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Abstract

Android has surpassed iOS as the most widely used smartphone operating system.

When compared to prior years, the quick adoption of Android has resulted in

a huge increase in the number of malwares. There are numerous antimalware

solutions available that are designed to protect users’ sensitive data in mobile

systems from such attacks. The more accurate the model is, there are increased

chances of predicting the malware effectively. Aim is to get higher accuracy with

less dimensional data to reduce the computational complexity. Genetic algorithm

proved to be the more efficient is reducing the complexity and in gaining higher

accuracy to detect malware effectively.
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Chapter 1

Introduction

1.1 Usage of Smart Phones

Smartphone usage is expanding on a daily basis. For productivity enhancement

and compatibility, many online applications have switched their products, avail-

ability, and functionalities to this system, and the mobile device has unquestion-

ably become a new growing trend in this modern day. The widespread use of

mobile devices has resulted in a significant shift in information security.

1.2 Android OS Popularity

The usage of mobile devices has resulted in an increase in associated threats, such

as SMS spam threats, phishing, malware, license to kill spyware, and so on. Be-

cause of its open nature, the Android operating system has become the fastest

growing mobile operating system, making it the operating system of choice for

many consumers and developers. Figure 1.1 below shows the number of smart-

phone users worldwide.

Hundreds of mobile devices in over 190 countries run on Android. It has the largest

installed base of any mobile platform and continues to expand rapidly. Every day,

a million new Android users switch on their smartphones for the first time and

1
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Figure 1.1: Number of Smartphone Users Worldwide

Figure 1.2: Market Share Forecast for Smartphone Operating Systems

start looking for apps, games, and other digital content [1]. Figure 1.2 below shows

the market share forecast for smartphone operating systems

Android has quickly become the tremendously increasing mobile OS, thanks to the

contributions of the open-source Linux community and more than 300 hardware,

software, and carrier partners.

Every month, Android users download over 1.5 billion apps and games from Google

Play. Its openness has made it a preferred among both users and developers,

resulting in rapid growth in app consumption.
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1.3 Malicious Intent of Malware

The most frequent types of mobile malware threats are viruses, worms, mobile

bots, mobile security breaches, ransomware, spyware, and Trojans. Some mobile

malware employs a variety of attack methods. In a cellular context, mobile viruses

are utilized to transmit from one exposed phone to another.

1.4 Malware Penetration in Phones

A computer worm is a type of virus that spreads from infected machines to other

devices while staying active on them. Cybercriminals can send worms using text

messages that use the short chat app (SMS) or the Multimedia Messaging Ser-

vice (MMS) and do not require user involvement to execute commands. The

assault impersonates a trustworthy entity or person and sends out malicious links

or attachments that can be used to steal victims’ login credentials or account in-

formation. Ramsonware is a type of malware that encrypts data on a victim’s

device or the device itself and then demands payment before decrypting the data

or restoring access. Unlike other forms of assaults, the victim is typically warned

of its existence and given advice on how to regain the data. The client must de-

ploy a Trojan horse malware. Trojans are frequently inserted into non-malicious

executable files or apps on mobile devices by cybercriminals. The Trojan malware

is launched when a user clicks or opens a file.

Figure 1.3: Threats of Android OS
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1.5 Malware Detection

The practice or technique of discovering the source and potential impact of a mal-

ware sample is known as malware detection. Malware includes viruses, worms,

bugs, Trojan horses, spyware, adware, and other items that appear or act mali-

ciously. Any strange software that has the potential to harm your computer is

classified as malware. Despite the widespread use of anti-malware software, mal-

ware threats are rapidly evolving around the world. Malware may infect anything

with an Internet connection. As potential attackers create new and improved

methods of evading detection, malware identification remains a challenge. This is

where malware is investigated.

1.6 Feature Selection

Feature selection is a fundamental concept in machine learning that has a signif-

icant impact on your model’s performance. The data attributes you use to train

your machine learning models have a significant impact on the results you can get.

Model performance can be harmed by features that are irrelevant or only partially

relevant. The first and most critical phase in model design is feature selection

and data cleaning. Feature selection is the process of selecting the features that

contribute the most to the prediction variable or output that you are interested

in, either automatically or manually. The presence of irrelevant characteristics in

your data can reduce model accuracy and cause your model to train based on ir-

relevant features. The feature selection helps in Reducing Over fitting, Improving

Accuracy and Reducing Training Time.

1.7 Genetic Algorithm

A genetic algorithm is a search heuristic based on Charles Darwin’s natural se-

lection hypothesis. This algorithm mimics natural selection, in which the fittest

individuals are chosen for reproduction in order to create the following generation’s

children.
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1. Initial population

The procedure starts with a group of people known as a Population. Each

person is a potential solution to the problem you’re trying to solve. Genes are

a set of factors (variables) that characterise an individual. A Chromosome

is made up of a string of genes (solution).

2. Fitness function

The fitness function determines a level of fitness (the ability of an individual

to compete with other individuals). It assigns each person a fitness score.

The fitness score determines the likelihood of an individual being chosen for

reproduction.

3. Selection

The goal of the selection phase is to find the fittest individuals and let them

to pass their genes along to future generations. Based on their fitness scores,

two pairs of people (parents) are chosen. Individuals who are physically fit

have a better probability of being chosen for reproduction.

4. Crossover

A genetic algorithm’s most important phase is crossover. A crossover point

is picked at random from within the genes for each pair of parents to be

mated.

5. Mutation

Some of the genes in some new kids can be susceptible to a mutation with

a low random frequency. This means that some of the bits in the bit string

can be switched around. Mutation happens to maintain population variety

and avoid premature convergence.

1.8 Classifiers

1.8.1 K Nearest Neighbors

K-Nearest Neighbor is a Supervised Learning-based Machine Learning algorithm

that is one of the most basic. The KNN algorithm assumes that the new case/data

and existing cases are similar and places the new case in the category that is most

similar to the existing categories. The below mentioned steps explains process of

KNN.
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1. Determine the number of neighbors (K).

2. Determine the Euclidean distance between K neighbors.

3. Using the obtained Euclidean distance, find the K closest neighbors.

4. Count the number of data points in each category among these k neighbors.

5. Assign the new data points to the category with the greatest number of

neighbors.

6. Our model is now complete.

1.8.2 Random Forest

Many decision tree models are used in an ensemble classifier. It can be used for

classification or regression, and the results include information on accuracy and

variable relevance. Working of Random forest is described in below steps.

1. Let the number of training cases be N, and the number of variables in the

classifier be M.

2. The number m of input variables is utilized to decide the choice at each tree

node; m should be significantly less than M.

3. Choose N times with replacement from all N possible training instances to

create a training set for this tree.

4. By anticipating the classes of the remaining examples, you may estimate the

tree’s inaccuracy.

5. Choose m variables at random for each node of the tree to base the choice

at that node. Calculate the optimum split based on the training set’s m

variables.

6. Each tree has reached full maturity and has not been pruned.

1.8.3 Decision Tree

Decision Tree is a supervised learning technique that can be applied to classifica-

tion and regression problems, however it is most commonly employed to solve clas-

sification problems. Internal nodes represent dataset attributes, branches represent

decision rules, and each leaf node provides the conclusion in this tree-structured

classifier. The Decision Node and the Leaf Node are the two nodes of a Deci-

sion tree. Leaf nodes are the output of those decisions and do not contain any
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more branches, whereas Decision nodes are used to make any decision and have

several branches. The decisions or tests are based on the characteristics of the

given dataset. It’s a graphical depiction for obtaining all feasible solutions to a

problem/decision depending on certain parameters. It’s termed a decision tree

because, like a tree, it starts with a root node and grows into a tree-like structure

with additional branches. A decision tree simply asks a question and divides the

tree into sub trees based on the answer (Yes/No).

1.9 Problem Statement

The computational complexity increases due to increasing dimension of data. For

better android malware analysis and to address the dimensionality problem of

data, it is required to perform feature reduction. Android malware classification is

a challenging area due to large features space. The classification accuracy can be

improved by selecting efficient features using some metaheuristic such as genetic

algorithm.

1.10 Research Questions

Q1: How relevant features can be identified for task of malware classification?

Q2: How accuracy of classification for malware detection can be improved using

Genetic Algorithm?

Q3: What is the effect of feature reduction?

1.11 Purpose

The purpose of the proposed thesis work is to obtain high accuracy with less

number of features set.

1.12 Scope

This research work provides necessary guidelines to improve the accuracy of an-

droid malware detection using Genetic Algorithm. The performance metrics as a

result of Meta-Heuristic are demonstrated in this research.
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1.13 Significance of Solution

This research work contributes in efficiently reducing the dimensionality of the

dataset using Meta heuristics. Genetic Algorithm emerged as the effective method

in gaining high accuracy with less dimensional data.



Chapter 2

Literature Review

2.1 Analysis Mode

Table 2.1 shows signature based, anomaly based and specification-based analysis

modes for android malware detection. Signature based detection uses a trace and

behavior to detect malware. A certain trace of android permissions can result

in malware as certain android permissions get grant from user to access GPS

location, read phone state and identity send SMS messages etc. can result in some

malicious activity. Signature-based detection, also known as misuse detection, as

defined by [2], keeps track of known intrusion strategies (attack signature) and

identifies intrusion by comparing behavior to the database. It will take up less

system resources to detect an intrusion [3]. It is also stated that this approach can

accurately detect known attacks. Signature based approach can only detect known

data accurately because for unknown data signature is also unknown. Anomaly-

based approach is superior to signature-based approach in this regard since it can

detect unfamiliar data with high accuracy.

Both behavior-based and network-based features are used in the anomaly-based

approach. Program specifications that specify the intended behavior of security-

critical applications will be used in specification-based detection, according to

[4]. As per [5] the purpose of the policy specification language is to provide a

straightforward mechanism to describe privileged programmed policies. Rather of

9
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detecting the appearance of certain attack patterns, it monitors the execution of

programes and detects deviations in their behavior from the specification. This

technique is comparable to anomaly detection in that it detects attacks that are

out of the ordinary. Rather of detecting the appearance of certain attack patterns,

it monitors the execution of programes and detects deviations in their behavior

from the specification. This technique is comparable to anomaly detection in that

it detects attacks that are out of the ordinary. According to [6], the advantage

of this technique is that it can detect attacks even if they haven’t been seen be-

fore, and it has a low rate of false alarm. A high incidence of false alarms limited

the implementation of anomaly detection in actuality, as [7] uses various machine

learning approaches with a TPR of 93.3 percent but an FPR of 31.3 percent.

