doesn’t consider

other multi-faceted impacting parameters that influence the load.

2.2.2 Recurrent Neural Network

In [26], to set up a short term load forecasting model, RNN was utilized. However,

the traditional RNN would affect the gradient evaporating issue and the long short

term memory (LSTM) model is a powerful way to deal with the issue.

2.2.3 Load Peak Model

In [27], the load peak model was provided that considered external parameters,

for example, climate and humidity. In previous years, spring peak loads on the

Vepco framework show an unpredictable development pattern as appeared in Fig

2.1. Following approach is an effective way to increase the shortcoming of the little

durability of EV. As the speedy variation in mode of battery, EV can recharge

battery at the CS in a brief time.These depleted batteries are charged when they

are swapped from EV or at a specific time at the CS the batteries are charged

together which are depending on the various requests. At present, the gauge model



Literature Review and Problem Formulation 21

dependent on the clients’ movement practices has been full-grown, yet the thought

of affecting elements isn’t favorable.

The international population of EVs is going on rise with the improvement of

the low-cost and advancement of EVs strategy. This irregularity in the peak load

development was principally brought by varieties in the summer climate. With the

climate changeability filtered out, it was discovered that the Vepco summer peak

load for the most recent decade has pursued the smooth exponential development.

Figure 2.1: Load Peak Model [27].

2.2.4 Autoregressive Moving Average Model

In [27], the ARMA expectation technique was proposed and the authors of [19]

built up the ARIMA to accomplish the load forecasting.

2.2.5 Random Forest Approach

Due to the various sorts of load and complexity of impacting factors, the choice of

input factors and the strategy in building the load forecasting models become sig-

nificant. Many wise forecast strategies were proposed using progressively relevant
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data. The study in [28] utilized an arbitrary forecast way to build a load esti-

mating model and the inputs are refined by master feature choice utilizing fuzzy

rules.

2.2.6 Tuning Fuzzy System and Artificial Neural Network

Technique

The study in [29] was used tuning the fuzzy framework and ANN technique for

demonstrating the medium voltage load. Existing methodologies have demon-

strated the applicability for the time arrangement based mathematical models and

computational knowledge models in solving the load estimating issue. However,

new members, for example, renewable generation and EVs have seen complicated

qualities and high uncertainty, which challenge the traditional methodologies.

2.2.7 Long Short Term Memory and Convolutional Neural

Systems

The study in [30] developed an LSTM system to estimate the load of particular

homes. Authors joined the energy utilization of a home with the attitude of a home

resident, changed the attitude patterns of energy purchaser into an arrangement

of input features to the network, on account of which the accuracy of the load

estimating was bettered. Some different investigations [31, 32] additionally utilized

LSTM to forecast the load.

In [33], utilized the CNN for one-stage short term EVs charging load estimating,

where aggressive forecasting precision could be acquired.

2.2.8 Spatial-Temporal Model

EVs have risen around the world. So the huge power limit of their battery gives an

unprecedented challenge to the current power system. Precise and proficient load
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forecasting for EV charging is basic for the maintenance and operation of various

charging stations.

In [34] introduced a Spatial-Temporal model to assess the effect of large scale ar-

rangement of EVs on urban distribution systems.

In [35], proposed an approach for modeling and examining the load in a distribu-

tion system considering EV battery charging, and received Monte Carlo simulation

in situation generations.

2.2.9 Stochastic Model

In [36], proposed a Monte Carlo model based on simulation to estimate the charg-

ing load of the EVs in China. In any case, these traditional strategies are hard for

evaluating the outside variables that influence the charging load of EVs, and it is

not possible to set up a deterministic model.

2.3 A Survey of Charging Management Schemes

for Electric Vehicles

Despite the fact that the different technical aspects of battery charging discussed

in previous studies based on EV’s fueling adaptability, which is necessary at the

present phase of EV proliferation.The variables such as starting point of charge,

the time of charge, a location of EV, distance of EV from CS and sorts of EVs are

determining the behavior of EV user.

EVs have been officially characterized by the government of United States of Amer-

ica (USA) as a vehicle that, It has an electric motor notwithstanding a conventional

consuming motor.

• It has an electric engine also to a traditional burning engine.

• Draws motive power from a battery with a limit of 4 kWh.

• It can be again charged from an outer power source.
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2.3.1 Charging of Battery by Using Different Modes

The operations of EV can be divided into two different modes named as charge

depleting mode and charge sustaining mode. In charge depleting mode, EV dis-

ables its inner burning motor and draws the propulsion energy, until it arrives at

SOC threshold, where SOC is an amount that estimates the level of resting charge

in the battery. The limit of SOC shows the minimal energy that should be stored

in the battery consistently. After arriving at the minimum SOC, EV changes to

work in charge sustaining mode and the burning engines give the energy to drive

the vehicle just as to manage the charge of the battery above however close to the

minimal SOC.

EVs can exceedingly diminish fossil fuel utilization and GHG emissions by keeping

away from the charge sustaining mode. For the better efficiency of fuel, a third

mode, called charge blended, has been upheld [36, 37]. In charge blended mode,

electric engine and inner ignition engine are ideally and powerfully utilized during

a drive cycle, so they can work longer utilizing the most productive setting, while

accomplishes a large decrease in GHG emissions.

By avoiding the charge sustaining and charge blended modes, the GHG emissions

can be reduced and along these lines, we may speculate that a bigger battery limit

is better. However, the researchers in [38] have indicated that the expense and

energy effectiveness brought by a bigger battery capacity arrives at an asymptotic

worth, and hence, a limitless large capacity isn’t essential.

Depending upon the kinds of the vehicles, [39] has demonstrated that the capacity

of the battery should be about 11.6 kWh for a traveler vehicle to cover a distance

of 40 miles at a speed of around 25-30 mph, without utilizing interior ignition

engine. This is a sensible battery size in light of the fact that an ordinary USA

traveler vehicle travels an average of under 30 miles every day [40].

Despite the actual capacity of the battery, as trips are carried out and batteries

are discharged, then the SOC drops. Because of the restricted capacity of the

battery, the battery should be regularly recharged to keep up its SOC inside an

ideal range, which is characterized by the minimal SOC and full battery capacity.

Commonly, it is required to keep a high SOC toward the start of a trip to limit the
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total energy cost just as to accomplish a more extended alberta energy regulator

(AER), a high SOC brings about quicker battery degradation [41].

2.3.2 Restoring Methods of Vehicle’s State of Charge

In [42, 43], restoring techniques of Vehicle’s SOC was presented in two different

ways, i.e., battery swapping (BS), and battery recharging (BR). In BS technique,

EV driver trades the drained battery for a completely charged one at a CS.

This methodology possesses zero waiting time for the charging of battery and

enables the service provider to receive the rewards from lower energy costs for

charging during off-peak hours.

This negligible time required in restoring the SOC is the greatest advantage in

contrast with the second technique, i.e., BR that needs the drivers to connect

their EVs to electric outlets for the charging. In spite of the advantage of zero

waiting time, BS has yet to become popular because of three significant difficulties,

in particular, large upfront cost for framework deployment, restricted AER for

every battery, and troubles in guaranteeing similar performance among every single

replaceable battery.

2.4 Problems and Challenges in the Charging of

Electric Vehicles

At the same time, when multiple EVs are charged, the extra electric load can cause

various issues to the grid, as far as extreme voltage variations, warm overloads,

raised losses of power, expanded aging of transformers and lines, and so on [44].

With progressively strict necessities of the economic improvement and the protec-

tion of the environment, EVs, with the benefit of energy protection and decline of

outflow, have become essential for new energy resources advancement, such as the

consequence of which, the utilization of EVs at large scale has become an certain
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development. These issues and challenges can be comprehensively arranged into

three groups as under:

2.4.1 Degradation of Power Quality

This kind of issue influence the quality of power, which is estimated regarding

power factor, harmonics, voltage deviation, a shift in frequency, and so on [45].

All in all, a low quality won’t quickly disturb the electrical grid, however, it is a

pointer for an upcoming major problem, if no corrective move is made. Despite

the fact that there is no interruption, a lower control quality may, in any case,

influence the operation of electricity loads. For instance, the lower voltage can

make breakdowns home apparatuses.

2.4.2 Electrical Network Instability

This kind of issue destabilizes and disturbs the electrical systems, prompting power

blackouts, etc. At the point when it occurs, some portions of the electrical system

will lose the supply of power. Practically, preventing system interruption is one of

the most significant tasks for the operators of the grid [45].

2.4.3 Deterioration of Operation Efficiency

This sort of issue doesn’t affect the functionality of the grid yet its productivity.

Losses of higher transmission lead to less income and benefit. Reliable warm

overload speed up equipment aging hence, require a high investment of money for

the replacement of hardware [45].