Arp, D. et al 2014 [8] used signature based static analysis mode for gathering

features i.e. without running the application. Burguera, et al 2011 [9] used spec-

ification based dynamic analysis mode that gathered features through self-made

application “crowd droid”. Yerima et al 2014 [2] also used static analysis for fea-

ture extraction and malware analysis. Kumar et al 2017 [2] used dynamic based

analysis mode. Yerima et al 2015[4] used signature based static analysis mode for

malware detection. Feizollah et al 2018 [5] used anomaly based dynamic analy-

sis mode. Amos et al 2013 [6] also used anomaly based dynamic analysis mode.

Feizollah et al 2015 [7] used both dynamic anomaly and dynamic specification

based analysis mode. Dash et al 2016[10] used anomaly based dynamic analysis

mode. Yuan et al 2014 [11] used static signature based and dynamic specification

based analysis mode. Feizollah et al 2017 [12], Almin et al 2015 [13], Idrees et

al 2014 [14], Yerima et al 2015 [4], Peiravian et al 2013 [20] have used signature

based static analysis mode for malware analysis. Karbab et al 2018 [15] used dy-

namic signature based mode. Canfora et al 2015 [16] used dynamic specification

based analysis mode. Hassen et al 2017 [17] and Kang et al 2015 [18] used static

specification-based analysis mode. Saxe et al 2015 [19] used dynamic signature

based analysis mode. Narouei et al 2013 [20] and Zheng et all 2013 [21] used hy-

brid signature-based analysis mode. Sato et al 2013 [22], Sanz et al 2013 [23] and

Milosevic et al 2017 [24] used static signature based analysis mode. Okazaki et al

2002 [25] used hybrid signature based and hybrid anomaly based analysis mode.
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Table 2.1: Analysis Mode Comparison

Signature based detection Anomaly based detection Specification based detection

Paper Ref Static Dynamic Hybrid Static Dynamic Hybrid Static Dynamic Hybrid

Arp, D. 2014 [8] 1 0 0 0 0 0 0 0 0

Burguera, 2011 [9] 0 0 0 0 0 0 0 1 0

Yerima 2014 [2] 1 0 0 0 0 0 0 0 0

Kumar 2017 [2] 0 0 0 0 1 0 0 0 0

Yerima 2015 [26] 1 0 0 0 0 0 0 0 0

Feizollah 2018 [5] 0 0 0 0 1 0 0 0 0

Amos 2013 [6] 0 0 0 0 1 0 0 0 0

Feizollah 2015 [7] 0 0 0 0 1 0 0 1 0

Dash 2016 [10] 0 0 0 0 1 0 0 0 0

Yuan 2014 [11] 1 0 0 0 0 0 0 1 0

Feizollah 2017 [12] 1 0 0 0 0 0 0 0 0

Almin 2015 [13] 1 0 0 0 0 0 0 0 0

Idrees 2014 [14] 1 0 0 0 0 0 0 0 0

Karbab 2018 [15] 0 1 0 0 0 0 0 0 0

Canfora 2015 [16] 0 0 0 0 0 0 0 1 0

Hassen 2017 [17] 0 0 0 0 0 0 1 0 0
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Signature based detection Anomaly based detection Specification based detection

Paper Ref Static Dynamic Hybrid Static Dynamic Hybrid Static Dynamic Hybrid

Kang 2015 [18] 0 0 0 0 0 0 1 0 0

Saxe 2015 [19] 0 1 0 0 0 0 0 0 0

Yerima 2015 [4] 1 0 0 0 0 0 0 0 0

Peiravian 2013 [27] 1 0 0 0 0 0 0 0 0

Narouei 2013 [20] 0 0 1 0 0 0 0 0 0

Zheng et all 2013 [21] 0 0 1 0 0 0 0 0 0

Sato 2013 [22] 1 0 0 0 0 0 0 0 0

Sanz 2013 [23] 1 0 0 0 0 0 0 0 0

Milosevic 2017 [24] 1 0 0 0 0 0 0 0 0

Okazaki 2002 [25] - - 1 - - 1 0 0 0

Sekar 2002 [28] 0 0 0 1 0 0 0 0 0

Arp, D. et al 2014 [8] used signature based static analysis mode for gathering features i.e. without running the application. Burguera, et

al 2011 [9] used specification based dynamic analysis mode that gathered features through self-made application “crowd droid”. Yerima

et al 2014 [2] also used static analysis for feature extraction and malware analysis. Kumar et al 2017 [2] used dynamic based analysis

mode. Yerima et al 2015[26] used signature based static analysis mode for malware detection. Feizollah et al 2018 [5] used anomaly based

dynamic analysis mode. Amos et al 2013 [6] also used anomaly based dynamic analysis mode.
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2.2 Static Features and Dynamic Features

2.2.1 Static Feature Analysis

Static features can be extracted from an android application without running it.

There are tools like android asset packaging tool that can dissemble the APK file

and extract the intents used, API calls etc. The API calls that access contacts,

network operator information, call state, device id and subscriber id can result in

any malicious activity. A certain classifier can be trained on these features to de-

tect anomaly. Permissions can be extracted from android manifest file. CHANGE

NETWORK STATE , ACCESS FINE LOCATION, SEND SMS, CHANGE WIFI

STATE are some of the network and application based permissions used in mali-

cious activities by the hackers. Android applications use intents for communicating

to other applications (explicit intents) and for intra app communication (implicit

intents) as well. Some commands used in Linux which can be extracted from an

APK file can also trigger the unusual activity by invoking hidden scripts, embed-

ded malicious binary files etc. Technique for analysis used by Arp, D. et al 2014 [8]

is static through android asset packaging tool. Static features extracted as a result

are applications and network based permissions, implicit and explicit intents and

the API calls. Yerima et al 2015[26] also used static analysis but have excluded

the intents based features whether they are implicit or explicit. Commands, API

calls and permissions based features are extracted by Yerima et al 2014 [2]. Bur-

guera, et al 2011 [9], Kumar et al 2017 [2], Feizollah et al 2018 [5], Amos et al

2013 [6], Feizollah et al 2015 [7], Dash et al 2016[10], Canfora et al 2015 [16],

Saxe et al 2015 [19] and Narouei et al 2013 [20] have not used any static analysis

method, instead used dynamic analysis method. Yuan et al 2014 [11] gathered

features without running the app that is static analysis and extracted features like

permissions by analyzing manifest file and API calls. Feizollah et al 2017 [12] used

features by dissembling dex file and used intents based features , in addition also

used permissions as feature set. Almin et al 2015 [13] only used permissions like

WRITE CALL LOG, CALL PHONE, WRITE SMS, SEND SMS, INTERNET,

CHANGE WIFI STATE etc.

Table 2.2 below shows the static features selected in different twenty seven research

papers that we are evaluating.
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Table 2.2: Static Features

Static Features

Permissions Intents API Calls Commands

Paper Ref App Network Implicit Explicit
access

contacts

call

state

device

id

subscriber

id

META

DATA
RECEIVERS SERVICES

Arp, D. 2014

[8]

1 1 1 1 1 1 1 1 0 0 0

Burguera,

2011 [9]

0 0 0 0 0 0 0 0 0 0 0

Yerima 2014

[2]

1 1 0 0 1 1 1 1 1 1 1

Kumar 2017

[3]

0 0 0 0 0 0 0 0 0 0 0

Yerima

2015[26]

1 1 0 0 1 1 1 1 1 1 1

Feizollah

2018 [5]

0 0 0 0 0 0 0 0 0 0 0

Amos 2013

[6]

0 0 0 0 0 0 0 0 0 0 0

Feizollah

2015 [7]

0 0 0 0 0 0 0 0 0 0 0

Dash

2016[10]

0 0 0 0 0 0 0 0 0 0 0



L
iteratu

re
R

eview
15

Static Features

Permissions Intents API Calls Commands

Paper Ref App Network Implicit Explicit
access

contacts

call

state

device

id

subscriber

id

META

DATA
RECEIVERS SERVICES

Yuan 2014

[11]

1 1 0 0 1 1 1 1 0 0 0

Feizollah

2017 [12]

1 1 1 1 0 0 0 0 0 0 0

Almin 2015

[13]

1 1 0 0 0 0 0 0 0 0 0

Idrees 2014

[14]

1 1 1 1 0 0 0 0 0 0 0

Karbab 2018

[15]

0 0 0 0 1 1 1 1 0 0 0

Canfora

2015 [16]

0 0 0 0 0 0 0 0 0 0 0

Hassen 2017

[17]

0 0 0 0 0 0 0 0 0 0 0

Kang 2015

[18]

0 0 0 0 0 0 0 0 0 0 0

Saxe 2015

[19]

1 1 0 0 1 1 1 1 0 0 0
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Static Features

Permissions Intents API Calls Commands

Paper Ref App Network Implicit Explicit
access

contacts

call

state

device

id

subscriber

id

META

DATA
RECEIVERS SERVICES

Yerima 2015

[4]

1 1 0 0 1 1 1 1 0 0 0

Peiravian

2013 [27]

0 0 0 0 0 0 0 0 0 0 0

Narouei 2013

[20]

0 0 0 0 0 0 0 0 0 0 0

Zheng et all

2013 [21]

1 1 1 1 0 0 0 0 0 0 0

Sato 2013

[22]

1 1 0 0 0 0 0 0 0 0 0

Sanz 2013

[23]

1 1 0 0 0 0 0 0 0 0 0

Milosevic

2017 [24]

0 1 0 0 0 0 0 0 1 1 1

Okazaki

2002 [25]

1 1 1 0 1 1 1 1 1 1 1

Features comprising intents and permissions are used by Idrees et al 2014 [14]. Kang et al 2015 [18] used network based permissions and

API calls as there feature set. Yerima et al 2015 [4]
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Static features can be extracted from an android application without running it.