According to the above problems, it is required to guarantee the quality of power,

the stability of the network, and the operational effectiveness of the electrical

network. All issues should be removed so as to help to expand the popularity of

EV.

In May 2016, there are more than 1.5 million electric traveler vehicles overall [46],
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however, this figure most likely speaks to under 1% of total traveler internationally.

As indicated by [47], the light-obligation penetration level of EV is relied upon to

reach over 50% by 2050.

Simply, the vast majority of the electrical grid issues are caused by the charging of

EV, a consequence of an imbalance between the power supply and interest (load).

In order to guarantee the stability of the grid, the request for power should be

nearly matched with the power supply. Basically, this matching is very hard to

accomplish in a changing situation like EV charging, where load is not predictable

and can change significantly between various hours in a day. This issue is more

complicated by the introduction of renewable power sources, for example, solar

and wind power into the network [48].

2.5 Classification of EVs Charging Schemes

As in Fig. 8, schemes of EVs charging can be divided into controlled and un-

controlled (UC) charging [49]. In previous studies, controlled and uncontrolled

charging is known as coordinated and uncoordinated charging schemes, respec-

tively. The controlled charging is further divided into three charging schemes as

shown in Fig 2.2.

Figure 2.2: Schemes of EV Charging.
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2.5.1 Uncontrolled Charging

In UC charging scheme [49], the batteries begin to charge quickly when batteries

are connected, or after client specified delay. UC charging is sensible in a situation

where the operator of grid doesn’t have the important data to control the charging

profiles. Although UN charging is very easy because it directly display the grid to

volatility and arbitrariness in the charging load, which are significantly reliant on

the behavior of the driver.

2.5.2 Controlled Charging

In the controlled charging (CC) scheme, the operator manages the moments of

charging and parameters in order to prevent grid from encountering unsatisfac-

tory quality of power and suffering from disruptive destabilization, simultaneously

of fulfilling driver’s charging requests. CC can be more split into different schemes,

i.e., indirectly CC, bidirectional charging, and smart charging.

In the indirectly CC scheme, it doesn’t directly control the parameter of charging,

for example, the capacity of charger, time of charging, charging span, etc. But,

smart charging directly controls the different parameters of charging.

Smart charging schemes doesn’t need to be charged constantly when it is con-

nected, because it doesn’t draw energy from the grid when the outlet power is set

to be zero. Thus, this scheme can correctly transform every EV battery into a

flexible load [49].

In a bidirectional charging scheme, every EV has a mobile energy source and flexi-

ble load despite the fact there is no difference in different aspects when contrasted

to the smart charging. Advantages of using the EV batteries as the energy sources

were considered in [50, 51].

Just, with the bidirectional flow of power, battery of EV can help in balancing out

grid by returning back energy in order to fill the gap of demand, when there is an

enormous electrical load.

The research in [52]- [53] was concentrated on researching and analyzing the effect
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of joining EVs population on the electrical grid due to the lack of control.

The study in [54, 55] was concentrated only on the CC, but the comprehensive

simulation exposed from the surveying UC charging techniques is a beneficial ref-

erence, even in guiding the evaluation needs for future CC techniques.

With an expanded flexibility in control, [56, 57] has indicated that the smart

charging can support an appreciably higher EV penetration, contrasted with UC

charging.

2.6 Research Gap and Problem Formulation

In the previous literature, different scheduling schemes have been recommended

for EV charging. However, the present work in which the techniques used are

basically centralized algorithms to optimize the charging power to reduce cost,

which might not be applicable for the systems of EV charging with a large EV

population. The total load profile of the electric structure would be transformed

after the introduction of EV charging. A power grid would be affected significantly

after the introduction of a large number of EVs. It is hard to find the optimal

solution of scheduling which can reduce the overall cost of charging, especially in

the existence of a immense EV population. It is very difficult to model an optimal

scheme meanwhile it needs the information about EVs such as future base loads,

charging period, and time of arrival.

For a practical solution, a load forecasting model with the least mean square is re-

quired to achieve an optimal solution which results in the reduction of cost. With

the change in recent systems of power grid, various factors such as weather, prices

of real time electricity, holidays and even the growth in cities and human being

activities, have several effects on load demand. Old load forecasting approaches

are incapable to give different forecasting models with appropriate predictive accu-

racy. In this regard, precise load forecasting is a significant measure of the optimal

scheduling of EV charging.

This work is an attempt to fill this gap by proposing a solution for a small
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geographic area, which objective is to reduce the overall cost for charging all the

EVs within the 24 hours of time. To solve efficiently the problem, the scheduling

issue is a convex optimization issue with linear constraints. The objective func-

tion is based on the forecasted base-load. For load forecasting, three models are

formulated e.g. neural linear regression, tree regression, and neural network. To

obtain the best possible result the model with least mean square is chosen, To

obtain the total minimal cost, first, optimal scheduling system defines the opti-

mal charging powers for all the EVs for entire intervals by resolving a particular

scheduling optimization problem.

With the optimization of the cost of EVs charging there is a need of an energy-

efficient model for EVs to reach the CS which is nearest or where EV reach with

less loss of energy under the disturbed condition of traffic.

This thesis provide the second foremost objective for EVs is to reach the sug-

gested CS while consuming less amount of energy in disturbed condition of traffic

by considering the system parameters such as SOC of battery, distance from differ-

ent charging station, traffic conditions and EV location as the EV current position

is dense area or highway.

2.7 Research Methodology

The complete thesis is comprised into the following two phases:

• Charging phase.

• Scheduling phase.

2.7.1 First Phase of Thesis (Charging Phase)

• As depicted in Fig 2.3, in the first phase of thesis, an indirectly control

approach is considered for the optimal solution of scheduling. By controlling

the cost of EVs charging, the scheduling is optimized.



Literature Review and Problem Formulation 31

• The objective function is modeled as linear function of the total load to

minimize the cost.

• Total load represents the baseload without EVs and load of charging which

represents a load of EV charging in such interval.

• The baseload is forecasted by three different approaches such as tree re-

gression, linear regression, and neural network. For the simulation of linear

regression, neural network, and tree regression, Matlab is used.

• As the optimization problem is a convex problem, for that purpose CVX

tool is downloaded from their website. This is then unpacked and used in

the command window of Matlab.

Figure 2.3: Flow chart of Cost Minimization.

• A comparative study is conducted between these three forecasted models.

The model with the least mean square error is considered most to minimize

the cost of EV charging.
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Figure 2.4: Flow chart of Neural Network.

2.7.2 Second Phase of Thesis (Scheduling Phase)

• In the second phase as shown in Fig 2.4, an optimization algorithm is pro-

posed for the optimal assignment of EVs to CSs. This methodology delivers

a solution to reduce the consumption of energy by the EVs while reaching

CSs.

• Afterward, formulating the objective function a small geographic area is

considered with a limited number of EVs and CSs.



Literature Review and Problem Formulation 33

• A geographic area is divided into two kinds of areas such as an area with

heavy traffic and low traffic area. This problem is solved by linear program-

ming, for which linear toolbox is used present in Matlab.

• The objective function is modeled as linear with the following parameters

such as constraints of different vehicles, CSs and the situation of traffic on

the roads. With the suggested solution EVs keep the SOC of battery to its

maximum level while reaching the assigned charging station.

Figure 2.5: Flow chart of Energy Efficient Scheduling.

2.8 Research Contributions

In recent future, there is expectation of large number increase in sales and de-

velopment of EVs that’s the main reason of importance and challenge is about

the improvement in the development of the charging infrastructures as well as the

charging methods and their management during charging process.

To mitigate the influence of uncontrolled method of charging on power grid, an in-

directly controlled method of charging is proposed. Indirectly controlled charging

approach controls the system parameters such as charging power of EVs, energy
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price and charging cost which may affect the charging process. Aim of indirectly

controlled charging method is to see the user’s perspective as well as grid perspec-

tive for its stability.

The major hurdle for EV driver is where and when they should charge their vehicle

by satisfying all constraints. It’s not always important that the nearest charging

station is suitable some other factors also affects such as traffic conditions and

number charging point at respective charging station.

In order to consider these assumptions we proceed to model the problem with op-

timal solution which have linear equations and problem constraints. Afterwards

we define some system parameters which are given in list of symbols. Our aim is

to maximize the objective function by considering these system parameters.

There is need of a smart scheduling system which can optimally schedule the charg-

ing pattern of EVs. As a result load profile of electrical system flattened efficiently.

Hence the aim of minimizing the operational cost could be achieved. This is very

important step towards smart grid implementation.The major contributions of the

following thesis are listed below.

1. Three different techniques namely; tree regression, linear regression, and

neural network are applied to load forecasting. The advantages and disad-

vantages of these load forecasting techniques are discussed in detail. These

techniques are also compared with each other on the basis of mean square

error.

2. An optimization solution of charging management is recommended to EVs.

The given issue is modeled by using the linear programming with the ulti-

mate goal to reach the CS by satisfying all constraints.

3. The scheduling optimization problem for EVs charging is analyzed. More-

over, a solution is proposed in order to optimize the charging power of EVs

by minimizing the entire cost of all EVs which perform charging.



Chapter 3

Load Forecasting Models

In this chapter, different load forecasting approaches and the significance of load

forecasting for EVs charging scheduling are presented. Furthermore, load forecast-

ing models are also discussed in detail.

3.1 Load Forecasting Approaches

Buying and producing electric power and infrastructure advancement plays vital

role in making important decision. These decisions are become easy with the help

of forecasting electric load. The focus of forecasting load is to estimate the future

load demand. This requires the precise prediction of the magnitude of electric

power load for the different phases of the planning perspective. Forecasting of

load demand is considered as one of the serious aspects for cost of operation of

power systems. As control operation could save the maximum amount of savings

which is achieved by precise load forecasting. Due to forecasting errors (either

positive or negative) results in increased operating cost.

The goal of most research target towards the estimating EVs charging demand

pattern. This grouped the EVs charging configuration into charging load estima-

tion and charging pattern identification. The several categories of approaches and

models are comprised in the literature. On the basis of time perspective, load

35
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forecasting can be generally distributed into three groups which base on duration

of time which are following:

• Short term load forecast (1 hour to 1 week)

• Medium term load forecast (1 month to 1 year)

• Long term load forecast (1 year to 10 years)

3.2 Significance of Load Forecasting for Electric

Vehicles Charging Scheduling

The world especially developed countries are shifting rapidly from fossil fuels au-

tomobiles to EVs. There is expectation of increase in number of EVs all over the

world. A reliable mechanism of EV charging will be necessary for its effective

integration into the power system, which is necessary for stability and reliability

of power system. Uncontrolled method of EVs charging causes huge deviation

in electrical grid which affects the power quality of power system. As a result

high energy consumption, high load peaks and degradation of power quality is

occurring. Scheduling and forecasting are mainly used to control and minimize

the impact of these following mentioned factors.

In forecasting approaches, error avoidance and network stability are crucially re-

liant on the forecasting of the everyday load demand. The precision of the EV

charging forecast is necessary for development and management. The performance

of a very precise forecasting model will support the improvement of EV charging

and inspire productions to encourage the usage of EVs.The stability of the power

grid and guarantee the balance between the electricity supply and demand is

achieved by appropriate scheduling of EV charging.
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3.3 Selection of Data Set

The data is used in load forecasting as input, the data are survey data and metering

data. The data set is taken from ISO intended for the years 2004 to 2008. The data

set which is used in following thesis consist of historical load data hourly based

and information regarding weather conditions. There is high correlation between

the weather and load demand in area. The demand of electricity increases when

there is drop of temp below 10 degree in order to fulfill the heating requirements.

Whereas, the demand of electricity increases when there is increase of temp beyond

23 degree in order to fulfill the cooling requirements. The weather conditions

comprise of dry bulb and dew point temperature. Whereas the historical data

include average load of previous day, load of previous day of same hour and load

of previous week of same day and same hour. Other input data for load forecasting

is hour of such day and day of that week.

To create the load forecast model, following 3 steps are used which is given below.

• Create a matrix for load prediction which is based on historical data such as

weather condition and electrical load.

• Design a load forecasting model such as linear regression, bagged tree re-

gression and neural network.

• Produce forecast load of coming day, week or month on the basis of historical

data.

The data set is split into following sets which are given below.

• Training Set (from 2004 to 2007)

• Test set (data of 2008)

Training set is used for constructing the model to approximate the parameters of

system. The performance of models is validating on data from test. Afterwards

models are built on data from training data set for forecasting the load.
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The models are verified by data of test set ensure the performance of following

load forecasting models used. After forecasting the load, compare the actual load

with forecasted load to find the forecasting error of models used in following thesis.

In order to validate the performance of forecasted model mean square error (MSE),

mean absolute percent error (MAPE) and daily peak error in forecasted load has

been checked.

The models for load forecasting used in following thesis are given below. This

would be discussed in detail one by one. The section is ended by giving the

methods that is used for load forecasting.

• Linear regression model

• Bagged tree regression model

• Artificial Neural network

3.4 Linear Regression Model

In following section, a detailed explanation about the linear regression algorithm

is given. Linear regression modeling approach is used for understanding the rela-

tionship between a continuous dependent variable ‘y’ and one or more independent

variable x1, x2, . . . ..xn.

The aim in linear regression approach is to recognize a function that describes

a close correlation between these variables so that the values of the dependent

variable can be estimated by series of independent variables.

In linear regression technique for load forecasting, the independent variable for

load is found as weather condition such as dry bulb and dew point temperature

with historical data of load. These values have direct effect on electrical load. The

load forecasting model by using linear regression approach is stated in the form

as.

y = β0 + β1x1 + β2x2 + ....βkxk + e (3.1)
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where y represents the load, xi represents the affecting features, βi represents the

parameters of regression with respect to xi, and e represents the error value in

above relation. The mean of error value is zero with constant variance.

Meanwhile, βi parameter are unknown, by observing y and xi they should be pre-

dicted. Let bi (i=0,1,2,. . . ..k) be predicted in form of βi (i=0,1,2,. . . k). Therefore

the predicted value of y is given below:

ŷ = b0 + b1x1 + b2x2 + ....bkxk (3.2)

On average the difference between the forecasted values of load ŷ and real value

of load y would tend to zero. So it is assumed that the value of error term

in Equation (3.1) has an expected or average value of zero if the PDF for the

dependent variable y at different level of the independent variable are normal

distributed like bell shaped. Therefore we eliminate the error value in calculating

forecasted parameters. Afterwards, to minimize the sum of squared residual values

is estimated by least square estimation to obtain the parameter bi which are given

below.

B = [b0 b1 b2....bk]T = (XTX)−1XTY (3.3)

In above expression X and Y are the column vector and matrix:

y =


y1

y2
...

yn

 AND X =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
... . . . . . . . . .

...

1 xn1 xn2 . . . xnk


The following model is ready to use for forecasting the load values after these

parameters are calculated. Afterwards, by considering that all the values of inde-

pendent variable are estimated correctly hence the standard error will be less. For

obtaining standard error the equation is given below.

s =

√
SSE

n− (k + 1)
(3.4)
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SSE =
∑

(yi(t)− ŷi(t))2 (3.5)

where yi(t) is observed value and ŷ(t) is estimated value.

R2 = 1−

n∑
i=1

(yi(t)− ŷi(t))2

n∑
i=1

(yi(t)− yi(t))2
(3.6)

where yi(t) is the average value of y(t).

3.5 Bagged Regression Tree Model

A regression tree is a non-parameter statistical classification and regression ap-

proach which is also known as automatic classifier. This technique is planned for

improvement in stability and accuracy of machine learning algorithms. This ap-

proach is used to increase the predictive performance of base model e.g. decision

trees or those approaches that do flexible selection and fitting in linear model.

Bagged regression tree model is a kind of aggregated bootstrap in which the out-

put from a recent step is feds input to the present step. In conventional neural

networks, every input and output is independent of each other, yet in scenarios

like when it is necessary to estimate the next word of the sentence, the recent

words are needed and hence there is a need to remember the previous words.

By creating the linear combination of fitting model and merging with several pre-

dictors instead of using a single fit model. For a learning phase sample consist of n

number of historical cases (x1, y1), (x2, y2), . . . .(xn, yn) where x is the independent

variable with m-dimensional vector, and y is the parallel response variable having

numerical value, hence regression tree is tree kind of structure.

The tree is made up by dividing the recurring splits of subsets into two more

successor subsets on the basis of sample input variable. Each split is an review

about the input variable which points to left and right successor subsets on the

basis of ‘yes’ or ‘no’ respectively. Since tree regression approach only deals with

the discrete values, the function is discretized into vectors of input and output
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variable in the domain.

Meanwhile for output function, bagged regression tree model is used. On the ba-

sis of this regression tree a model is built, which have set of regression trees each

having different set of instructions for execution of non-linear regression.

The mechanism starts with the structure of 20 such trees with a least leaf size of

40. The larger size of leaf gives smaller tree size. Which manage the over fitting

of data and performance. Afterwards analyzing the model parameters, model is

finalized with the collection of 20 trees and leaf size of 15 having all the features.

Fig 3.1 is the regression tree of load forecasted model.