There are tools like android asset packaging tool that can dissemble the APK file

and extract the intents used, API calls etc. The API calls that access contacts, net-

work operator information, call state, device id and subscriber id can result in any

malicious activity. A certain classifier can be trained on these features to detect

anomaly. Permissions can be extracted from android manifest file. Features com-

prising intents and permissions are used by Idrees et al 2014 [14]. Kang et al 2015

[18] used network based permissions and API calls as there feature set. Yerima et al

2015 [4], Peiravian et al 2013 [27] have developed their feature set by adding static

features like permissions (network and application based) and API calls. Zheng

et all 2013 [21] used permissions, intents and API calls as their static features

set. Sato et al 2013 [22] used permissions like WRITE EXTERNAL STORAGE,

CHANGE WIFI STATE, CLEAR APP CACHE, INSTALL PACKAGES, IN-

TERNET, CAMERA, CHANGE CONFIGURATION, CHANGE NETWORK

STATE and intents , explicit and implicit both. Sanz et al 2013 [23] and Milosevic

et al 2017 [24] made same feature set by analyzing android manifest file and used

Okazaki et al 2002 [25] used network based permissions and commands as their fea-

ture set through static analysis of android applications, like GET META DATA,

GET RECEIVERS, GET SERVICES, GET SIGNATURES, GET PERMISSIONS

etc. Permissions, API calls, commands and only implicit intents based features

are used by Sekar et al 2002 [28].

2.2.2 Dynamic Feature Analysis

Dynamic features are extracted while running an application and recording some

traces in background in CMD. They can be network based and behavior based.

Network based features can be extracted from the traffic generated over the net-

work which includes protocols either HTTP or TCP, source and destination ports,

packets send and received etc. behavior based includes system calls like open() and

kill() etc. A certain malware can open some libraries and can kill them according

to their wish causing potential damage to the system Table 2.3 below shows the

dynamic features selected in different twenty seven research papers that we are

evaluating.



L
iteratu

re
R

eview
18

Table 2.3: Dynamic Features

Paper

Ref
Duration DP

Pkt

Sent

Pkt

Rev

PLBytes

Sent

PLBytes

Rev

TCP

size
System calls Packet size Source port

Arp, D. 2014 [8] 0 0 0 0 0 0 0 0 0 0

Burguera, 2011 [9] 1 0 0 0 0 0 0 1 0 0

Yerima 2014 [2] 0 0 0 0 0 0 0 0 0 0

Kumar 2017 [3] 1 1 1 1 1 1 0 0 0 0

Yerima 2015[26] 0 0 0 0 0 0 0 0 0 0

Feizollah 2018 [5] 1 0 1 1 0 0 1 0 0 0

Amos 2013 [6] 1 1 - - - - 1 - 1 1

Feizollah 2015 [7] 1 - - - - - - 1 1 1

Dash 2016[10] 0 1 0 0 0 0 1 1 0 1

Yuan 2014 [11] 0 0 0 0 0 0 0 0 0 0

Feizollah 2017 [12] 0 0 0 0 0 0 0 0 0 0

Almin 2015 [13] 0 0 0 0 0 0 0 0 0 0

Idrees 2014 [14] 0 0 0 0 0 0 0 0 0 0

Karbab 2018 [15] 0 0 0 0 0 0 0 0 0 0

Canfora 2015 [16] 0 0 0 0 0 0 0 1 0 0

Hassen 2017 [17] 0 0 0 0 0 0 0 1 0 0
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Paper

Ref
Duration DP

Pkt

Sent

Pkt

Rev

PLBytes

Sent

PLBytes

Rev

TCP

size
System calls Packet size Source port

Kang 2015 [18] 0 0 0 0 0 0 0 0 0 0

Saxe 2015 [19] 0 0 0 0 0 0 1 0 0

Yerima 2015 [4] 0 0 0 0 0 0 0 0 0 0

Peiravian 2013 [27] 0 0 0 0 0 0 0 0 0 0

Narouei 2013 [20] 0 0 0 0 0 0 0 1 0 0

Zheng et all 2013 [21] 0 0 0 0 0 0 0 0 0 0

Sato 2013 [22] 0 0 0 0 0 0 0 0 0 0

Sanz 2013 [23] 0 0 0 0 0 0 0 0 0 0

Milosevic 2017 [24] 0 0 0 0 0 0 0 0 0 0

Okazaki 2002 [25] 1 1 1 1 0 0 1 0 0 1

Sekar 2002 [28] 0 0 0 0 0 0 0 0 0 0

The method adopted by Burguera, et al 2011 [9] is dynamic analysis and have used behavior based features like system call and also

network traffic related features like duration period of the connection. Kumar et al 2017 [2] used wireshark for analyzing the network

traffic and extracted features like duration period , destination port, no of packets sent and received and payload bytes sent and received.

The same method is adopted by Feizollah et al 2018 [5] as Burguera, et al 2011 [9] the only difference is the feature selection.
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The method adopted by Burguera, et al 2011 [9] is dynamic analysis and have used

behavior based features like system call and also network traffic related features

like duration period of the connection. Kumar et al 2017 [2] used wireshark for

analyzing the network traffic and extracted features like duration period , desti-

nation port, no of packets sent and received and payload bytes sent and received.

The same method is adopted by Feizollah et al 2018 [5] as Burguera, et al 2011

[9] the only difference is the feature selection. In their proposed method they used

duration, no of packets sent and received and the size of TCP protocol. Amos et al

2013 [6] also used traffic based features which includes duration time, source and

destination port, TCP size and packet size. Feizollah et al 2015 [7] gathered be-

havior based features like system calls and network related features like duration,

packet size and source port. Dash et al 2016[10] choose source and destination

ports and TCP size as their network based features and also system calls as their

dynamic features through running the android application individually. Feature

set of Canfora et al 2015 [16],Hassen et al 2017 [17] and Saxe et al 2015 [19] con-

tains only system calls that were dynamically extracted. Narouei et al 2013 [20]

used suspicious system calls like read (), open (), access (), chmod () and chown ()

as their feature set. The feature set of Okazaki et al 2002 [25] includes source and

destination port of the network connection used, TCP size used, duration time for

which the connection exits and finally the number of packets sent and received.

2.3 Data set and Evaluation

In this Section, the dataset and validation techniques of twenty seven research

papers have been presented. Dataset attribute contains furthermore four sub

attribute which were training dataset, test dataset, malicious apps which are tested

and benign app. Training dataset is required to make your algorithm better by

learning some pattern. Test dataset is set of data (Malicious. Benign app) to find

accuracy of any proposed algorithm. Benign app are those which were not harmful

where Malicious apps are those apps which were harmful. Also in following table

we have online/offline learning, percentage split method and as K-fold validation

technique.
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Arp, D. et al 2014 [8] used 5,560 Malicious and 123,453 Benign app’s as a dataset

and use offline learning with 66/33 Percentage split Method to evaluated their

machine learning algorithm. Burguera, et al 2011 [9] used 10 Malicious and 50,

Benign app’s as a dataset and use offline learning. Yerima et al 2014 [2] used

2,925 Malicious and 3,938 Benign app’s as a dataset and use offline learning with

10 fold cross validation technique to evaluated their machine learning algorithm.

Kumar et al 2017 [2] does not provide data set information. They use offline

learning with 70/30 Percentage split Method and 10 fold cross validation method

to evaluate their machine learning algorithm. Yerima et al 2015[26] they used

2,925 Malicious and 3,938 Benign app’s as a dataset and use offline learning with

10 fold cross validation approach to evaluated their machine learning algorithm.

Feizollah et al 2018 [5] used 800 Malicious and 100 Benign app’s as a dataset and

use offline learning. Amos et al 2013 [6] used 1330 Malicious and 408 Benign app’s

as a dataset and use offline learning with 10 fold cross validation to evaluated

their machine learning algorithm. Feizollah et al 2015 [7] used 600 Malicious and

Benign app’s as a dataset for android malware analysis. Dash et al 2016[10] used

5,246 Malicious and Benign app’s as a dataset and use offline learning with 20 fold

cross validation technique to evaluated their machine learning algorithm. Yuan et

al 2014 [11], they used 300 dataset as a training dataset and 200 as a test dataset

with 250 Malicious and 250 Benign app’s and use offline learning. Feizollah et al

2017 [12] used 600 dataset as a training dataset and 100 dataset as a testing dataset

with 380 Malicious and 320 Benign app’s and use offline learning, Percentage split

Method to evaluated their machine learning algorithm. Almin et al 2015 [13] not

provided information of their dataset and validation technique. Idrees et al [14]

used 292 apps as training dataset and 340 apps as a test dataset with 45 Malicious

and 300 Benign app’s and use offline learning.

Karbab et al 2018 [15] used 33,000 Malicious and 38,000 Benign app’s as a dataset

and use offline learning with 2,3,5,10 fold method to evaluated their machine learn-

ing algorithm. Table 2.4 shows the data set collected (malicious and benign) and

evaluation techniques applied on that dataset, in different twenty seven research

papers that we are evaluating.
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Table 2.4: Data Set And Evaluation