Figure 3.1: Bagged Tree Regression.

The model also defines the relative feature (input) of significance which gives the

most predictive power for the predictors. In Fig 3.2 relative significance of the

features is given. As it’s clearly seen that the ‘IsWorkingDay’ and ‘drybulbtem-

perature’ features have most significance among all features.
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Figure 3.2: Significance of Features.

3.6 Artificial Neural Network

ANN have very large number of applications due to their ability of learning. ANN

has the ability to overcome the dependence on a functional form of a load fore-

casting model. There are several types of neural network multi-layer perceptron,

self-organizing networks etc. There is an input layer, a hidden layer and an output

layer in ANN. There are different input features in input layer, hidden layer have

many neurons. Input are multiplied by weights (ωi) which are added to threshold

(θ) to make an inner product number. The key benefit is that most of forecasting

approaches regarding neural network do not need a load model. Though, in train-

ing phase neural networks usually takes a lot of time. Artificial neural network is

fully connected feed forwarding neural network. Where input and hidden layers

are connected to output unit which is linear functions through weights. After-

wards linear equations are solved for these output weights. For the optimization

of output weights, a back propagation method is used for each iteration on training

data samples. The transfer function for output layer is a Levenburg-Marquardt
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fitness function that use weighted sum of input layer and the bias as shown Fig

3.3. In proposed ANN architecture, sigmoid activation function is used in order

to compute the output of hidden layer whereas linear function is used in order to

compute the output of input layer.

Figure 3.3: Choosing a Training Algorithm.

For load forecasting Equation (3.7) is used.

Output =
m∑
j=1

(
2vj

1 + e−2(
n∑

i=1

wijxi)− Tj
− Tout (3.7)

Where vj (j=1, 2, m) and Tout represents the weight and bias value of the out-

put layer neuron respectively. The weights and bias of each neuron are modified

through iterative training of input data with a goal to find lesser forecast error. The

load forecasting model is initializes with 20 neurons in hidden layer with 8 input

features. The training period became shorter due to use of Levenburg-Marquardt

fitness function. The whole dataset is divided into 3 sets; a 70% training set, 15%

validation set and 15% is the remaining test samples as shown in Fig 3.2.

Figure 3.4: Distribution of Data Set.
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In Fig 3.4 Neural network is presented, which is used for load forecasting in follow-

ing thesis with 8 input features, 20 neurons and an output layer in hidden layer.

(Fig 3.4)

Figure 3.5: Neural Network.

Though, ANN is the best technique for load forecasting due to the reason of self-

learning abilities. Whereas ANN implementation is complex and it requires large

historical data for training and for least mean square error.



Chapter 4

Mathematical Modeling for

Electric Vehicle Charging and

Scheduling

This chapter is devoted to the mathematical modeling for optimal EVs charg-

ing scheduling. The modeling for optimizing energy consumption for EVs before

charging and problem constraint are presented. Furthermore, the modeling for

optimizing the charging cost during all day is also discussed in this chapter.

4.1 Mathematical Modeling for Optimal Electric

Vehicles Charging and Scheduling

In recent future, there is expectation of large number increase in sales and de-

velopment of EVs that’s the main reason of importance and challenge is about

the improvement in the development of the charging infrastructures as well as the

charging methods and their management during charging process.

To mitigate the influence of uncontrolled method of charging on power grid, an in-

directly controlled method of charging is proposed. Indirectly controlled charging

approach controls the system parameters such as charging power of EVs, energy

45
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price and charging cost which may affect the charging process. Aim of indirectly

controlled charging method is to see the user’s perspective as well as grid perspec-

tive for its stability.

The major hurdle for EV driver is where and when they should charge their vehicle

by satisfying all constraints. It’s not always important that the nearest charging

station is suitable some other factors also affects such as traffic conditions and

number charging point at respective charging station.

There is need of a smart scheduling system which can optimally schedule the

charging pattern of EVs. As a result load profile of electrical system flattened

efficiently. Hence the aim of minimizing the operational cost could be achieved.

This is very important step towards smart grid implementation.

In following thesis there are two methods are adopted for optimal EVs charging

scheduling to achieve the respective goal. These approaches are given below.

• Optimized energy consumption for EVs while reaching respective charging

station.

• Optimized charging cost of all EVs during all day.

4.2 Modeling for Optimized Electric Vehicles

Scheduling

In order to solve the problem with linear programming we consider some assump-

tions which are given below:

• There is limited number of EVs and limited number of charging stations.

• All these EVs are of same features.

• All CS have same features.

• Each CS assign to EV is according to number of charging points availability.
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In order to consider these assumptions we proceed to model the problem with op-

timal solution which have linear equations and problem constraints. Afterwards

we define some system parameters which are given in list of symbols. Our aim is

to maximize the objective function by considering these system parameters.

The relationship between vehicle speed and traffic density is proposed by Green-

shield in [58]. In presented relationship there is proportionality between vehicle

speed and traffic density. The following relationship is presented in Equation (4.1)

given below.

V = Vref(1− V ehd
Trjam

) (4.1)

As there is number of vehicles and CS are more than one, therefore EVi and Sj

are considered for vehicles and CS respectively. So Equation (4.2) represents the

following condition.

V (i, j) = Vref(i, j)(1− V ehd(i, j)

Trjam(i, j)
) (4.2)

As traffic density is proportional to flow of vehicles. Such relationship is repre-

sented by Equation (4.3).

V ehd(i, j) =
V ehf low(i, j)

V (i, j)
(4.3)

The time required for EV to reach the CS can be calculated by Eq. 4.4.

T (i, j) =
d(i, j)

V (i, j)
(4.4)

The expression for vehicle density is given by Equation (4.5), which is obtained

by combining Equation (4.3) and (4.4).

K(i, j) =
V ehf low(i, j)T (i, j)

d(i, j)
(4.5)
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Equation (4.6) describing the relationship between vehicle speed, flow of vehicle,

time, distance from CS and traffic density. Which is obtained by manipulating

Equation (4.2) and (4.5).

V (i, j) = V ref(i, j)(1− V ehf low(i, j)T (i, j)

d(i, j)Trjam(i, j)
(4.6)

Equation (4.7) represents the expression under normal conditions the energy con-

sumption of EVs is directly proportional to distance of EV from CS d(i, j), battery

capacity C(i) and battery autonomy A(i).

Ecn(i, j) =
C(i)d(i, j)

A(i)
(4.7)

As presented in [59], final SOC is calculated according to initial SOC and energy

consumption while reaching the CS by keeping in view the speed variation due to

traffic conditions. Equation (4.8) represents our scenario, where dc(i, j) represents

the disturbed conditions of traffic.

SOCf (i, j) = SOCi(i, j)− Ecn(i, j)Y (i, j) (4.8)

With,

Y (i, j) = Vref(i, j)(1− V ehf low(i, j)T (i, j)

d(i, j)Trjam(i, j)
) (4.9)

Afterwards our objective is to find that value of SOCf when EV reaches the CS

it should be highest possible level. In simple words our goals are presented below.

• Reduce the energy needs of EV

• Keep the battery above the threshold level SOCmin

• Reduction of charging time

• Prevent waiting time in CS
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• Cost reduction of charging which is not that much affected from this objective

function.

Finally the aim to reach the CS ensure to maximize the objective function Y which

represents by Equation (4.10)

Y =
n∑

i=1

m∑
j=1

SOCf (i, j)x(i, j) (4.10)

4.3 Problem Constraints

The system has several constraints which is represented by following linear equa-

tion and given below.

• For i=1,2,. . . .n
m∑
j=1

x(i, j) = 1 (4.11)

Eq. 4.11 explained that each EVi should be assigned to one CSj at given

time.

• For j=1,2,. . . m
n∑

i=1

x(i, j) ≤ nij (4.12)

Above constraint explained that the each CS Sj should not entertain more

than nj EVs at same time. Whereas nj represents the charging point in CS.

• Equation (4.13) represents the final SOC of EV should not go down from

threshold which is SOCmin.

SOCf (i, j) ≥ SOCmin (4.13)

where, SOCmin is the threshold value of SOC which is 30kwh
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Afterwards, a communication framework is presented in Fig. 4.1.

Figure 4.1: Communication Framework for Scheduling .

4.4 Modeling for Optimizing Charging Cost

during all Day

The following method of CS is mostly functional at residential locations such

homes, office parking and shopping malls, where EV charge with little amount of

current to utilize the free time. As indicated by the everyday behaviors of the

client, the highest demand of a typical CS usually begins in the time off duty and

keeps going to midnight.