Paper Ref Training Test Malicious Benign
Online/

offline learning

Percentage

split Method

K-fold cross

validation technique

Arp, D. 2014 [8] - - 5,560 123,453 offline 66/33 0

Burguera, 2011 [9] - - 10 50 offline - -

Yerima 2014 [2] - - 2,925 3.938 offline - 10

Kumar 2017 [3] - - - - offline 70/30 10

Yerima 2015[26] - - 2,925 3,938 offline - 10

Feizollah 2018 [5] - - 800 100 offline - -

Amos 2013 [6] - - 1330 408 online - 10

Feizollah 2015 [7] - - 600 - - -

Dash 2016[10] - - 5,246 offline - 20

Yuan 2014 [11] 300 200 250 250 offline - -

Feizollah 2017 [12] 600 100 380 320 Offline 1 0

Almin 2015 [13] 0 0 0 0 Offline 0 0

Idrees 2014 [14] 292 340 45 300 Offline 0 0

Karbab 2018 [15] 0 0 33000 38000 Offline 0 2, 3, 5 & 10-fold

Canfora 2015 [16] 1600 400 1000 1000 Offline 0 0

Hassen 2017 [17] 80% 20% 1200 1113 Offline 1 10-Fold
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Paper Ref Training Test Malicious Benign
Online/

offline learning

Percentage

split Method

K-fold cross

validation technique

Kang 2015 [18] - - 4554 51179 Offline 0 5-Fold

Saxe 2015 [19] - - 350,016 81,910 Offline 0 4-Fold

Yerima 2015 [4] - - 2925 3938 Offline 0 10-Fold

Peiravian 2013 [27] - - >1200 >1200 Offline 0 10-Fold

Narouei 2013 [20] 9/10 1/10 11 000 4700 Offline 0 10-Fold

Zheng et all 2013 [21] 0 0 1440 563 Offline 0 0

Sato 2013 [22] 94 271 130 235 Offline 1 0

Sanz 2013 [23] 0 0 333 333 Offline 0 10, 50 and 100-fold

Milosevic 2017 [24] 0 0 200 200 Offline 0 0

Okazaki 2002 [25] 0 0 0 0 0 0 0

Sekar 2002 [28] 9/10 1/10 2925 3938 Offline 0 10-Fold

Canfora et al 2015 [16] used 1600 dataset as training dataset and 400 as a test dataset with 1000 Malicious and 1000 Benign app’s as a

dataset and use offline learning. Hassen et al 2017 [17] they used 80% dataset as a training dataset and 20% dataset as a test dataset

with 1200 Malicious and 1113 Benign app’s as a dataset and use offline learning, Percentage split Method and 10 fold cross validation

technique to evaluated their machine learning algorithm. Kang et al 2015 [18] used 4,554 Malicious and 51,179 Benign applications as a

dataset and use offline learning with 5 fold cross validation technique to evaluated their machine learning algorithm.
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Table 2.5: Machine Learning Techniques

Probabilistic Function Based Tree Based Rule Based Clustering

Paper Ref
Näıve

Bayes

K

Star
Prism

Simple

Logistic
SVM J48 C4.5 ID3 RF JRIP RIDOR PART NN K Means C Means

Arp, D. 2014 [8] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Burguera, 2011 [9] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Yerima 2014 [2] 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0

Kumar 2017 [3] 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0

Yerima 2015[26] 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0

Feizollah 2018 [5] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Amos 2013 [6] 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0

Feizollah 2015 [7] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Dash 2016[10] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Yuan 2014 [11] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Feizollah 2017 [12] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Almin 2015 [13] 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Idrees 2014 [14] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Karbab 2018 [15] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Canfora 2015 [16] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Hassen 2017 [17] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kang 2015 [18] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Saxe 2015 [19] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Yerima 2015 [4] 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
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Probabilistic Function Based Tree Based Rule Based Clustering

Paper Ref
Näıve

Bayes

K

Star
Prism

Simple

Logistic
SVM J48 C4.5 ID3 RF JRIP RIDOR PART NN K Means C Means

Peiravian 2013 [27] 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Narouei 2013 [20] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Zheng et all 2013 [21] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sato 2013 [22] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Sanz 2013 [23] 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0

Milosevic 2017 [24] 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0

Okazaki 2002 [25] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sekar 2002 [28] 1 0 0 1 0 0 0 0 1 0 0 0 0 0

Saxe et al 2015 [19] used 350,016 Malicious and 81,910 Benign app’s as a dataset and use offline learning with 10 fold cross validation

technique to evaluated their machine learning algorithm. Yerima et al 2015 [4] used 2,925 Malicious and 3,938 Benign app’s as a dataset

and use offline learning with 10 fold cross validation technique to evaluated their machine learning algorithm. Peiravian et al 2013 [27]

used more than 2400 Malicious and Benign app’s as a dataset and use offline learning with 10 fold cross validation technique to evaluated

their machine learning algorithm. Narouei et al 2013 [20] used 9/10 dataset as a training dataset and 1/10 as a test dataset with 11000

Malicious and 4,700 Benign app’s as a dataset and use offline learning with 10 fold cross validation technique to evaluated their machine

learning algorithm. Zheng et al 2013 [21] used 1440 Malicious and 563 Benign app’s as a dataset and use offline learning with 10 fold

cross validation technique to evaluated their machine learning algorithm. Sato et al 2013 [22], they used 94 dataset as training dataset

and 271 as test data set having 130 Malicious and 235 Benign app’s and use offline learning. Sanz et al 2013 [23].
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Okazaki et al 2002 [25], they didn’t provide the dataset information. Sekar et al

2002 [28], they used 9/10 dataset examples as training dataset and 1/10 dataset

examples as test dataset having 2,925 Malicious and 3,938 Benign app’s and use

offline learning with 10 fold cross validation technique to evaluate their machine

learning algorithm.

2.4 Machine Learning Algorithms

Table 2.5 shows different machine learning techniques used by authors. The tech-

nique of machine which Arp, D. et al 2014 [8] follow is function based machine

learning in which they used SVM machine learning algorithm to classify there

dataset. Burguera, et al 2011 [9] doesn’t use any machine learning algorithm for

classification. For clustering K-mean is used. Yerima et al 2014 [2] used Proba-

bilistic, Function Based ML, Tree Based ML and Rule Based ML in which they

perform classification with Näıve Bayes, Simple Logistic, J48, PART and RIDOR.

Kumar et al 2017 [2] perform Tree Based ML, Rule Based ML classification in

which they used J48, RF, JRIP, RIDOR, PART. For classification Yerima et al

2015[26] used Probabilistic, Function Based ML and Tree Based ML techniques

in which includes Näıve Bayes, simple logistic, J48 and RF. Feizollah et al 2018

[5] used no machine learning algorithm for classification, for clustering they used

C-Means. Amos et al 2013 [6] used Neural Network, Probabilistic, Function Based

ML and Tree Based ML techniques. Feizollah et al 2015 [7] used Tree Based ML

(RF) is used for classification. Dash et al 2016[10] used Function Based ML is

used in which they use SVM. Yuan et al 2014 [11] used Neural Network for clas-

sification of dataset. Feizollah et al 2017 [12] used Probabilistic machine learning

technique is use in which they used Näıve Bayes algorithm. Almin et al 2015 [13]

used Näıve Bayes for classification and K-mean for clustering. Idrees et al [14]

used Probabilistic machine learning technique in which Näıve Bayes, K-star Prism

is used. Karbab et al 2018 [15] used Neural Network for classification. Canfora et

al 2015 [16] used Function Based machine learning is used for classification which

includes SVM. Hassen et al 2017 [17] and Kang et al 2015 [18] doesn’t use any
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machine learning based technique. Saxe et al 2015 [19] used Neural Network for

classification. Yerima et al 2015 [4] used Probabilistic, Function Based ML and

Tree Based ML which specifies following Näıve Bayes, Simple Logistic and RF

algorithms to perform classification. Function and Tree Based machine learning

technique is used for classification by Peiravian et al 2013 [27] in which they used

simple logistic and J48. Probabilistic and Tree Based machine learning is used

for classification by Narouei et al 2013 [20] in which they use Näıve Bayes, J48

and RF. Zheng et al 2013 [21] and Okazaki et al 2002 [25] didn’t use any machine

learning based algorithm. Sato et al 2013 [22] used Tree based Machine learning

(J48) for classifying the dataset. Sanz et al 2013 [23] used Probabilistic (Näıve

Bayes), Function Based ML (SVM), Tree Based ML (J48,RF) and Neural Network

for classification. Probabilistic (Näıve Bayes), Function (SVM), Tree (C4.5, RF)

and rule based (JRIP) machine learning algorithm is used by Milosevic et al 2017

[24]. Probabilistic (Näıve Bayes), Function Based ML (Simple Logistic) and Tree

Based ML (RF) is used to classifying the dataset by Sekar et al 2002[28].

2.5 Performance Metrics

Table 2.6 shows the performance matrices of various authors. In this section,

performance metrics of different literature have been compared to analyze the effi-

ciency of research works. Ensemble techniques are also discussed in this table. In

ensemble technique, multiple classifiers are ensemble to improve results efficiency

by voting, bagging, or boosting.

The following are the evaluating metrics that are used by the researchers.

1. TPR: The True positive rate (TPR) is the percentage of true forecasts in

positive class predictions

TPR = TP/P

2. TNR: The True negative rate (TPR) is the percentage of true forecasts in

negative class predictions

TNR = TN/N
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3. FPR: The false positive rate is the percentage of inaccurate positive predic-

tions

FPR = FP/N

4. FNR: The false negative rate is the percentage of inaccurate negative pre-

dictions

FNR = FN/P

5. Accuracy: The proportion of correct predictions contained within your model

is measured by accuracy

Accuracy = (TP + TN)/(TP + TN + FP + FN)

6. AUC: The area under the recall and false positive rate curves is determined

by the area under the receiver operating characteristic curve. It compares

the sensitivity to the rate of fallout. The True positive rate vs the False

positive rate with respect to a threshold T is plotted parametrically as the

Area under ROC.

In Arp, D. et al 2014 [8] they achieved following performance metrics, while per-

forming machine learning algorithms for malware and benign program classifica-

tion or regression, True positive rate (tpr) of 96%, and 1% false positive rate (fpr).

In Burguera, et al 2011 [9] they achieved following performance metrics, while

performing machine learning algorithms for malware and benign program classifi-

cation or regression, tpr of 100%, which is very promising and 0% fpr. In Yerima et

al 2014 [2] they achieved following performance metrics, while performing machine

learning algorithms for malware and benign program classification or regression,

tpr of 95.8%, true negative rate (tnr) of 95.7%, false negative rate(fnr) of 4.2%,

3.30% fpr. They obtained 96.3% accuracy with error rate of 3.7% and area under

the roc curve was 97%. Alongside they performed ensemble techniques, which are

average probability (avg prob), product probability (prod prob), maximum prob-

ability (max prob), and voting based ensemble technique. In Kumar et al 2017
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[2] they achieved following performance metrics, while performing machine learn-

ing algorithms for malware and benign program classification or regression, tpr of

97.9%, true negative rate (tnr) of 97.9%, false negative rate(fnr) of 0%, 2.10% fpr.

They obtained 98.20% accuracy, and area under the roc curve (auc) was 98.9 %.

Alongside they performed ensemble techniques, which are avg prob, prod prob,

max prob, and voting based ensemble technique. In Yerima et al 2015[26] they

achieved following performance metrics, while performing machine learning algo-

rithms for malware and benign program classification or regression, tpr of 97.3 %,

2.30 % fpr, tnr of 97.9 %. They obtained 97.50% accuracy, with 2.50% error rate

and auc was 99.3%. Alongside they performed ensemble techniques, which are

bagging and boosting based ensemble technique. In Feizollah et al 2018 [5] they

didn’t provide performance metrics. In Amos et al 2013 [6] they achieved following

performance metrics, while performing machine learning algorithms for malware

and benign program classification or regression, tpr of 93.3%, and 31.03% fpr. In

Feizollah et al 2015 [7] they achieved following performance metrics, while perform-

ing machine learning algorithms for malware and benign program classification or

regression, tpr of 99.6%, and 0.4% fpr.Alongside they performed boosting based

ensemble technique. In Dash et al 2016[10] they achieved following performance

metrics, while performing machine learning algorithms for malware and benign

program classification or regression, They achieved 94% of accuracy. In Yuan et al

2014 [11] they achieved following performance metrics, while performing machine

learning algorithms for malware and benign program classification or regression,

They achieved 96.50% of accuracy. In Feizollah et al 2017 [12], Almin et al 2015

[13], Idrees et al 2014 [14] they didn’t provide performance metrics. In Karbab et al

2018 [15] they achieved following performance metrics, while performing machine

learning algorithms for malware and benign program classification or regression,

They achieved tpr of 96.99%, and 0.06-2% fpr.

Table 2.6: Performance Metrics

Paper Ref TPR TNR FPR FNR Accuracy Error AUC

Arp, D. 2014 [8] 96% - 1% - - - -

Burguera, 2011 [9] 100% - 0% - - - -

Yerima 2014 [2] 95.8% 96.7% 3.30% 4.2% 96.30% 3.70% 97%

Kumar 2017 [3] 100% 97.9% 2.10% 0% 98.20% - 98.9%
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Paper Ref TPR TNR FPR FNR Accuracy Error AUC

Yerima 2015[26] 97.3% 97.7% 2.30% - 97.50% 2.50% 99.3%

Feizollah 2018 [5] - - - - - - -

Amos 2013 [6] 93.3% - 31.03% - - - -

Feizollah 2015 [7] 99.6% - 0.40% - - - -

Dash 2016[10] - - - - 94% - -

Yuan 2014 [11] - - - - 96.50% - -

Feizollah 2017 [12] 0 0 0 0 0 0 0

Almin 2015 [13] 0 0 0 0 0 0 0

Idrees 2014 [14] 0 0 0 0 0 0 0

Karbab 2018 [15] 96.99% 0 0.06-2% 0 0 0 0

Canfora 2015 [16] 97% 0 3% 3% 0 0 97%

Hassen 2017 [17] 96% - 0.01% - 99.3% - 99%

Kang 2015 [18] - - - - 98% - -

Saxe 2015 [19] 95.2% - 0.1% - 95% - 0.99964

Yerima 2015 [4] 97.3% 97.7% 2.3% - 97.5% 2.5% 99.3%

Peiravian 2013 [27] - - - - 96.88% - 96.3%

Narouei 2013 [20] 98.5% 0 0 0 0 0 0

Zheng et all 2013 [21] 0 0 0 0 0 0 0

Sato 2013 [22] 90.0% 0 10.0% 0 0 0 0

Sanz 2013 [23] 94% 0 5% 0 94.83% 0 98%

Milosevic 2017 [24] 82.3% 0 17.6% 0 0 0 0

Okazaki 2002 [25] 0 0 0 0 0 0 0

Sekar 2002 [28] 97.2% 0 2.5% 0 97.6% 0 99.3%

In Canfora et al 2015 [16] they achieved following performance metrics, while

performing machine learning algorithms for malware and benign program classifi-

cation or regression, tpr of 97%, 3% fpr, fnr of 3%. They obtained 97% of auc. In

.Hassen et al 2017 [17] they achieved following performance metrics, while perform-

ing machine learning algorithms for malware and benign program classification or

regression, tpr of 96%, 3% fpr, fnr of 0.01%. They obtained 0.993 of accuracy, and

99% of auc. In Kang et al 2015 [18] they achieved following performance metrics,

while performing machine learning algorithms for malware and benign program

classification or regression. They obtained 98% of auc. In Saxe et al 2015 [19]

they achieved following performance metrics, while performing machine learning

algorithms for malware and benign program classification or regression, tpr of
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95.2%, 0.1% fpr They obtained 95% of accuracy. In Yerima et al 2015 [4] they

achieved following performance metrics, while performing machine learning algo-

rithms for malware and benign program classification or regression, tpr of 0.973,

2.3 % fpr, tnr of 97.7 %. They obtained 97.5% accuracy, with 2.50% error rate and

auc was 99.3%. In Peiravian et al 2013 [27] they achieved following performance

metrics, while performing machine learning algorithms for malware and benign

program classification or regression. They obtained 96.88% accuracy, and auc was

96.3%. In Narouei et al 2013 [20] they achieved following performance metrics,

while performing machine learning algorithms for malware and benign program

classification or regression. They obtained 98.5% of tpr. In Zheng et al 2013

[21], Okazaki et al 2002 [36] they didn’t provide the metrics results. In Sato et al

2013 [22] they achieved following performance metrics, while performing machine

learning algorithms for malware and benign program classification or regression.

They obtained 90.0% of tpr and 10 % of fpr. In Sanz et al 2013 [23] they achieved

following performance metrics, while performing machine learning algorithms for

malware and benign program classification or regression. They obtained 94% of

tpr, 5% of fpr, 94.83% of accuracy, and 98% of auc. In Milosevic et al 2017 [24]

they achieved following performance metrics, while performing machine learning

algorithms for malware and benign program classification or regression. They ob-

tained 82.3% of tpr and 17.6 % of fpr. In Sekar et al 2002 [28] they achieved

following performance metrics, while performing machine learning algorithms for

malware and benign program classification or regression, tpr of 97.2%, 2.5% fpr.

They obtained 97.6% of accuracy and 99.3% of auc.

2.6 Experimental Setup

In this section, the experimental setup of different research papers is presented.

Some common attributes were figured out on which different research paper con-

duct their experiments. These attribute are Frequency, RAM. Server , Desktop,

Phone, Processor, and OS. In Arp, D. et al 2014 [8] they used desktop computer

system with following specifications, Core 2 duo processor with 2.26 Gigahertz
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(GHz) frequency and 4 Gigabyte (GB) of RAM. They used virtual machine for

analysis of malware. In Burguera, et al 2011 [9], Yerima et al 2014 [2], Kumar et

al 2017 [2], Yerima et al 2015[26] they didn’t provide the experimental setup de-

tails. In Feizollah et al 2018 [5] they used desktop computer system with following

specifications, Intel core i5 and 20GB of RAM using Windows 7 operating system.

They used virtual machine for analysis of malware. In Amos et al 2013 [6] they

used desktop computer system with following specifications, Intel Xeon 5645 and

36 GB Double Data Rate 3 (DDR3) of RAM using CentOS 6.3 operating system.

They used virtual machine for analysis of malware. In Feizollah et al 2015 [7]

they used desktop computer and phone for android malware analysis. They used

virtual machine for analysis of malware. Further they didn’t provide the system

specifications. In Dash et al 2016[10],Yuan et al 2014 [11], they didn’t provide the

experimental setup details. In Feizollah et al 2017 [12] they used mobile with fol-

lowing specifications, 2 GB of RAM using Marshmallow, version 6.0.1 on Android

operating system. In Almin et al 2015 [13] they used mobile using Jelly Bean,

version 4.2.2 on Android operating system. In Idrees et al 2014 [14] they used

desktop computer system with following specifications, Intel Core i3-3220 proces-

sor with 3.30 GHz frequency. They used virtual machine for analysis of malware.

In Karbab et al 2018 [15] they used desktop computer system with following spec-

ifications, Intel E5-26301, T64001, ARM-A7 processor with 3.30 GHz frequency

and RAM of 128GB/ 3 GB/ 1 GB. They used mobile and virtual machine for

analysis of malware.

In Canfora et al 2015 [16] they used desktop computer system with following

specifications, Intel Core i5 processor and RAM of 4GB. They used mobile and

virtual machine for analysis of malware.

In Hassen et al 2017 [17] they used desktop computer system with following spec-

ifications, quad core processor with frequency 2.3 GHz and RAM of 8GB. They

used virtual machine for analysis of malware.

In Kang et al 2015 [18] they used desktop computer system with following spec-

ifications, Intel Xeon X5660 and RAM of 4GB. They used virtual machine for

analysis of malware.
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Table 2.7: Experimental Setup

Paper Ref Frequency RAM Server Desktop Phone Processor OS

Arp, D. 2014 [8] 2.26 GHz 4GB - 1 - Core 2 duo -

Burguera, 2011 [9] - - - - - - -

Yerima 2014 [2] - - - - - - -

Kumar 2017 [3] - - - - - - -

Yerima 2015[26] - - - - - - -

Feizollah 2018 [5] - 20 GB - 1 - Intel i5 Win 7

Amos 2013 [6] - 36GB DDR 3 1 1 Intel Xeon 5645 CentOS 6.3

Feizollah 2015 [7] - - - 1 1 - -

Dash 2016[10] - - - - - - -

Yuan 2014 [11] - - - - - - -

Feizollah 2017 [12] - 2GB 0 0 1 Marshmallow, version 6.0.1 Android

Almin 2015 [13] - - 0 0 1 Jelly Bean, version 4.2.2 Android

Idrees 2014 [14] 3.30GHz - 0 1 0 Intel Core i3-3220 -

Karbab 2018 [15] - 128GB

/3 GB

/1 GB 1 1 1 Intel E5-26301, T64001, ARM-A7 -

Canfora 2015 [16] - 4GB 0 1 0 Intel Core i5 -

Hassen 2017 [17] 2.3 GHz 8GB 0 1 0 quad core -

Kang 2015 [18] - 4GB 0 1 0 Intel Xeon X5660 -

Saxe 2015 [19] - 80GB 1 0 0 Amazon EC2 -

Yerima 2015 [4] - - - - - - -
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Paper Ref Frequency RAM Server Desktop Phone Processor OS

Peiravian 2013 [27] 2.4GHz 2GB 0 1 0 Intel Core 2 Duo PC -

Narouei 2013 [20] 2 GHz 8GB 0 1 0 Intel Core i7 Windows

Zheng et all 2013 [21] 0 0 1 1 0 two virtual machines -

Sato 2013 [22] 0 0 0 0 0 0 -

Sanz 2013 [23] 0 0 0 0 0 0 -

Milosevic 2017 [24] 2.3 GHz 2GB 0 0 1 Quad-core Nexus 5 Android

Okazaki 2002 [25] 0 0 0 1 0 0 0

Sekar 2002 [28] 0 0 0 1 0 0 0

In Saxe et al 2015 [19] they used desktop computer system with following specifications, Amazon EC2 and RAM of 80GB. They used

virtual machine for analysis of malware.