After examine the battery charging during a day, it is evenly distributed into group

of intervals which is represented by N. The size of such interval is represented by

τ . The charging power of EVs in defined interval will remain same. In following

thesis we split the day equally into 24 intervals with each interval of 1 hour. Fig.

4.2 represents the division of interval and charging period of mth EV.
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Figure 4.2: EVs Charging Duration.

The group of EVs which perform charging during respective interval is represented

by M. This group consists of those numbers of vehicles which require charging. The

charging power of EVs is represented by xmi where m represents those EVs which

perform charging and i represent the interval. During the charging of EVs this

condition xmi ≥ 0 must be satisfied to confirm that battery does not discharge

that time.

The entrance time of EVs in charging station is the time when EV starts charging.

On the other hand the departure time is the time when EV stops charging. The

charging period of EVs in N interval is represented by Tm, that time required for

EV to be charged. The initial energy of EVs battery is represented by Ein, this

is the condition of EVs battery before charging starts. Whereas final energy of

EVs battery is represented by Ef in, this is condition of EVs battery after charging

completes. The final energy of EVs battery should not exceed the battery capacity

of EV. Equation (4.14) represents the final energy ratio.

γq =
Ef in

Ec

(4.14)

The CS detects the entrance time, initial battery energy and capacity of EV bat-

tery before EV starts charging. Afterwards the departure time and final ratio of

energy is provided to user before the charging starts. Period of charging is deter-

mined by the difference of entrance time and departure time. A charging-interval

matrix is present which describe the relationship between the charging events and

intervals. The charging-interval matrix is represented by G which is defined as:
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Gqi =

1 if interval i falls wihin the charging period

0 otherwise

(4.15)

In the following thesis the model is used for scheduling the charging of EVs is for

small geographic area. For real time pricing two assumptions are made which are

given below:

• Power loses are very small hence negligible

• In transmission lines there is no congestion

These assumptions are made to keep the electricity price constant disregarding of

spatial variations. Therefore electricity price kept same for charging time interval

irrespective of CS location. So the optimization of EV charging is only temporal

based. The price of electricity is modeled as linear function of load which is given

below:

f(Lt) = k0 + k1Lt (4.16)

In above relation k0 is the intercept and k1 is the slope. These both values are

non-negative and should be real number and Lt is the total load. The total load

in ith interval comprises two parts.

• Lb is the base load which is total load in respective interval without EV

charging.

• Lc is the charging load which is the load of EVs charging in respective in-

terval.

The base load Lb is assumed to be constant in respective interval. Whereas charg-

ing load of EVs is given by Equation (4.17).
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Lc =
∑
q∈Q

xqigqi (4.17)

The charging load is considered to be positive if the load from grid to the EVs

batteries is greater in respective interval. Hence the total load is given by Equa-

tion (4.18).

LT i = Lbf + Lc (4.18)

As the assumption is total base load and charging power in respective interval is

constant, therefore total load in respective interval is constant. In following thesis,

charging cost in respective interval is represented by Ci, which refers to the total

amount that EV users pay for charging in respective interval. The charging cost

in respective interval is based on price model which is linear function of load and

is given by Equation (4.19).

Ci =

∫ LT i

Lb

(k0 + k1LT )dLT = (k0LT i+
k1
2

(LT i)
2)− (k0Lbf +

k1
2

(Lbf)2) (4.19)

In order to find optimal schedule system for EVs charging during respective interval

which is 24hrs. Following assumptions are made which is given below:

• Entrance and departure time of each EV in respective interval is known.

• Initial and final energy of each EV in respective interval is known.

• Base load of each interval during all day is known.

• There is central controller required which gather these information after-

wards perform optimization for EV charging scheduling.

The total cost is calculated by adding charging cost in each interval over N inter-

vals. Equation (4.20) is used to represents the total cost during all day.
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CT =
∑
i∈N

Ci =
∑
i∈N

((k0LT i+
k1
2

(LT i)
2)− (k0Lbf +

k1
2

(Lbf)2)) (4.20)

The scheduling optimization problem is defined as to minimize the total cost of

EVs charging during N intervals in a day. This respective problem is solved by op-

timizing the total load and charging power EVs subject to the correlation between

total load in respective interval and charging power of single EV, the instantaneous

energy constraint, the final energy constraint, and the lower limit and upper limit

of charging power. Mathematically the optimization problem is states as given

below:

∑
i∈N

((k0LT i+
k1
2

(LT i)
2)− (k0Lbf +

k1
2

(Lbf)2)) (4.21)

LT i = Lb +
∑
q∈Q

xqigqi, ∀ i ∈ N (4.22)

0 ≤ Ein+
∑
k∈H

τxqkgqk ≤ Ec, ∀ q ∈ Q (4.23)

Ein+
∑
i∈N

τxqigqi ≥ γqEc, ∀ γ ∈ Q (4.24)

0 ≤ xqi ≤ Pmax, ∀ q ∈ Q, ∀ i ∈ N (4.25)

Equation (4.21) represent the objective function which has to be minimized the

total cost of EVs charging. Afterwards Equation (4.22) represents the correlation

between total load and charging power of single EV, Equation (4.23) represents

the instantaneous energy constraint which is the required limit at the end of inter-

val that should not be 0 or not greater than battery capacity of EV, and Equation

(4.24) represents the final energy constraint which is the minimum requirement of

EV charging which is given by Equation (4.26).

Ef in = Ein+
∑
i∈N

qigqi (4.26)

Equation (4.25) represents the lower limit 0 and upper limit Pmax of the charging

power of the EVs in respective interval. In the following optimization problem,

the objective function is convex with subject to linear constraints.
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Simulations and Results

In this chapter, results are presented for an optimal scheduling model for charging

of EVs is used which goals to minimize the total cost by optimizing the charging

power of EVs. The following optimizing depends on future base load which is

forecasted by using three different models. A detailed comparison of performance

of these forecasting models is offered. On the basis of these results, the goal

of optimum scheduling for EVs charging is achieved. Afterwards results for the

second phase of this thesis is presented which aims to reach the respective CS with

less energy consumption by considering the disturb conditions of traffic.

5.1 Load Forecasting Results

There are following three models are used for forecasting such as ANN, bagged

tree regression and linear regression which is used in optimizing the EVs charging

scheduling by minimizing the cost. In following section the load forecasting results

are divided into three parts which are following:

• Load forecast for day ahead.

• Load forecast for coming week.

• Load forecast for coming month.
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There are three parameters are used to check the performance of forecasting models

and validate the prediction accuracy. The parameters are mean average error

(MAE), mean average percent error (MAPE) and Daily Peak MAPE.

5.1.1 Load Forecast for Day Ahead

Comparison of forecasted load with actual base load for day ahead is presented in

this section. Fig. 5.1 represents the predicted load and actual base load by using

linear regression technique.

Figure 5.1: Daily Load using Linear Regression.

Fig. 5.2 represents the predicted load and actual base load by using bagged tree

regression technique.
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Figure 5.2: Daily Load using Tree Regression.

Fig. 5.3 represents the predicted load and actual base load by using ANN tech-

nique.

Figure 5.3: Daily Load using ANN.
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Table 5.1: Daily Prediction Error.

Forecasting Models MAE (Kwh) MAPE (%) Daily Peak MAPE(%)

Neural Network 16.09 1.24 1.55

Tree Regression 45.55 3.2 5.11

Linear Regression 51.81 5.14 7.23

The outcomes of errors for day ahead load forecast are present in Table 5.1.

5.1.2 Load Forecast for Coming Week

Comparison of forecasted load with actual base load for coming week is presented

in this section. Fig. 5.4 represents the predicted load and actual base load by

using linear regression technique.

Figure 5.4: Weekly Load using Linear Regreesion.

Fig. 5.5 represents the predicted load and actual base load by using bagged tree

regression technique.
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Figure 5.5: Weekly Load using Tree Regression.

Fig. 5.6 represents the predicted load and actual base load by using ANN tech-

nique.

Figure 5.6: Weekly Load using ANN.
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Table 5.2: Weekly Prediction Error.

Forecasting Models MAE (Kwh) MAPE (%) Daily Peak MAPE(%)

Neural Network 7.82 1.04 1.18

Tree Regression 33.14 3 3.78

Linear Regression 49.08 5.02 5.38

The outcomes of errors of load forecast for coming week are present in Table 5.2.

5.1.3 Load Forecast for Coming Month

Comparison of forecasted load with actual base load for coming month is presented

in this section. Fig. 5.7 represents the predicted load and actual base load by using

linear regression technique.

Figure 5.7: Monthly Load using Linear Regression.

Fig. 5.8 represents the predicted load and actual base load by using bagged tree

regression technique.
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Figure 5.8: Monthly Load using Tree Regression.

Fig. 5.9 represents the predicted load and actual base load by using ANN tech-

nique.