In Yerima et al 2015 [4] they didn’t provide the experimental setup details.

In Peiravian et al 2013 [27] they used desktop computer system with following specifications, Intel Core 2 Duo PC processor with frequency

2.4 GHz and RAM of 2GB. They used virtual machine for analysis of malware.

In Narouei et al 2013 [20] they used desktop computer system with following specifications, Intel Core i7 processor with frequency 2.0

GHz and RAM of 2GB on windows operating system. They used virtual machine for analysis of malware.

In Zheng et al 2013 [21] they used desktop computer system with following specifications, two virtual machines. They used virtual

machine and server systems for analysis of malware
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In Sato et al 2013 [22], Sanz et al 2013 [23] they didn’t provide the experimental

setup details.

In Milosevic et al 2017 [24] they used Nexus 5 mobile with following specifications,

quad core processor with frequency 2.3 GHz and RAM of 2GB. They used android

operating system for analysis of malware.

In Okazaki et al 2002 [25], Sekar et al 2002 [28] they used desktop computer sys-

tems. Further they didn’t provide the system details. They used virtual machine

for analysis of malware.

2.7 Discussion

In order to produce a good antimalware tool, a few studies, such as [29], [30],

and [2], have been found to adjust this detection technique by combining whether

Signature-based with Anomaly-based detection method or Anomaly-based with

Specification-based detection method. Researchers such as [30], described a de-

tailed analysis methodology for generating a new signature based detection on

code level of the malware or benign file. In this thesis, a malware detection tax-

onomy is demonstrated to be effective by comparing it to the present malware

detection technique: Table 2.1 shows competence criteria for signature-based de-

tection, anomaly-based detection, and specification-based detection. All of these

strategies are unable to reduce false alert due to their inability to reduce either

FNR or FPR alert. The use of static and dynamic features, as shown in Tables 2.2

and 2.3, suggests that there is still potential for improvement in terms of lower-

ing false alarms. In this thesis, based on the machine learning analyses, ensemble

based techniques [2, 3, 12, 14, 16] have been proven more effective in classifying the

data, as compared to other techniques. We have also compared the experimental

setups utilized by various researchers, in order to perform the methodologies in

their research.
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Methodology

This chapter will be explaining the working methodology of thesis. The working

methodology is divided into three phases. In phase 1 the preprocessing of the

dataset has been performed. Correlation technique has been used to preprocess

the data. As a result of correlation the features were reduced from 80 to 57 that

will be explained in section 3.1.2. In phase 2 the feature selection technique is

discussed. Genetic algorithm has been used to reduce the feature set of dataset.

The features were reduced from 57 to 35 as a result of Genetic algorithm when

elitism rate was 0.30 and mutation rate was 1 with a fitness function value of

90.04%. In phase 3 final reduced dataset was compiled and that dataset was then

used to evaluate the classification of android malware families. The evaluation was

performed for three categories i.e binary, malware category and malware family.

3.1 Phase 1-PreProcessing

The dataset named ‘CICAndMal2017’ used is the labeled dataset with 80 dynamic

features of 42 malware families. Lashkari.et.al [31] gathered about 10,854 samples

from various sources (4,354 malware and 6,500 benign) and they also gathered over

6,000 Benign apps from the Google Play store in 2015, 2016, and 2017. The actual

malware behavior will trigger once installed on real smart phones that’s why over

5,000 of the gathered samples (426 malware and 5,065 benign) were installed on

36
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real smart devices to get the network traces and eventually extracted 80 unique

dynamic features.

Figure 3.1: Phase I - Preprocessing

3.1.1 Dataset

The dataset used for feature selection and classification is collected by Lashkari.et.al

[31]. The dataset is completely labeled and includes network traffic, logs, API/SYS

calls, phone statistics, and memory dumps of 42 malware families. The table 3.1

below shows the description of each feature extracted in this dataset. Table 3.2

shows the malware families names and category C labeled accordingly.

Table 3.1: Feature Description of Dataset

Feature name Description

Source Port

Destination Port

Protocol

Flow Duration Flow duration

Total Fwd Packets Total packets in the forward direction

Total Backward Pack-

ets

Total packets in the backward direction

Total Length of Fwd

Packets

Total size of packet in forward direction

Fwd Packet Length

Max

Maximum size of packet in forward direction
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Feature name Description

Fwd Packet Length

Min

Minimum size of packet in forward direction

Fwd Packet Length

Mean

Average size of packet in forward direction

Fwd Packet Length

Std

Standard deviation size of packet in forward direction

Bwd Packet Length

Max

Maximum size of packet in backward direction

Bwd Packet Length

Min

Minimum size of packet in backward direction

Bwd Packet Length

Mean

Mean size of packet in backward direction

Flow Bytes/s flow byte rate that is number of packets transferred

per second

Flow Packets/s flow packets rate that is number of packets trans-

ferred per second

Flow IAT Mean Mean time between two flows

Flow IAT Std Standard deviation time two flows

Flow IAT Min Minimum time between two flows

Fwd IAT Total Total time between two packets sent in the forward

direction

Fwd IAT Mean Mean time between two packets sent in the forward

direction

Fwd IAT Std Standard deviation time between two packets sent in

the forward direction

Fwd IAT Max Maximum time between two packets sent in the for-

ward direction

Fwd IAT Min Minimum time between two packets sent in the for-

ward direction

Bwd IAT Total Total time between two packets sent in the backward

direction
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Feature name Description

Bwd IAT Mean Mean time between two packets sent in the backward

direction

Bwd IAT Std Standard deviation time between two packets sent in

the backward direction

Bwd IAT Min Minimum time between two packets sent in the back-

ward direction

Fwd PSH Flags Number of times the PSH flag was set in packets trav-

elling in the forward direction (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set in packets trav-

elling in the backward direction (0 for UDP)

Fwd URG Flags Number of times the URG flag was set in packets

travelling in the forward direction (0 for UDP)

Bwd URG Flags Number of times the URG flag was set in packets

travelling in the backward direction (0 for UDP)

Bwd Packets/s Number of backward packets per second

Min Packet Length Minimum length of a flow

Max Packet Length Maximum length of a flow

Packet Length Mean Mean length of a flow

FIN Flag Count Number of packets with FIN

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWE Flag Count Number of packets with CWE

ECE Flag Count Number of packets with ECE

Down/Up Ratio Download and upload ratio

Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward

direction

Fwd Avg Packet-

s/Bulk

Average number of packets bulk rate in the forward

direction

Fwd Avg Bulk Rate Average number of bulk rate in the forward direction
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Feature name Description

Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward

direction

Bwd Avg Packet-

s/Bulk

Average number of packets bulk rate in the backward

direction

Bwd Avg Bulk Rate Average number of bulk rate in the backward direc-

tion

Init Win bytes backward# of bytes sent in initial window in the backward

direction

act data pkt fwd # of packets with at least 1 byte of TCP data payload

in the forward direction

min seg size forward Minimum segment size observed in the forward direc-

tion

Active Mean Mean time a flow was active before becoming idle

Active Std Standard deviation time a flow was active before be-

coming idle

Idle Mean Mean time a flow was idle before becoming active

Idle Std Standard deviation time a flow was idle before be-

coming active

Table 3.2: Malware Families Names

Main

Catgeory

Adware Ransomware Scareware SMS Malware

Dowgin Charger AndroidDefender BeanBot

Ewind Jisut AndroidSpy Biige

Feiwo Koler AV for Android FakeInst

Gooligan LockerPin AVpass FakeMart

Kemoge Simplocker FakeApp FakeNotify

koodous Pletor FakeAppAL Jifake

Mobidash PornDroid FakeAV Mazarbot

Selfmite RansomBO FakeJobOffer Nandrobox

Shuanet Svpeng FakeTaoBao Plankton

Youmi WannaLocker Penetho SMSsniffer

Families

VirusShield Zsone
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3.1.2 Correlation

For feature reduction, correlation is applied. The goal is to minimize the dataset’s

dimensionality by removing strongly associated features. It is essentially a measure

of how closely two variables, X and Y, are connected to one another. Correlation,

in other terms, is an indicator of the magnitude of a linear relationship between

two variables. The correlation coefficient ’r’ might be anything between –1 and 1.

Correlation is a quantity that has no dimensions. The units of measurement of

X and Y have no bearing on correlation. If the correlation is higher than 0, the

two variables are considered to be positively correlated, meaning that as X rises,

Y rises as well. A perfect positive correlation has a r = 1. If the correlation is

less than zero, it suggests that the two variables are not related. Figure 3.2 below

describes the process how correlation is being used in order to get our reduced

feature set.

Figure 3.2: Process of Finding the Correlation

Below mentioned are the steps that describes how features greater the 0.95 have

been selected and at the end we get the dataset in which all features have less

than 0.95 correlation.

Step 1: Finding correlation matrix.

Step 2: Calculating the heat map. Figure 3.3 below shows the Heap map.

Step 3: Then select upper or lower triangle.

Step 4: Then select features with correlation more than 0.95.

Step 5: Drop the selected features having correlation more than 0.95.

The total number of features extracted by Lashkari.et.al [31] is 80. After using

correlation the total number of features was reduced to 57.
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Figure 3.3: Heatmap

The figure 3.4 below shows the snap shot of the implementation in python.

Figure 3.4: Correlation Code Snapshot

3.2 Phase 2-Feature Selection using Genetic Al-

gorithm

Feature selection is the process of finding the most relevant input for the models.

This technique helps eliminate the redundant, unwanted and irrelevant features
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which affect the overall accuracy of the model. The most advanced method for

feature selection is genetic algorithms. Genetic algorithm is the method based on

neural mechanisms and biological evolution for function optimization.

Genetic algorithms revolve around evolving the fittest generation. In nature, or-

ganisms’ genes tend to evolve through generations to improve their ability to adapt

to their surroundings. The genetic algorithm is a predictive optimization method

based on natural evolution procedures. Genetic algorithms act on a population

of individuals to improve approximations over time for each generation, the algo-

rithm generates a new population by selecting individuals based on their fitness.

Following that, operators borrowed from natural genetics are used to recombine

these individuals which are selection, crossover and mutation.

To start the evolution process the first generation has to be initialized and rest of

the generations will be evolved automatically based on what operators have been

used for selection , crossover and mutation. Termination check determines whether

the generation has converged to provide the fittest chromosome of that generation,

if not then the process will continued until the desired solution achieved. Figure

3.5 below shows the block diagram of the feature selection process through Genetic

Algorithm.

Figure 3.5: Phase 2 - Feature Selection Using Genetic Algorithm

3.2.1 Initialization

The procedure starts with a group of individuals known as a Population. Each

individual is a potential solution to the problem you’re trying to solve. Genes are
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a set of factors (variables) that characterize an individual. A Chromosome is made

up of a string of genes (solution).The set of genes of an individual is represented

by a string in terms of an alphabet in a genetic algorithm. Binary values are

generally utilized (string of 1s and 0s). The genes in a chromosome are said to be

encoded. The below described are the steps that took to initialize the population

and figure 3.6 shows the block diagram and flow of these steps.

Step A: 20 chromosomes were created which in fact are the 20 empty arrays using

python.

Step B: Randomly generate natural numbers between 0 and 1.

Step C: Assign random value to each gene in the chromosomes the value between 1

and 0. The genes are the indexes of the array which are assigned randomly either

0 or 1 value.

Step D: Now we have 20 chromosomes with 57 genes each.

Figure 3.6: Initialization

3.2.2 Feature Reduction

The chromosomes that have been initialized in section 3.2.1 will then be compared

with dataset . The value of each gene is compared to the column number of the

dataset. So if the value is 1 then that column is taken else dropped. As a result 20

different datasets have been generated corresponding to each chromosome. The

process of feature reduction is shown in figure 3.7.
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Figure 3.7: Feature Reduction

3.2.3 Fitness

The 20 different datasets corresponding to each chromosome was then used to

evaluate and calculate the fitness of each chromosome of a particular generation.

Figure 3.8 shows the process of calculating fitness. Below are the steps involved

in fitness calculation.

Step A: Fed the dataset generated in section 3.2.2 to the classifier to calculate the

accuracy of that chromosome.

Step B: 70 % training and 30 % testing is the train and test split used.

Step C: Used random forest classifier for evaluation with 42 random states and

number of estimators 100.

Step D: Train the classifier and then test it to evaluate the accuracy.

Step E: As a result each chromosome was assigned a fitness value.

Figure 3.8: Fitness
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3.2.3.1 Fitness Function

The below mentioned fitness function was used to calculate the fitness of each

chromosome. A true positive (TP) is when the model classifies the positive class

properly. A true negative (TN), on the other hand, is a result in which the model

correctly classify the negative class. A false positive (FP) occurs when the model

forecasts the positive class inaccurately. A false negative (FN) is an outcome in

which the model forecasts the negative class inaccurately.

Fitnessfunction = (TP + TN)/(TP + TN + FP + FN)

3.2.4 Termination Check

Termination check determines if there is a need for evolving next generation or

not. Figure 3.9 shows the Termination Check process.

Figure 3.9: Termination Check

3.2.5 Elitism

Elitism is the strategy of allowing the best chromosome of current generation to

carry on to the next generation unaltered. With the help of this strategy the

solution quality does not degraded form one generation to another. The fittest

chromosomes according to the different elitism rates as shown in Table 3.3 below

will be chosen without any alteration to the next generation. Figure 3.10 shows

the elitism process in detail.
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Table 3.3: Feature Description

Elitism Rate No. of Fittest Chromosome Chosen

0.1 2

0.2 4

0.3 6

Figure 3.10: Elitism

The Figure 3.11 below shows the effect of elitism and mutation rate on fitness

values.

Figure 3.11: Comparison of Fitness and Generations with Respect to Elitism
Rate
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3.2.6 Selection

The goal of the selection phase is to find the fittest individuals and let them to

pass their genes along to future generations. Based on their fitness scores, two

pairs of people (parents) are chosen. Individuals who are physically fit have a

better probability of being chosen for reproduction.

In a Genetic Algorithm, Tournament Selection is a selection approach for having

fittest candidates from the particular generation. After that, the chosen candi-

dates are passed on to the next generation. We choose k-individuals and run a

competition among them in a K-way tournament selection. Only the fittest can-

didate is chosen and handed on to the next generation from among the selected

candidates. Many such tournaments are held in this manner, and we have our final

pick of candidates who will advance to the next generation. Figure 3.12 shows the

selection process and below are the steps. Figure 3.13 shows the code snapshot

for selection process.

Step A: Used K-Tournament selection.

Step B: Choose randomly K chromosomes as shown in Table 3.4 below.

Table 3.4: Values of K According to Elitism Rate

Elitism Rate Value of K

0.1 8

0.2 6

0.3 4

Step C: Sort those K chromosomes according to fitness value.

Step D: The chromosome with highest fitness value among those K Chromosomes

will be chosen as the parent.

Step E: We repeated the process two times in order to find out two parents.



Methodology 49

Figure 3.12: K Tournament Selection

Figure 3.13: Selection code snapshot
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3.2.7 Crossover

Crossover also called recombination is a genetic operator used to combine the genes

of two chromosomes to form new offspring. Used two point crossover to create new

offspring in python figure 3.14 shows the code snapshot.

Figure 3.14: Crossover Code Snapshot

The below mentioned is the formula for string concatenation.

Newparenta = a[: r1] + b[r1 : r2] + a[r2 :]

Newparentb = b[: r1] + a[r1 : r2] + b[r2 :]

Figure 3.15 shows the crossover process.

Figure 3.15: Crossover
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3.2.8 Mutation

In simple terms, a mutation is a minor random change in the chromosome that

results in a new solution. It’s used to keep and introduce genetic variation into

the population. The part of the GA linked to the ”exploration” of the search

space is mutation. The swap mutation operator has been used in this thesis.

Swap mutation involves picking two locations on the chromosome at random and

swapping their values. Permutation-based encodings are prone to this. Figure

3.16 shows the process we used to apply mutation and figure 3.17 shows the code

snapshot which shows implementation of mutation in python.

Figure 3.16: Mutation

Figure 3.17: Mutation Code Snapshot
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Six different experiments were performed to see the effect of mutation rate and

elitism rate on fitness. Figure 3.18 below shows Fitness variations with respect

to mutation and elitism rate. The best fitness value (89.24%) was observed as a

result when Mutation rate was equal to 1 and elitism rate was equal to 0.3.

Figure 3.18: Mutation Code Snapshot

3.2.9 Fittest Chromosome

As a result of feature selection the table 3.5 shows the fittest chromosome.

Table 3.5: Fittest Chromosome

Chromosome Information Values

Fittest Chromosome [’1’, ’1’, ’0’, ’0’, ’1’, ’0’, ’1’, ’0’, ’1’, ’1’, ’1’, ’1’, ’0’,

’1’, ’0’, ’0’, ’1’, ’1’, ’1’, ’1’, ’0’, ’0’, ’1’, ’1’, ’0’, ’1’,

’0’, ’0’, ’1’, ’0’, ’1’, ’1’, ’0’, ’1’, ’0’, ’1’, ’1’, ’1’, ’0’,

’1’, ’1’, ’1’, ’0’, ’1’, ’1’, ’0’, ’1’, ’1’, ’0’, ’1’, ’1’, ’1’,

’0’, ’0’, ’1’, ’1’, ’0’]

Fitness 89.24755097

No. of features 35

Elitism Rate 0.3

Mutation Rate 1

Generation 15th
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3.3 Phase 3-Evaluation

3.3.1 Final Reduced Dataset for Evaluation

The fittest chromosome that was found in section 3.2.9 was then used to generate

final reduced dataset for evaluation. This dataset has 35 features. The table 3.6

below shows the names of all 30 features of the final reduced dataset.

Table 3.6: Names of Fittest Features

Sr. No Feature List Sr. No Features List

1 Source Port 19 Fwd URG Flags

2 Destination Port 20 Bwd URG Flags

3 Total Fwd Packets 21 Min Packet Length

4 Total Length of Fwd Packets 22 Packet Length Mean

5 Fwd Packet Length Min 23 FIN Flag Count

6 Fwd Packet Length Mean 24 RST Flag Count

7 Fwd Packet Length Std 25 ACK Flag Count

8 Bwd Packet Length Max 26 URG Flag Count

9 Bwd Packet Length Mean 27 CWE Flag Count

10 Flow IAT Mean 28 Down/Up Ratio

11 Flow IAT Std 29 Fwd Avg Bytes/Bulk

12 Flow IAT Min 30 Fwd Avg Bulk Rate

13 Fwd IAT Mean 31 Bwd Avg Bytes/Bulk

14 Fwd IAT Min 32 Bwd Avg Bulk Rate

15 Bwd IAT Mean 33 Init Win bytes backward

16 Fwd PSH Flags 34 act data pkt fwd

17 min seg size forward 35 Idle Mean

18 Active Std

The above mentioned features were extracted using python. The fittest chromo-

some was fed to a for loop in which each gene value was checked, if the value of

that gene was equal to “0” that feature from the original dataset was dropped and
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if the value of that gene was equal to “1” that feature taken as to make part of

final reduced dataset .The snapshot of code is shown in Figure 3.19 below.

Figure 3.19: Code Snapshot for Final Reduced Dataset for Evaluation

3.3.2 Category Wise Evaluation

This section involves compiling a final reduced dataset, which was then used to

evaluate three Algorithms (KNN, DT, and RF) for classification of Android mal-

ware detection. The analysis included three categories: binary, malware category,

and malware family. Three metrics (Precision, Recall, and F1 Measure) were used

for evaluation with 10 fold cross validation. Figure 3.20 shows this process in

detail.