Figure 5.9: Monthly Load using ANN.
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Table 5.3: Monthly Prediction Error.

Forecasting Models MAE (Kwh) MAPE (%) Daily Peak MAPE(%)

Neural Network 5.03 0.94 1.09

Tree Regression 21.6 2.01 2.34

Linear Regression 47.13 4.53 3.33

The outcomes of errors of load forecast for coming month are present in Table

5.3. Afterwards, analyzing the results obtained from these forecasting models it

can be assume that ANN gives better result than rest of two forecasting model.

ANN forecasting took time because there is training phase but converges in less

time than bagged tree regression due to statistical approach of ANN model. Cost

reduction after applying the algorithm is presented in Fig. 5.10.

Figure 5.10: Cost Reduction.

5.2 Error Distribution of Forecasting Models

The distributions of forecasted errors are presented in Fig. 5.11 - Fig. 5.13 for

linear regression, bagged tree regression and ANN respectively.
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Figure 5.11: Error Distribution using Linear Regression.

Figure 5.12: Error Distribution using Tree Regression.
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Figure 5.13: Error Distribution using ANN.

The most satisfactory error distributions are observed for ANN as compared to

rest of two forecasting models. Performance of bagged tree regression is moderate

as seen in error distribution plot. Whereas, the error distribution is more flattened

and asymmetrical for linear regression.

5.3 Result for Cost Optimization for Electric

Vehicles Charging Scheduling

The EV charging is examined for 24 hours during a day. The 24 hours are equally

divided into 1 hour interval. The base load and forecasted load is discussed in

above section in detail. The unit for electricity price is dollar ($)/Kwh.

5.3.1 System Parameters

Ford car is considered for the study. The system parameters are given below.

Battery capacity = 33 Kwh

Charging Power = 6.6 Kw
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No of vehicles = 100,200

Charging period = 4-12 hours

Initial energy of EVs = 0-80

On the basis of load forecasting results in previous section are used for EV charging

scheduling. A detailed comparison is presented between actual and predicted load

by using three different forecasting models.

Fig. 5.14 represents a comparison of charging load (EVs load only) for 100 and 200

no of vehicles. The charging load in each interval is observed. Whereas decreases

in EV charge demand is seen between 15-20 hour intervals. Hence this time is

utilized for shifting the charging load to these intervals.

Figure 5.14: Variation of Charging Load.

The optimization of EVs charging requires precise information about base load

and arrival of cars. The arrival of EVs uniformly distributed over entire interval

seems to be impractical.

Therefore, arrival of EVs is considered to be poisson process which is near to prac-

tical scenario. The forecasted base load is selected among linear regression, bagged

tree regression and artificial neural network. The comparison between actual base
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load and predicted base load. The values obtained from artificial neural network is

selected due to least mean absolute percent error among rest of forecasting models.

We compare three charging scenarios: 1) The scenario in which the arrival of EVs

are uniformly distributed over the interval: 2) The charging scenario in which the

arrival of EVs is modeled as poisson process to meet the real scenario: 3) The

charging scenario for EVs in which there is equal allocation of charging power is

allotted on the basis of following criteria.

• Price for EV charging is considered from previous day in an interval.

• The charging power in ith interval for EVs remains constant.

Fig. 5.15 shows the comparison of charging power of EV3 and EV7. An equal

allocation of charging is achieved by solving the optimizing problem.

Figure 5.15: Variation of Charging Power of EV3 and EV7.
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Table 5.4: A Comparison of Optimal Cost.

Forecasting Models No of Veh Optimum Price Total Charged Energy (Kwh)

Neural Network 100 245.827 1729.48

200 483.042 3242.21

Tree Regression 100 226.297 1577

200 505.194 3404.59

Linear Regression 100 237.631 1655.24

200 488.77 3253.79

Afterwards, solution of optimizing problem gives the min base price and max base

price 0.112932 and 0.174356 respectively. Table 5.4 presents the detail comparison

of minimum cost by using three models for predicting load.

5.4 Result for Electric Vehicles Scheduling to a

Charging Station

In order to analyze the approach that used in this thesis for assigning charging

stations to EVs with less amount of energy consumption Fig. 5.16 is considered

with 5 charging stations and 10 EVs in area with less amount of traffic and high

density traffic. Each CS has 2 charging points. The group of EVs which perform

charging during respective interval is represented by M. This group consists of

those numbers of vehicles which require charging. The charging power of EVs is

represented by xmi where m represents those EVs which perform charging and i

represent the interval. During the charging of EVs this condition xmi ≥ 0 must

be satisfied to confirm that battery does not discharge that time.

The entrance time of EVs in charging station is represented by tentm , this is the time

when EV starts charging. On the other hand EVs departure time is represented

by tdepm , this is time when EV stops charging. The charging period of EVs in N

interval is represented by Tm, that time required for EV to be charged. The initial

energy of EVs battery is represented by Ein, this is the condition of EVs battery



Simulation and Results 68

before charging starts. Whereas final energy of EVs battery is represented by

Ef in, this is condition of EVs battery after charging completes.

Figure 5.16: A Geographic Area with EVs and CS.

There are two conditions to be considered which are following:

• Reference speed for EV is 40 Km/h, vehicle flow is 400 veh/h, and traffic

density between EV and CS is 60. These conditions are considered for CS1-

CS2.

• Reference speed for EV is 60 Km/h, vehicle flow is 300 veh/h, and traffic

density between EV and CS is 40. These conditions are considered for CS3-

CS5.

The initial SOC of battery and distance of EVs from each charging station is

presented in Table B.1. The obtained results of energy consumption and final

SOC for EV1 without traffic and with disturbed traffic condition as well is given

in Table 5.6.

Fig. 5.17 shows the results for EV1 travelled distance to CS’s. It has been observed

that the shortest distance for EV1 is CS1 but CS2 is assigned to EV1 by satisfying
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Table 5.5: Consumed Energy and Final SOC for EV1.

Result of EV1/Si S1 S2 S3 S4 S5

Ecn[Kwh] without 0.347368421 0.607894737 0.868421053 0.781578947 0.521052632

Ecn[Kwh] with 9.263157895 1.157894737 26.31315789 21.10263158 5.471052632

SOCf without 59.65263158 59.39210526 59.13157895 59.21842105 59.47894737

SOCf with 50.73684211 58.84210526 33.68684211 38.89736842 54.52894737

all the constraints. Energy consumption and final SOC of all EVs are presented

in Appendix B.

Figure 5.17: Energy Consumption of EV1 with respect to CS’s.

Whereas Table B.3 presents the optimal solution of EVs assignment to CS. After-

wards following goals are achieved which are given below:

• All EVs are assigned to CS.

• The number of EVs are not exceeded in all CS.

• All EVs reached to assign CS with maximum SOC.
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Conclusion and Future Work

In this thesis, an optimization problem is addressed for EV charging and assign-

ment management of EVs to the CS among set of CS’s in selected geographic

area. In first phase a scheduling problem is considered for EV charging in which

the charging powers of EVs are optimized to minimize the total cost in 24 hrs

interval. However, optimal scheduling scheme for EVs charging required the base

load of a day in advance. For load forecasting three models is used e.g. linear

regression, bagged tree regression and ANN. The comparison of these techniques

is presented in detail. In second phase, the assignment problem of EVs to CS’s is

modeled as linear programming with some constraints to satisfy.

6.1 Conclusion

After evaluating the results achieved through simulations of both EVs charging

and assignment management, this whole work is concluded in the subparagraph

as follows;

In first phase thesis the numbers of EVs is varying from 100 to 200 and then com-

pare total cost, charging power of EVs and base load by using above mentioned

forecasting techniques. Afterwards, by analyzing the results of load forecasting

70



Conclusion and Future Work 71

models the prediction is highly depended on consistent historical load and tem-

perature data. The ANN model is compared with linear regression and bagged

tree regression model. Hence ANN model is founded to give more accurate with

less mean absolute error for daily, weekly and monthly forecasting load. On the

basis of load forecasting cost of electricity has been modeled as linear function of

forecasted load. The optimal scheduling scheme is scalable but shows resistance

towards random arrival of EVs which may lead for future work. Through which

the performance of optimal scheduling become closer to practical example.

In second phase of thesis the assignment problem of EVs to CS has been con-

sidered which has been solved by linear programming in order to satisfy all the

constraints. Hence satisfying all the constraints all EVs should reach the CS by

consuming less amount of energy or after reaching the CS its battery final SOC

has been at highest possible level. For the optimal assignment of EVs to CS two

cases has been considered: under normal condition of traffic and disturb condition

of traffic. Under normal condition vehicle density, traffic jam, and driver behavior

has been neglected on the other hand under disturb condition these all parameters

has been took into account. A comparative study has been carried out between

these two cases and presented in Table B.2. After analyzing the results presented

in Table B.2 the final SOC under normal condition is greater than the disturbed

condition and energy consumption of EVs while reaching the CS in normal condi-

tion is less than the disturbed condition.