Figure 3.20: Phase 3 - Evaluation
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Results

As a result of feature selection through genetic algorithm the numbers of features

were reduced from 80 total features to 35 features. The accuracy of the fittest

chromosome as a result of applying genetic algorithm is 89.24%.

Table 4.1 below shows the values of fitness values of fittest parents of each gener-

ation with respect to different elitism rate and mutation rate. Figures from 4.1 to

4.6 shows 6 experimentation results for finding fittest chromosome.

Table 4.1: Fitness Values of Fittest Parent of each Generation

Without
Elitism

Elitism=0.1
Mr=1

Elitism=0.2
Mr=1

Elitism=0.3
Mr=1

Elitism=0.3
Mr=0.02

Elitism=0.2
Mr=0.02

87.37304739 89.17871326 88.81863913 89.24755097 88.57505957 88.73921101
85.53031506 88.95631454 88.76568705 89.22637014 88.55917395 88.69684935
85.42970612 88.90336246 88.64919248 89.2051893 88.54858353 88.68096373
84.36536934 88.88747683 88.60683082 89.17341806 88.54328832 88.67037331
84.16415144 88.84511517 88.60153561 89.17341806 88.53799312 88.6597829
84.03177125 88.81334392 88.46915541 89.16282764 88.53799312 88.6597829
83.80937252 88.78157268 88.44797458 89.16282764 88.52210749 88.6597829
83.80937252 88.57505957 88.08260524 89.03044745 88.50622187 88.63860207
83.76171565 87.95552025 89.02515224 88.50092666 88.62801165
83.71405878 87.83902568 88.77627747 88.49563145 88.61742123
82.86153032 88.70743977 88.49563145 88.61212603
82.46968494 88.70214456 88.48504104 88.5962404
82.42732327 88.69684935 88.47974583 88.59094519
82.39555203 88.67037331 88.458565 88.56976436
82.32141912 88.6650781 88.45326979 88.37384167
82.28435266 88.48504104 88.40031771 88.24146148
82.0407731 88.46386021 88.22557585
82.03018268 87.81254964 88.03494837

87.95552025

55



Results 56

Figure 4.1: Fitness of Generations With 0.1 Elitism and 1 Mutation rate

Figure 4.2: Fitness of Generations With 0.2 Elitism and 1 Mutation rate
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Figure 4.3: Fitness of Generations With 0.3 Elitism and 1 Mutation rate

Figure 4.4: Fitness of Generations With 0.3 Elitism and 0.02 Mutation rate
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Figure 4.5: Fitness of Generations With 0.2 Elitism and 0.02 Mutation rate

Figure 4.6: Fitness of Generations Without Elitism

The final reduced dataset that was compiled as explained in section 3.3.1 was

used for final evaluation. The evaluation was done for three categories of the

malware data. Category A corresponds to binary label which means the labels

was “malware” and “benign”. Category B corresponds to malware category, there
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Table 4.2: Evaluation Matrix of Proposed Solution

Decision Tree KNN Random Forest
Category A

Precision Recall F1 Precision Recall F1 Precision Recall F1
89.6 91.7 90.7 85.5 88.8 87.1 93.3 90 91.6

Category B
Precision Recall F1 Precision Recall F1 Precision Recall F1

52.8 53.3 53 53.2 53.1 53.2 52 53 53
Category C

Precision Recall F1 Precision Recall F1 Precision Recall F1
43.6 45.5 44.2 41.8 41.7 41.8 37 42 39

are four types of malware that were used for classification, those four categories

are Adware, Ransomware, Scareware and SMS malware. Category C corresponds

to malware families that were used for classification. The classifier that was used

for classification was random forest , Decision tree and K-Nearest neighbors and

evaluation metrics are Precision , Recall and F1 measure. Table ?? below shows

evaluation metrics results.

4.1 Result Comparison

The comparison of results with base paper was performed. Three classifiers namely

Decision tree, K nearest neighbors and random forest were evaluated for calculating

precision and recall for Category A,B and C and compared with base paper. The

Table 4.3 below shows the comparison of our own evaluation metrics results with

base paper.

Table 4.3: Comparisons of Results With Base paper

Categories Classifiers Evaluation Matrix

Category A Decision Tree Precision 89.6 85.1

Recall 91.7 88

KNN
Precision 85.5 85.4

Recall 88.8 88.1

Random Forest
Precision 93.3 85.8

Recall 90 88.3

Category B Decision Tree
Precision 52.8 47.8
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Categories Classifiers Evaluation Matrix

Recall 53.3 45.9

KNN
Precision 53.2 49.5

Recall 53.1 48

Random Forest
Precision 52 49.9

Recall 53 48.5

Category C Decision Tree
Precision 43.6 26.66

Recall 45.5 20.06

KNN
Precision 41.8 27.24

Recall 41.7 23.74

Random Forest
Precision 37 27.5

Recall 42 25.5

The Figures 4.7,4.8 and 4.9 shows that the results achieved as a result of this thesis

are improved then the base paper results.

Figure 4.7: Comparisons of results with base paper for category A
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Figure 4.8: Comparisons of results with base paper for category B

Figure 4.9: Comparisons of results with base paper for category C
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Conclusion

Feature selection plays vital role in eliminating the redundant data from the

dataset. This thesis work revolves around the same goal to reduce the dimen-

sionality of dataset to be effective for achieving high accuracy. Total number of

feature set of original dataset were 80 which were first brought down to 57 using

correlation preprocessing method and then Genetic algorithm came into play to

further reduce the feature set from 57 to 35. The Genetic Algorithm was initial-

ized by 20 chromosomes and then different experiments were conducted to find

the fittest chromosome. Fittest chromosome was achieved in 15 generation when

mutation rate was 1 and elitism rate was 0.3 and fitness value was 89.24%. The

classifications resulted with average precision and average recall of 89.43% and

at 90.14% for category A, 52.6% and 53.1 for category B and 40.8 and 43.06 for

Category C.

62



Bibliography

[1] M. Odusami, O. Abayomi-Alli, S. Misra, O. Shobayo, R. Damasevicius, and

R. Maskeliunas, “Android malware detection: A survey,” in International

conference on applied informatics. Springer, 2018, pp. 255–266.

[2] S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection using

parallel machine learning classifiers,” in 2014 Eighth international conference

on next generation mobile apps, services and technologies. IEEE, 2014, pp.

37–42.

[3] S. Kumar, A. Viinikainen, and T. Hamalainen, “Evaluation of ensemble

machine learning methods in mobile threat detection,” in 2017 12th Inter-

national Conference for Internet Technology and Secured Transactions (IC-

ITST). IEEE, 2017, pp. 261–268.

[4] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware de-

tection using ensemble learning,” IET Information Security, vol. 9, no. 6, pp.

313–320, 2015.

[5] A. Feizollah, N. B. Anuar, and R. Salleh, “Evaluation of network traffic anal-

ysis using fuzzy c-means clustering algorithm in mobile malware detection,”

Advanced Science Letters, vol. 24, no. 2, pp. 929–932, 2018.

[6] B. Amos, H. Turner, and J. White, “Applying machine learning classifiers

to dynamic android malware detection at scale,” in 2013 9th international

wireless communications and mobile computing conference (IWCMC). IEEE,

2013, pp. 1666–1671.

63



Bibliography 64

[7] A. Feizollah, N. B. Anuar, R. Salleh, and F. Amalina, “Comparative evalua-

tion of ensemble learning and supervised learning in android malwares using

network-based analysis,” in Advanced Computer and Communication Engi-

neering Technology. Springer, 2015, pp. 1025–1035.

[8] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens,

“Drebin: Effective and explainable detection of android malware in your

pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-

based malware detection system for android,” in Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile devices, 2011,

pp. 15–26.

[10] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, and

L. Cavallaro, “Droidscribe: Classifying android malware based on runtime

behavior,” in 2016 IEEE Security and Privacy Workshops (SPW). IEEE,

2016, pp. 252–261.

[11] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in an-

droid malware detection,” in Proceedings of the 2014 ACM conference on

SIGCOMM, 2014, pp. 371–372.

[12] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, “An-

drodialysis: Analysis of android intent effectiveness in malware detection,”

computers & security, vol. 65, pp. 121–134, 2017.

[13] S. B. Almin and M. Chatterjee, “A novel approach to detect android mal-

ware,” Procedia Computer Science, vol. 45, pp. 407–417, 2015.

[14] F. Idrees and M. Rajarajan, “Investigating the android intents and permis-

sions for malware detection,” in 2014 IEEE 10th International Conference on

Wireless and Mobile Computing, Networking and Communications (WiMob).

IEEE, 2014, pp. 354–358.



Bibliography 65

[15] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Maldozer: Auto-

matic framework for android malware detection using deep learning,” Digital

Investigation, vol. 24, pp. S48–S59, 2018.

[16] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting android

malware using sequences of system calls,” in Proceedings of the 3rd Inter-

national Workshop on Software Development Lifecycle for Mobile, 2015, pp.

13–20.

[17] M. Hassen and P. K. Chan, “Scalable function call graph-based malware

classification,” in Proceedings of the Seventh ACM on Conference on Data

and Application Security and Privacy, 2017, pp. 239–248.

[18] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim, “Detecting and classifying

android malware using static analysis along with creator information,” Inter-

national Journal of Distributed Sensor Networks, vol. 11, no. 6, p. 479174,

2015.

[19] J. Saxe and K. Berlin, “Deep neural network based malware detection using

two dimensional binary program features,” in 2015 10th international confer-

ence on malicious and unwanted software (MALWARE). IEEE, 2015, pp.

11–20.

[20] M. Narouei, M. Ahmadi, G. Giacinto, H. Takabi, and A. Sami, “Dllminer:

structural mining for malware detection,” Security and Communication Net-

works, vol. 8, no. 18, pp. 3311–3322, 2015.

[21] M. Zheng, M. Sun, and J. C. Lui, “Droid analytics: a signature based ana-

lytic system to collect, extract, analyze and associate android malware,” in

2013 12th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications. IEEE, 2013, pp. 163–171.

[22] R. Sato, D. Chiba, and S. Goto, “Detecting android malware by analyzing

manifest files,” Proceedings of the Asia-Pacific Advanced Network, vol. 36, no.

23-31, p. 17, 2013.



Bibliography 66

[23] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. G. Bringas,
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