6.2 Future Work

The work presented in this thesis provides a foundation for several future works.

As three different models have been used for load forecasting, in future a hybrid

of these three models could be used to suppress the error more and achieve accu-

racy. Afterwards minimizing cost for EV charging considers an interval with fixed

number of EVs; in future the system could be designed for random arrival of EVs

by modification in optimization model.



Bibliography

[1] C.-F. Schleussner, J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E. M. Fischer,

R. Knutti, A. Levermann, K. Frieler, and W. Hare, “Science and policy char-

acteristics of the paris agreement temperature goal,” Nature Climate Change,

vol. 6, no. 9, p. 827, 2016.

[2] F. Birol et al., “World energy outlook 2010,” International Energy Agency,

vol. 1, no. 3, 2010.

[3] Z. Yu, M. Zhang, and J. Yang, “Design of energy management systems for

mobile power station of electric vehicles,” in 2009 International Conference

on Information Management, Innovation Management and Industrial Engi-

neering, vol. 4. IEEE, 2009, pp. 250–253.

[4] I. C. Change et al., “Mitigation of climate change,” Contribution of Working

Group III to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change, vol. 1454, 2014.

[5] D. Hermance and S. Sasaki, “Hybrid electric vehicles take to the streets,”

IEEE spectrum, vol. 35, no. 11, pp. 48–52, 1998.

[6] C. S. Lai, Y. Jia, Z. Xu, L. L. Lai, X. Li, J. Cao, and M. D. McCulloch,

“Levelized cost of electricity for photovoltaic/biogas power plant hybrid sys-

tem with electrical energy storage degradation costs,” Energy conversion and

management, vol. 153, pp. 34–47, 2017.

[7] C. S. Lai, Y. Jia, L. L. Lai, Z. Xu, M. D. McCulloch, and K. P. Wong, “A

comprehensive review on large-scale photovoltaic system with applications of

72



Bibliography 73

electrical energy storage,” Renewable and Sustainable Energy Reviews, vol. 78,

pp. 439–451, 2017.

[8] M. C. Falvo, D. Sbordone, I. S. Bayram, and M. Devetsikiotis, “Ev charging

stations and modes: International standards,” in 2014 International Sym-

posium on Power Electronics, Electrical Drives, Automation and Motion.

IEEE, 2014, pp. 1134–1139.

[9] Z. Wang and P. Liu, “Analysis on storage power of electric vehicle charging

station,” in 2010 Asia-Pacific Power and Energy Engineering Conference.

IEEE, 2010, pp. 1–4.

[10] B. George, Time Series Analysis: Forecasting & Control, 3/e. Pearson

Education India, 1994.

[11] L. Wei and Z. Zhen-gang, “Based on time sequence of arima model in the

application of short-term electricity load forecasting,” in 2009 International

Conference on Research Challenges in Computer Science. IEEE, 2009, pp.

11–14.

[12] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg, “Electric

load forecasting using an artificial neural network,” IEEE transactions on

Power Systems, vol. 6, no. 2, pp. 442–449, 1991.

[13] B.-J. Chen, M.-W. Chang et al., “Load forecasting using support vector ma-

chines: A study on eunite competition 2001,” IEEE transactions on power

systems, vol. 19, no. 4, pp. 1821–1830, 2004.

[14] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks for short-

term load forecasting: A review and evaluation,” IEEE Transactions on power

systems, vol. 16, no. 1, pp. 44–55, 2001.

[15] G. Kissel, “Sae j1772 update for ieee standard 1809 guide for electric-sourced

transportation infrastructure meeting,” SAE International, 2010.

[16] M. H. Amini, A. Kargarian, and O. Karabasoglu, “Arima-based decoupled

time series forecasting of electric vehicle charging demand for stochastic power



Bibliography 74

system operation,” Electric Power Systems Research, vol. 140, pp. 378–390,

2016.

[17] M. Yilmaz and P. Krein, “Review of charging power levels and infrastructure

for plug-in electric and hybrid vehicles and commentary on unidirectional

charging,” in IEEE International Electrical Vehicle Conference, 2012.

[18] N. Lu and J. Zhou, “Particle swarm optimization-based rbf neural network

load forecasting model,” in 2009 Asia-Pacific Power and Energy Engineering

Conference. IEEE, 2009, pp. 1–4.

[19] H. Wang and W.-l. Chang, “Load forecasting for electrical power system based

on bp neural network,” in 2009 First International Workshop on Education

Technology and Computer Science, vol. 1. IEEE, 2009, pp. 702–705.

[20] Y. Zhangang, C. Yanbo, and K. E. Cheng, “Genetic algorithm-based rbf

neural network load forecasting model,” in 2007 IEEE Power Engineering

Society General Meeting. IEEE, 2007, pp. 1–6.

[21] W. Mendenhall, T. Sincich, and N. S. Boudreau, A second course in statistics:

regression analysis. Prentice Hall Upper Saddle River, NJ, 1996, vol. 5.

[22] M. Q. Raza and A. Khosravi, “A review on artificial intelligence based load

demand forecasting techniques for smart grid and buildings,” Renewable and

Sustainable Energy Reviews, vol. 50, pp. 1352–1372, 2015.

[23] Z. Yang, K. Li, and A. Foley, “Computational scheduling methods for inte-

grating plug-in electric vehicles with power systems: A review,” Renewable

and Sustainable Energy Reviews, vol. 51, pp. 396–416, 2015.

[24] K. Andrej, B. Janez, and K. Andrej, “Introduction to the artificial neural net-

works,” Artificial Neural Networks-Methodological Advances and Biomedical

Applications, 2011.

[25] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series

analysis: forecasting and control. John Wiley & Sons, 2015.



Bibliography 75

[26] J. Vermaak and E. Botha, “Recurrent neural networks for short-term load

forecasting,” IEEE Transactions on Power Systems, vol. 13, no. 1, pp. 126–

132, 1998.

[27] M. T. Hagan and S. M. Behr, “The time series approach to short term load

forecasting,” IEEE Transactions on Power Systems, vol. 2, no. 3, pp. 785–791,

1987.

[28] A. Lahouar and J. B. H. Slama, “Day-ahead load forecast using random forest

and expert input selection,” Energy Conversion and Management, vol. 103,

pp. 1040–1051, 2015.

[29] M. Alizadeh, A. Scaglione, J. Davies, and K. S. Kurani, “A scalable stochastic

model for the electricity demand of electric and plug-in hybrid vehicles,” IEEE

Transactions on Smart Grid, vol. 5, no. 2, pp. 848–860, 2013.

[30] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE

Transactions on power apparatus and systems, no. 10, pp. 1866–1876, 1968.

[31] G. Juberias, R. Yunta, J. G. Moreno, and C. Mendivil, “A new arima model

for hourly load forecasting,” in 1999 IEEE Transmission and Distribution

Conference (Cat. No. 99CH36333), vol. 1. IEEE, 1999, pp. 314–319.

[32] J. Wu, J. Wang, H. Lu, Y. Dong, and X. Lu, “Short term load forecasting

technique based on the seasonal exponential adjustment method and the re-

gression model,” Energy Conversion and Management, vol. 70, pp. 1–9, 2013.

[33] F. Yu and X. Xu, “A short-term load forecasting model of natural gas based

on optimized genetic algorithm and improved bp neural network,” Applied

Energy, vol. 134, pp. 102–113, 2014.

[34] Y. Mu, J. Wu, N. Jenkins, H. Jia, and C. Wang, “A spatial–temporal model

for grid impact analysis of plug-in electric vehicles,” Applied Energy, vol. 114,

pp. 456–465, 2014.



Bibliography 76

[35] K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of load demand due to

ev battery charging in distribution systems,” IEEE Transactions on Power

Systems, vol. 26, no. 2, pp. 802–810, 2010.

[36] Z. Luo, Y. Song, Z. Hu, Z. Xu, X. Yang, and K. Zhan, “Forecasting charging

load of plug-in electric vehicles in china,” in 2011 IEEE Power and Energy

Society General Meeting. IEEE, 2011, pp. 1–8.

[37] B. Norment, “The energy independence and security act of 2007,” 2011.

[38] R. Shankar, J. Marco, and F. Assadian, “Design of an optimized charge-

blended energy management strategy for a plugin hybrid vehicle,” in Pro-

ceedings of 2012 UKACC International Conference on Control. IEEE, 2012,

pp. 619–624.

[39] L. Y. G. Q. Bin, Y. and Z. Peng, “Multi-information integrated trip specific

optimal power management for plug-in hybrid electric vehicles,” in American

Control Conference. IEEE, 2009, pp. 4607–4612.

[40] D. S. C. H. K. F. Moura, Scott J. and J. L. Stein, “mpact of battery sizing

on stochastic optimal power management in plug-in hybrid electric vehicles,”

IEEE International Conference on Vehicular Electronics and Safety, pp. 96–

102, 2008.

[41] S. H. T. A. Ahmad Pesaran, T. Markel and D. Howell, “Battery requirements

for plug-in hybrid electric vehicles - analysis and rationale,” Proc. Int. Elect.

Veh. Symp., Anaheim, pp. 2–5, 2007.

[42] A. Senart, S. Kurth, and G. Le Roux, “Assessment framework of plug-in

electric vehicles strategies,” in 2010 First IEEE International Conference on

Smart Grid Communications. IEEE, 2010, pp. 155–160.

[43] B. Zhao, Y. Shi, and X. Dong, “Pricing and revenue maximization for bat-

tery charging services in phev markets,” IEEE Transactions on Vehicular

Technology, vol. 63, no. 4, pp. 1987–1993, 2013.



Bibliography 77

[44] C. Gerkensmeyer, M. C. Kintner-Meyer, and J. G. DeSteese, “Technical chal-

lenges of plug-in hybrid electric vehicles and impacts to the us power system:

Distribution system analysis,” Pacific Northwest National Lab.(PNNL), Rich-

land, WA (United States), Tech. Rep., 2010.

[45] E. Committee et al., “Ieee recommended practice for monitoring electric

power quality,” IEEE Std, pp. c1–81, 2009.

[46] G. Putrus, P. Suwanapingkarl, D. Johnston, E. Bentley, and M. Narayana,

“Impact of electric vehicles on power distribution networks,” in 2009 IEEE

Vehicle Power and Propulsion Conference. IEEE, 2009, pp. 827–831.

[47] L. Fulton, J. Ward, P. Taylor, and T. Kerr, Technology roadmap: Electric and

plug-in hybrid electric vehicles. OECD/IEA, 2009.

[48] J. Patten, N. Christensen, S. Srivastava, and G. Nola, “Wind charged plug-in

hybrid electric vehicle,” 2011.

[49] P.-Y. Kong and G. K. Karagiannidis, “Charging schemes for plug-in hybrid

electric vehicles in smart grid: A survey,” IEEE Access, vol. 4, pp. 6846–6875,

2016.
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Appendix A

A Comparison of Daily Load

Forecasting Models and Energy

Evolution of Electric Vehicles

during Journey

A comparison of daily load is presented in Table A.1 which is obtained by linear

regression, bagged tree regression and ANN. The energy evolution of EV1-EV5 is

presented in Fig. A.1 .

Figure A.1: Energy Evolution of EV1-EV5.

79
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Table A.1: Load Comparison between Forecasted Load and Actual Load.

LR TR NN Actual Load

12037 12325 12966 12930

11554 11899 12333 12311

11274 11802 11127 11805

11262 11765 11128 11629

11574 11880 11196 11674

12074 12234 11461 11972

12943 12792 12400 12433

13668 13404 12559 12744

14405 14221 13049 13370

14972 14874 14122 14246

15283 15147 15503 15042

15399 15271 15411 15672

15258 15248 15952 16064

14999 14928 15943 16053

14776 14682 15522 15960

14811 14761 15952 16047

15828 15413 16979 17033

16875 17007 17790 18190

16589 16794 17755 17964

16010 15873 17408 17450

15416 15711 16942 16708

14779 15020 15114 15580

13984 14161 14178 14186

13242 13091 12946 12960



Appendix B

Detail about Electric Vehicle with

Respect to Distance and System

Parameters

Initial SOC and distance of EVs from all CS is presented in Table B.1. Energy

consumption and final SOC under normal condition and disturbed condition is

presented in Table B.2 and Fig. B.1. Final assignment of EVs to respected CS is

presented in Table B.3.
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Table B.1: Initial SOC with respective CS Distances.

SOCi(EVi)/Sj Distance wrt S1 Distance wrt S2 Distance wrt S3 Distance wrt S4 Distance wrt S5

EV1: SOCi=60 2 3.5 5 4.5 3

EV2: SOCi=58 1 2 2.5 4 5.3

EV3: SOCi=51 5 4 3 6 2

EV4: SOCi=48 2 4 5 5.4 3

EV5: SOCi=54 2 6 3 5 4

EV6: SOCi=52 2.5 1 5 4 6.5

EV7: SOCi=56 4 2.5 6 5.2 7

EV8: SOCi=45 4.2 5 4 2 6.5

EV9: SOCi=49.5 5.7 2 6 4 6.7

EV10: SOCi=55 1 2 3.5 4.5 3
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Table B.2: Energy Consumption and Final SOC of each EVs.

Electric Vehicle Parameters o EVi S1 S2 S3 S4 S5
Ecn without 0.34 0.60 0.86 0.78 0.52

EV1 SOCf without 59.65 59.39 59.13 59.21 59.47
Ecn with 9.26 1.15 26.31 21.10 5.47

SOCf with 50.73 58.84 33.68 38.89 54.52
Ecn without 0.17 0.34 0.43 0.69 0.92

EV2 SOCf without 57.82 57.65 57.56 57.30 57.07
Ecn with 16.21 9.26 0.26 15.89 29.43

SOCf with 41.78 48.73 57.73 42.10 28.56
Ecn without 0.86 0.69 0.52 1.04 0.34

EV3 SOCf without 50.13 50.30 50.47 49.95 50.65
Ecn with 11.57 4.63 5.47 36.73 3.95

SOCf with 39.42 46.36 45.52 14.26 47.05
Ecn without 0.34 0.69 0.86 0.93 0.52

EV4 SOCf without 47.65 47.30 47.13 47.06 47.47
Ecn with 9.26 4.63 26.31 30.48 5.47

SOCf with 38.73 43.36 21.68 17.51 42.52
Ecn without 0.34 1.04 0.52 0.86 0.69

EV5 SOCf without 53.65 52.95 53.47 53.13 53.30
Ecn with 9.26 18.52 5.47 26.31 15.89

SOCf with 44.73 35.47 48.52 27.68 38.10
Ecn without 0.43 0.17 0.86 0.69 1.12

EV6 SOCf without 51.56 51.82 51.13 51.30 50.87
Ecn with 5.78 16.21 26.31 15.89 41.94

SOCf with 46.21 35.78 25.68 36.10 10.05
Ecn without 0.69 0.43 1.04 0.90 1.21

EV7 SOCf without 55.30 55.56 54.95 55.09 54.78
Ecn with 4.63 5.78 36.73 28.39 47.15

SOCf with 51.36 50.21 19.26 27.60 8.84
Ecn without 0.72 0.86 0.69 0.34 1.12

EV8 SOCf without 44.27 44.13 44.30 44.65 43.87
Ecn with 6.02 11.57 15.89 4.95 41.94

SOCf with 38.97 33.42 19.26 40.05 3.05
Ecn without 0.99 0.34 1.04 0.69 1.16

EV9 SOCf without 48.51 49.15 48.45 48.80 48.33
Ecn with 16.44 9.26 36.73 7.89 44.02

SOCf with 33.05 40.23 12.76 41.60 5.47
Ecn without 0.17 0.34 0.60 0.78 0.52

EV10 SOCf without 54.82 54.65 54.39 54.21 54.47
Ecn with 16.21 9.26 10.68 21.10 5.47

SOCf with 38.7895 45.7368 44.31842105 33.89736842 49.52894737
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Figure B.1: Final SOC of all EVs.

Table B.3: Assignment of EVs to CS

EVi/Si S1 S2 S3 S4 S5

EV1/SOCf 50.73 58.846 33.68 38.89 54.52

EV2/SOCf 41.78 48.73 57.73 42.10 28.56

EV3/SOCf 39.42 46.36 45.52 14.26 47.05

EV4/SOCf 38.73 43.36 21.68 17.51 42.52

EV5/SOCf 44.73 35.47 48.52 27.68 38.10

EV6/SOCf 46.21 35.78 25.68 36.10 10.05

EV7/SOCf 51.36 50.21 19.26 27.60 8.84

EV8/SOCf 38.97 33.42 19.26 40.05 3.05

EV9/SOCf 33.05 40.23 12.76 41.60 5.47

EV10/SOCf 38.78 45.73 44.31 33.89 49.52

Assignments of EV’s EV6,EV7 EV1, EV4 EV2 , EV5 EV8 , EV9 EV3 , EV10
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